![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Energy technology & engineering
"Heat Pipes, 6th Edition, " takes a highly practical approach to the design and selection of heat pipes, making it an essential guide for practicing engineers and an ideal text for postgraduate students. This new edition has been revised to include new information on
the underlying theory of heat pipes and heat transfer, and features
fully updated applications, new data sections, and updated chapters
on design and electronics cooling. The book is a useful reference
for those with experience and an accessible introduction for those
approaching the topic for the first time.
This book provides a systematic and comprehensive introduction to fusion neutronics, covering all key topics from the fundamental theories and methodologies, as well as a wide range of fusion system designs and experiments. It is the first-ever book focusing on the subject of fusion neutronics research. Compared with other nuclear devices such as fission reactors and accelerators, fusion systems are normally characterized by their complex geometry and nuclear physics, which entail new challenges for neutronics such as complicated modeling, deep penetration, low simulation efficiency, multi-physics coupling, etc. The book focuses on the neutronic characteristics of fusion systems and introduces a series of theories and methodologies that were developed to address the challenges of fusion neutronics. Further, it introduces readers to the unique principles and procedures of neutronics design, experimental methodologies and methodologies for fusion systems. The book not only highlights the latest advances and trends in the field, but also draws on the experiences and skills collected in the author's more than 40 years of research. To make it more accessible and enhance its practical value, various representative examples are included to illustrate the application and efficiency of the methods, designs and experimental techniques discussed.
Situated at the forefront of interdisciplinary research on ferromagnetic microwires and their multifunctional composites, this book starts with a comprehensive treatment of the processing, structure, properties and applications of magnetic microwires. Special emphasis is placed on the giant magnetoimpedance (GMI) effect, which forms the basis for developing high-performance magnetic sensors. After defining the key criteria for selecting microwires for various types of GMI sensors, the book illustrates how ferromagnetic microwires are employed as functional fillers to create a new class of composite materials with multiple functionalities for sensing and microwave applications. Readers are introduced to state-of-the-art fabrication methods, microwave tunable properties, microwave absorption and shielding behaviours, as well as the metamaterial characteristics of these newly developed ferromagnetic microwire composites. Lastly, potential engineering applications are proposed so as to highlight the most promising perspectives, current challenges and possible solutions.
China Satellite Navigation Conference (CSNC) 2013 Proceedings presents selected research papers from CSNC2013, held on 15-17 May in Wuhan, China. The theme of CSNC2013 is: BeiDou Application: Opportunities and Challenges. These papers discuss the technologies and applications of the Global Navigation Satellite System (GNSS), and the latest progress made in the China BeiDou system especially. They are divided into 9 topics to match the corresponding sessions in CSNC2013, which broadly covered key topics in GNSS. Readers can learn about the BeiDou system and keep abreast of the latest advances in GNSS techniques and applications. SUN Jiadong is the Chief Designer of the Compass/BeiDou system, and the Academician of Chinese Academy of Sciences (CAS); JIAO Wenhai is a researcher at China Satellite Navigation Office; WU Haitao is a professor at Navigation Headquarters, CAS; SHI Chuang is a professor at Wuhan University.
The aim of this book is to review innovative physical multiscale modeling methods which numerically simulate the structure and properties of electrochemical devices for energy storage and conversion. Written by world-class experts in the field, it revisits concepts, methodologies and approaches connecting ab initio with micro-, meso- and macro-scale modeling of components and cells. It also discusses the major scientific challenges of this field, such as that of lithium-ion batteries. This book demonstrates how fuel cells and batteries can be brought together to take advantage of well-established multi-scale physical modeling methodologies to advance research in this area. This book also highlights promising capabilities of such approaches for inexpensive virtual experimentation. In recent years, electrochemical systems such as polymer electrolyte membrane fuel cells, solid oxide fuel cells, water electrolyzers, lithium-ion batteries and supercapacitors have attracted much attention due to their potential for clean energy conversion and as storage devices. This has resulted in tremendous technological progress, such as the development of new electrolytes and new engineering designs of electrode structures. However, these technologies do not yet possess all the necessary characteristics, especially in terms of cost and durability, to compete within the most attractive markets. Physical multiscale modeling approaches bridge the gap between materials' atomistic and structural properties and the macroscopic behavior of a device. They play a crucial role in optimizing the materials and operation in real-life conditions, thereby enabling enhanced cell performance and durability at a reduced cost. This book provides a valuable resource for researchers, engineers and students interested in physical modelling, numerical simulation, electrochemistry and theoretical chemistry.
This book focuses on an important technology for mineralizing and utilizing CO2 instead of releasing it into the atmosphere. CO2 mineralization and utilization demonstrated in the waste-to-resource supply chain can "reduce carbon dependency, promote resource and energy efficiency, and lessen environmental quality degradation," thereby reducing environmental risks and increasing economic benefits towards Sustainable Development Goals (SDG). In this book, comprehensive information on CO2 mineralization and utilization via accelerated carbonation technology from theoretical and practical considerations was presented in 20 Chapters. It first introduces the concept of the carbon cycle from the thermodynamic point of view and then discusses principles and applications regarding environmental impact assessment of carbon capture, storage and utilization technologies. After that, it describes the theoretical and practical considerations for "Accelerated Carbonation (Mineralization)" including analytical methods, and systematically presents the carbonation mechanism and modeling (process chemistry, reaction kinetics and mass transfer) and system analysis (design and analysis of experiments, life cycle assessment and cost benefit analysis). It then provides physico-chemical properties of different types of feedstock for CO2 mineralization and then explores the valorization of carbonated products as green materials. Lastly, an integral approach for waste treatment and resource recovery is introduced, and the carbonation system is critically assessed and optimized based on engineering, environmental, and economic (3E) analysis. The book is a valuable resource for readers who take scientific and practical interests in the current and future Accelerated Carbonation Technology for CO2 Mineralization and Utilization.
"Bioenergy Research: Advances and Applications" brings biology and engineering together to address the challenges of future energy needs. The book consolidates the most recent research on current technologies, concepts, and commercial developments in various types of widely used biofuels and integrated biorefineries, across the disciplines of biochemistry, biotechnology, phytology, and microbiology. All the chapters in the book are derived from international scientific experts in their respective research areas. They provide you with clear and concise information on both standard and more recent bioenergy production methods, including hydrolysis and microbial fermentation. Chapters are also designed to facilitate early stage researchers, and enables you to easily grasp the concepts, methodologies and application of bioenergy technologies. Each chapter in the book describes the merits and drawbacks of each technology as well as its usefulness. The book provides information on recent approaches to graduates,
post-graduates, researchers and practitioners studying and working
in field of the bioenergy. It is an invaluable information resource
on biomass-based biofuels for fundamental and applied research,
catering to researchers in the areas of bio-hydrogen, bioethanol,
bio-methane and biorefineries, and the use of microbial processes
in the conversion of biomass into biofuels.
The book reveals how green buildings are currently being adapted and applied in developing countries. It includes the major developing countries such as China, Indonesia, Malaysia, Thailand, Pakistan, Cambodia, Ghana, Nigeria and countries from the Middle East and gathers the insights of respected green building researchers from these areas to map out the developing world's green building revolution. The book highlights these countries' contribution to tackling climate change, emphasising the green building benefits and the research behind them. The contributing authors explore how the green building revolution has spread to developing countries and how national governments have initiated their own green building policies and agendas. They also explore how the market has echoed the green building policy, and how a business case for green buildings has been established. In turn, they show how an international set of green building standards, in the form of various techniques and tools, has been incorporated into local building and construction practices. In closing, they demonstrate how the developing world is emerging as a key player for addressing the energy and environmental problems currently facing the world. The book helps developers, designers and policy-makers in governments and green building stakeholders to make better decisions on the basis of global and local conditions. It is also of interest to engineers, designers, facility managers and researchers, as it provides a holistic picture of how the industry is responding to the worldwide call for greener and more sustainable buildings.
The aim of this book is to explore science and technology from the viewpoint of creating new knowledge, as opposed to the reinterpretation of existing knowledge in ever greater but uncertain detail. Scientists and technologists make progress by distinguishing between what they regard as meaningful and what they consider as secondary or unimportant. The meaningful is dynamic; typically, the less important is static. Science and technology have made a major contribution to the culture and to the standard of living of our society. From antiquity to the present day, the most distinguished scientists and technologists have been thinkers, experimenters and persons willing and able to challenge "the obvious". Technology develops products and processes based on the breakthroughs of science. If technologists fail to steadily upgrade their skills, tools and methods, they will only be as good as their last design, risking obsolescence. Using practical examples and case studies, this book documents the correlations existing between science and technology, and elucidates these correlations with practical applications ranging from real-life situations, from R&D to energy production. As it is a salient problem, and a most challenging one to our society, power production has been chosen as a major case study. The holistic approach to science and technology followed by this text enhances the ability to deliver practical results. This book is intended for students and researchers of science, technology and mathematical analysis, while also providing a valuable reference book for professionals. Its subject is one of the most debated problems of mankind.
This book describes the challenges and solutions the energy sector faces by shifting towards a hydrogen based fuel economy. The most current and up-to-date efforts of countries and leaders in the automotive sector are reviewed as they strive to develop technology and find solutions to production, storage, and distribution challenges. Hydrogen fuel is a zero-emission fuel when burned with oxygen and is often used with electrochemical cells, or combustion in internal engines, to power vehicles and electric devices. This book offers unique solutions to integrating renewable sources of energy like wind or solar power into the production of hydrogen fuel, making it a cost effective, efficient and truly renewable alternative fuel.
The development of oil and gas fields offshore requires specialized pipeline equipment. The structures must be strong enough to with stand the harshest environments, and ensure that production is not interrupted and remains economically feasible. However, recent events in the Gulf of Mexico have placed a new importance on maintenance and reliability.A new section; Condition Based Maintenance (CBM), introduces the subject of maintenance, written by Tian Ran Lin, Queensland University of Technology, and Yong Sun, CSIRO Earth Science and Resource Engineering. Two of the main objectives of CBM is maximizing reliability while preventing major or minor equipment malfunction and minimizing maintenance costs. In this new section, the authors deal with the multi-objective condition based maintenance optimization problem. CBM provides two major advantages: (1) an efficient approach for weighting maintenance objectives, and (2) a method for specifying physical methods for achieving those objectives. Maintenance cost and reliability objectives are calculated based on proportional hazards model and a control limit CBM replacement policy. Written primarily for engineers and management personnel working
on offshore and deepwater oil and gas pipelines, this book covers
the fundamentals needed to design, Install, and commission pipeline
projects. This new section along with a thorough update of the
existing chapters represents a 30% increase in information over the
previous edition.
Electrical Machines and Drives play a vital role in industry with an ever increasing importance. This fact necessitates the understanding of machine and drive principles by engineers of many different disciplines. Therefore, this book is intended to give a comprehensive deduction of these principles. Special attention is given to the precise mathematical deduction of the necessary formulae to calculate machines and drives, and to the discussion of simplifications (if applied) with the associated limits. So the book shows how the different machine topologies can be deduced from general fundamentals, and how they are linked. This book addresses graduate students, researchers and developers of Electrical Machines and Drives, who are interested in getting knowledge about the principles of machine and drive operation and in detecting the mathematical and engineering specialties of the different machine and drive topologies together with their mutual links. The detailed, but compact mathematical deduction, together with a distinct emphasis onto assumptions, simplifications and the associated limits, leads to a clear understanding of Electrical Machine and Drive topologies and characteristics.
The work in this thesis proposes the innovative use of modern technologies and mathematical techniques to analyse and control future power systems. It exploits new enabling technologies such as Voltage Source Converter High Voltage Direct Current (VSC-HVDC) lines, both single and multi-terminal, and Wide Area Measurement Systems (WAMS) to reduce the risks of instability associated with greater utilisation of modern power systems. New control systems for these technologies have been analysed, and subsequently designed, using advanced probabilistic analysis techniques to ensure that they are robust to the variable and turbulent conditions expected in the future.The advanced probabilistic techniques used in the thesis for both system analysis and controller design represent one of the first such applications in open literature.
This thesis presents a combination of material synthesis and characterization with process modeling. In it, the CO2 adsorption properties of hydrotalcites are enhanced through the production of novel supported hybrids (carbon nanotubes and graphene oxide) and the promotion with alkali metals. Hydrogen is regarded as a sustainable energy carrier, since the end users produce no carbon emissions. However, given that most of the hydrogen produced worldwide comes from fossil fuels, its potential as a carbon-free alternative depends on the ability to capture the carbon dioxide released during manufacture. Sorption-enhanced hydrogen production, in which CO2 is removed as it is formed, can make a major contribution to achieving this. The challenge is to find solid adsorbents with sufficient CO2 capacity that can work in the right temperature window over repeated adsorption-desorption cycles. The book presents a highly detailed characterization of the materials, together with an accurate measurement of their adsorption properties under dry conditions and in the presence of steam. It demonstrates that even small quantities of graphene oxide provide superior thermal stability to hydrotalcites due to their compatible layered structure, making them well suited as volume-efficient adsorbents for CO2. Lastly, it identifies suitable catalysts for the overall sorption-enhanced water gas shift process.
This book provides advanced analytics and decision management techniques and tools for developing sustainable competitive advantages in the studied target context. In order to achieve sustainable economy, the capacity to endure, it is essential to understand and study the mechanisms for interactions and impact from and among these perspectives.
This thesis documents almost twenty years of the author's work on the development and implementation of a new approach to holistic community development in remote and disadvantaged villages in Nepal. It describes the theoretical basis of the work, the main research activities, and the practical outcomes of the implemented programs. One of the fundamental cornerstones of holistic community development is the provision of appropriate and sustainable solutions for the long-term development of local communities. This requires that people's own identified needs be recognized and addressed in partnership with them in holistic ways. The author explains the many synergies that result from this holistic approach to community development. Another cornerstone of his approach is to utilise the communities' locally available renewable resources for long-term sustainable development. One of the key findings of the thesis is that improved access to energy services, such as cooking with a smokeless metal stove in a clean indoor environment, basic indoor lighting, and increased food production and safe food storage (through a greenhouse and a solar drier respectively), need to be at the very heart of any long-term holistic community development project. The thesis demonstrates that tapping into locally available renewable energy resources and converting them, through contextualized and locally manufactured renewable energy technologies, has a central role in long-term holistic community development programs. Such programs are successful because they provide both appropriate technologies and life-changing experiences for the local users involved.
Here is all you need to solve practically every fuel problem you might face in the field! Concise, comprehensive, and compact, this manual covers the entire range of fuel performance problems encountered during testing, storage, transportation, delivery, and combustion. Using a hands-on, practical approach and actual field examples to demonstrate concepts, leading petroleum industry expert Kim B. Peyton takes you step-by-step through: effective troubleshooting tactics; test methods and test results; the most common sources of fuel problems; chemical additive problems;safety and hazard management; In addtion, a unique roundup chapter draws together hard-to-find information on chemical storage tanks, fuel filters, flowmeters, metals, plastics, and more. Long-needed by professionals in every area of the petroleum industryNfrom refinery engineers to research chemists to technical service personnel and terminal managersNthe Fuel Field Manual quickly takes you from problem to resolution, saving you time and money.
"Transformation and Utilization of Carbon Dioxide"shows the various organic, polymeric and inorganic compounds which result from the transformation of carbon dioxide through chemical, photocatalytic, electrochemical, inorganic and biological processes. The book consists of twelve chapters demonstrating interesting examples of these reactions, depending on the types of reaction and catalyst. It also includes two chapters dealing with the utilization of carbon dioxide as a reaction promoter and presents a wide range of examples of chemistry and chemical engineering with carbon dioxide. "Transformation and Utilization of Carbon Dioxide"is a collective work of reviews illustrative of recent advances in the transformation and utilization of carbon dioxide. This book is interesting and useful to a wide readership in the various fields of chemical science and engineering. Bhalchandra Bhanage is a professor of industrial and engineering chemistry at Institute of Chemical Technology, India. Masahiko Arai is a professor of chemical engineering at Hokkaido University, Japan."
This book presents research results of PowerWeb, TU Delft's consortium for interdisciplinary research on intelligent, integrated energy systems and their role in markets and institutions. In operation since 2012, it acts as a host and information platform for a growing number of projects, ranging from single PhD student projects up to large integrated and international research programs. The group acts in an inter-faculty fashion and brings together experts from electrical engineering, computer science, mathematics, mechanical engineering, technology and policy management, control engineering, civil engineering, architecture, aerospace engineering, and industrial design. The interdisciplinary projects of PowerWeb are typically associated with either of three problem domains: Grid Technology, Intelligence and Society. PowerWeb is not limited to electricity: it bridges heat, gas, and other types of energy with markets, industrial processes, transport, and the built environment, serving as a singular entry point for industry to the University's knowledge. Via its Industry Advisory Board, a steady link to business owners, manufacturers, and energy system operators is provided.
Direct coal liquefaction, a synthetic liquid fuel process, is one of the major developmental alternatives for meeting the anticipated fuel demands for the twenty-first century. This work provides a retrospective assessment of past attempts in this century to develop synthetic liquid fuel and applies the findings to produce reliable and pertinent data for the future. Retrospective technology assessment, a recent methodological invention, is used by the authors to analyze the past synthetic liquid fuel programs and the reasons for their failures. Bringing to bear four different perspectives--economic, technological, policy, and historical--the authors draw broad conclusions that will help guide the next development effort in the United States.
Direct current machines are a quickly evolving domain whose applications affect many aspects of modern life from computers and printers to toys, electric vehicles, and traction applications. As their many uses continue to grow, it has become apparent that understanding these machines is the key to understanding our future. Operation, Construction, and Functionality of Direct Current Machines brings together many concepts, from the most basic working principles and construction of DC machines to more advanced topics such as electro-magnetism, armature reaction, parallel operations, and many more. Highlighting theoretical concepts and numerical problems, this book is an essential reference source for students, educators, and anyone interested in the field of electric machines.
There are many wave and tidal devices under development but as yet very few are actually in revenue earning production. However the engineering problems are gradually being solved and there is an appetite to invest in these renewable generation technologies for harsher environments. To some extent the wave and tidal generation industry is following in the wake of the wind industry, particularly learning from the growing experience of offshore wind farm deployment. This book combines wind industry lessons with wave and tidal field knowledge to explore the main reliability and availability issues facing this growing industry. Topics covered include an overview of wave and tidal development; resource; reliability theory relevant to wave and tidal devices; reliability prediction method for wave and tidal devices; practical wave and tidal device reliability; effects of MEC device taxonomy on reliability; availability and its effect on the cost of marine energy; wave and tidal device layout and grid connection; design and testing for wave and tidal devices; operational experience and lessons learnt; monitoring and its effect on operations and maintenance; and overall conclusions. Wave and Tidal Generation Devices: Reliability and availability is essential reading for wave and tidal engineers and researchers and students of renewable energy. |
You may like...
High-Density Sequencing Applications in…
Agamemnon J. Carpousis
Hardcover
R4,329
Discovery Miles 43 290
Intelligent Nanotechnology - Merging…
Yuebing Zheng, Zilong Wu
Paperback
R5,647
Discovery Miles 56 470
Non-perturbative Methods And Lattice…
Eric B. Gregory, Xiang-Qian Luo
Hardcover
R3,806
Discovery Miles 38 060
|