![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Engineering thermodynamics
This monograph discusses the essential principles of the evaporationprocess by looking at it at the molecular and atomic level. In the first part methods of statistical physics, physical kinetics andnumerical modeling are outlined including the Maxwell's distributionfunction, the Boltzmann kinetic equation, the Vlasov approach, and theCUDA technique. The distribution functions of evaporating particles are then defined.Experimental results on the evaporation coefficient and the temperaturejump on the evaporation surface are critically reviewed and compared tothe theory and numerical results presented in previous chapters. The book ends with a chapter devoted to evaporation in differentprocesses, such as boiling and cavitation.This monograph addressesgraduate students and researchers working on phase transitions andrelated fields.
The recently published book by the author, "Engineering Heat Transfer," already dealt with exact computation of heat exchangers and tube banks. In design c- putationthisisaccomplishedviacorrectivefactors;thelattermakesitpossibleto compute the actual mean temperature difference by starting from the logarithmic onerelativeto?uidsinparallel?oworcounter?ow. As far as veri?cation computation is concerned, corrective factors were int- ducedtocomputeacertaincharacteristicfactorcorrectly, asisfundamentalforthis typeofcomputation. Basedontheabove, theauthordecidedtoinvestigatefurther, re?ne, andwiden thistopic: theoutcomeofthisworkhasresultedinthishandbook. Newtypesofexchangerswereexamined;thecalculationwasre?nedtoproduce practicallyexactvaluesforthefactors. Thescopeoftheinvestigationwasincreased by widening the range of the starting factors. Furthermore, a greater number of valuestobeincludedinthetableswasconsidered. Finally, afewcharacteristicsof certainvaluesofthecorrectivefactorswerehighlighted. The?rstsectionisanintroduction;itsummarizesthefundamentalcriteriaofheat transferandproceedstoillustratethebehaviorof?uidsinbothparallelandcounter ?ow. Italsoshowshowtocomputethemeanisobaricspeci?cheatforsome?uids; itillustratesthesigni?canceofdesigncomputationandveri?cationcomputation. In addition, itillustrateshowtoproceedwithheatexchangersandtubebankstocarry outbothdesignandveri?cationcomputationcorrectly. AppendixAthenincludes36tablesasareferencefordesigncomputation, The tablescontainthecorrectivefactorsrequiredtoobtaintheactualmeantemperature differencebystartingfromthemeanlogarithmictemperaturedifferencerelativeto ?uidsinparallel?oworcounter?ow. Finally, Appendix B includes 35 tables for veri?cation computation. As far as heatexchangers areconcerned, itshowsthevaluesoffactor ? whichisrequired forthistypeofcomputation. Thevaluesofthecorrectivefactorsforcoilsandtube banksarealsopresented. Milano, Italy DonatelloAnnaratone v Notation c=speci?cheat(J/kgK) d=diameter(m) E=ef?ciencyfactor h=enthalpy(kJ/kg) k=thermalconductivity(W/mK) M=mass?owrate(kg/s) m=massmoisturepercentage(%) q=heatpertimeunit(W) 2 S=surface(m ) ? t=temperature( C) 2 U=overallheattransfercoef?cient(W/m K) x=thickness(m) 2 ? =heattransfercoef?cient(W/m K) ? =characteristicfactor ? =characteristicfactor ? =ef?ciency ? =correctivefactor ? =correctivefactor ? =characteristicfactor ? ?t=temperaturedifference( C) vii viii Notation Superscripts =heating?uid =heated?uid Subscripts c=counter?ow e=exchanger i=inside l=logarithmic m=mean o=outside p=constantpressure(isobaric), parallel?ow w=wall 1=inlet(forheatingorheated?uid) 2=outlet(forheatingorheated?uid) Contents 1 Introduction to Computation . . . . . . . . . . . . . . . . . . . . . 1 1. 1 GeneralConsiderations . . . . . . . . . . . . . . . . . . . . . . 1 1. 2 MeanIsobaricSpeci?cHeat . . . . . . . . . . . . . . . . . . . . 3 1. 2. 1 WaterandSuperheatedSteam . . . . . . . . . . . . . . . 4 1. 2. 2 AirandOtherGases. . . . . . . . . . . . . . . . . . . . 4 2 Design Computation. . . . . . . . . . . . . . . . . . . . . . . . . . 7 2. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2. 2 FluidsinParallelFloworinCounterFlow . . . . . . . . . . . . 8 2. 3 TheMeanDifferenceinTemperatureinReality . . . . . . . . . 12 2. 3. 1 FluidsinCrossFlow. . . . . . . . . . . . . . . . . . . . 14 2. 3. 2 HeatExchangers. . . . . . . . . . . . . . . . . . . . . . 15 2. 3. 3 Coils. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2. 3. 4 TubeBankswithVariousPassagesoftheExternalFluid . 21
The book covers the classical areas of technical thermodynamics: The first part deals with the basic equations for energy conversion and idealized fluids. The second part deals with real fluids, which can be subject to a phase change, for example. Furthermore, thermodynamic mixtures of fluids are considered, e.g., humid air and gas mixtures. In the last part of the book, combustion processes and chemical reactions are presented and thermodynamically balanced. In each chapter, there are examples and exercises to deepen the theoretical knowledge. Compared to the first edition, the topic of thermodynamic state diagrams has been greatly revised. State diagrams of relevant refrigerants have been added as well as a formulary. The section on chemically reacting systems has been expanded and thoroughly revised. In the basic chapters, tasks and examples have been added to consolidate the understanding of the subject. The book is aimed at students of mechanical engineering and professional engineers.
This book deals with mathematical modeling, namely, it describes the mathematical model of heat transfer in a silicon cathode of small (nano) dimensions with the possibility of partial melting taken into account. This mathematical model is based on the phase field system, i.e., on a contemporary generalization of Stefan-type free boundary problems. The approach used is not purely mathematical but is based on the understanding of the solution structure (construction and study of asymptotic solutions) and computer calculations. The book presents an algorithm for numerical solution of the equations of the mathematical model including its parallel implementation. The results of numerical simulation concludes the book. The book is intended for specialists in the field of heat transfer and field emission processes and can be useful for senior students and postgraduates.
This book discusses analytic and asymptotic methods relevant to radiative transfer in dilute media, such as stellar and planetary atmospheres. Several methods, providing exact expressions for the radiation field in a semi-infinite atmosphere, are described in detail and applied to unpolarized and polarized continuous spectra and spectral lines. Among these methods, the Wiener-Hopf method, introduced in 1931 for a stellar atmospheric problem, is used today in fields such as solid mechanics, diffraction theory, or mathematical finance. Asymptotic analyses are carried out on unpolarized and polarized radiative transfer equations and on a discrete time random walk. Applicable when photons undergo a large number of scatterings, they provide criteria to distinguish between large-scale diffusive and non-diffusive behaviors, typical scales of variation of the radiation field, such as the thermalization length, and specific descriptions for regions close and far from boundaries. Its well organized synthetic view of exact and asymptotic methods of radiative transfer makes this book a valuable resource for both graduate students and professional scientists in astrophysics and beyond.
This thesis addresses a novel application of network modelling methodologies to power transformers. It develops a novel thermal model and compares its performance against that of a commercial computational fluid dynamics (CFD) code, as well as in experiments conducted in a dedicated setup built exclusively for this purpose. Hence, the thesis cross-links three of the most important aspects in high-quality research: model development, simulation and experimental validation. Network modelling is used to develop a tool to simulate the thermal performance of power transformers, widely acknowledged to be critical assets in electrical networks. After the strong de-regulation of electricity markets and de-carbonization of worldwide economies, electrical networks have been changing fast. Both asset owners and equipment manufacturers are being driven to develop increasingly accurate modelling capabilities in order to optimize either their operation or their design. Temperature is a critical parameter in every electric machine and power transformers are no exception. As such, the thesis is relevant for a wide range of stakeholders, from utilities to power transformer manufacturers, as well as researchers interested in the energy industry. It is written in straightforward language and employs a highly pedagogic approach, making it also suitable for non-experts.
This highly informative and carefully presented book offers a comprehensive overview of the fundamentals of incompressible fluid flow. The textbook focuses on foundational topics to more complex subjects such as the derivation of Navier-Stokes equations, perturbation solutions, inviscid outer and inner solutions, turbulent flows, etc. The author has included end-of-chapter problems and worked examples to augment learning and self-testing. This book will be a useful reference for students in the area of mechanical and aerospace engineering.
This book focuses on the thermal management technology of lithium-ion batteries for vehicles. It introduces the charging and discharging temperature characteristics of lithium-ion batteries for vehicles, the method for modeling heat generation of lithium-ion batteries, experimental research and simulation on air-cooled and liquid-cooled heat dissipation of lithium-ion batteries, lithium-ion battery heating method based on PTC and wide-line metal film, self-heating using sinusoidal alternating current. This book is mainly for practitioners in the new energy vehicle industry, and it is suitable for reading and reference by researchers and engineering technicians in related fields such as new energy vehicles, thermal management and batteries. It can also be used as a reference book for undergraduates and graduate students in energy and power, electric vehicles, batteries and other related majors.
This book introduces the fundamental concepts of thermal cloaking based on transformation theory and bilayer theory, under the conduction and convection heat transfer modes. It focuses on thermal cloaking with detailed explanations of the underlying theoretical bases leading to the primary thermal cloaking results in open literature, from an engineering perspective, and with practical application in mind. Also, the authors strive to present the materials with an emphasis on the related physical phenomena and interpretation, to the extent possible. Through this book, engineering students can grasp the fundamental ideas of thermal cloaking and the associated mathematics, thus being better able to initiate their own research and explore new ideas in thermal cloaking. While not intended to be a general reference in the vast field of thermal cloaking research, this book is a unique monograph addressing the theoretical and analytical aspects of thermal cloaking within the scope mentioned above. This book also contains many independent analytical solutions to thermal cloaking problems that are not available in open literature. It is suitable for a three-credit graduate or advanced undergraduate course in engineering science.
In this newly revised 5th Edition of Chemical and Engineering Thermodynamics, Sandler presents a modern, applied approach to chemical thermodynamics and provides sufficient detail to develop a solid understanding of the key principles in the field. The text confronts current information on environmental and safety issues and how chemical engineering principles apply in biochemical engineering, bio-technology, polymers, and solid-state-processing. This book is appropriate for the undergraduate and graduate level courses.
The book deals with the most accurate method to describe thermodynamic property data, with empirical multiparameter equations of state. Due to new theoretical approaches, to increasing demands on the accuracy of thermodynamic property data, and to increasing computer power such equations became a valuable tool for every day calculations in scientific and engineering applications, rather than just the basis of printed property charts and tables. The book is dedicated both to users, who apply such formulations either in form of commercially available software or in form of programs written by themselves, and to scientists engaged in the development of empirical equations of state. Starting from a brief history, it covers the fundamentals of this subject as well as the most recent developments in the fields of highly accurate reference equations, of equations for advanced technical applications, and of the description of mixtures with multiparameter equations of state.
This textbook introduces students to mass and energy balances and focuses on basic principles for calculation, design, and optimization as they are applied in industrial processes and equipment. While written primarily for undergraduate programs in chemical, energy, mechanical, and environmental engineering, the book can also be used as a reference by technical staff and design engineers interested who are in, and/or need to have basic knowledge of process engineering calculation. Concepts and techniques presented in this volume are highly relevant within many industrial sectors including manufacturing, oil/gas, green and sustainable energy, and power plant design. Drawing on 15 years of teaching experiences, and with a clear understanding of students' interests, the authors have adopted a very accessible writing style that includes many examples and additional citations to research resources from the literature, referenced at the ends of chapters.
This book comprehensively discusses diesel combustion phenomena like ignition delay, fuel-air mixing, rate of heat release, and emissions of smoke, particulate and nitric oxide. It enables quantitative evaluation of these important phenomena and parameters. Most importantly, it attempts to model them with constants that are independent of engine types and hence they could be applied by the engineers and researchers for a general engine. This book emphasizes the importance of the spray at the wall in precisely describing the heat release and emissions for most of the engines on and off-road. It gives models for heat release and emissions. Every model is thoroughly validated by detailed experiments using a broad range of engines. The book describes an elegant quasi-one-dimensional model for heat release in diesel engines with single as well as multiple injections. The book describes how the two aspects, namely, fuel injection rate and the diameter of the combustion bowl in the piston, have enabled meeting advanced emission, noise, and performance standards. The book also discusses the topics of computational fluid dynamics encompassing RANS and LES models of turbulence. Given the contents, this book will be useful for students, researchers and professionals working in the area of vehicle engineering and engine technology. This book will also be a good professional book for practising engineers in the field of combustion engines and automotive engineering.
The text provides in-depth knowledge about recent advances in solar collector system, photovoltaic system, role of thermal energy systems in buildings, phase change materials, geothermal energy, biofuels, thermal management systems for EV in social and industrial applications. It further aims toward the inclusion of innovation and implementation of strategies for CO2 emission reduction through the reduction of energy consumption using conventional sources. This book: Presents the latest advances in the field of thermal energy storage, solar energy development, geothermal energy, and hybrid energy applications for green development. Highlights the importance of innovation and implementation of strategies for CO2 emission reduction through the reduction of energy consumption using sustainable technologies and methods. Discusses design development, life cycle assessment, modeling, and simulation of thermal energy systems in detail. Synergize exploration related to the various properties and functionalities through extensive theoretical and numerical modeling present in the energy sector. Explores opportunities, challenges, future perspectives, and approaches toward gaining sustainability through renewable energy resources. The text discusses the fundamentals of thermal energy and its applications in a comprehensive manner. It further covers advancements in solar thermal, and photovoltaic systems. The text highlights the contribution of geothermal energy conversion systems to sustainable development. It showcases the design and optimization of ground source heat pumps for space conditioning and presents modeling and simulation of the thermal energy systems for design optimization. It will serve as an ideal reference text for senior undergraduate, graduate students, and academic researchers in the fields including mechanical engineering, environmental engineering, and energy engineering.
This book highlights the aspects that need to be considered when designing distillation columns in practice. It discusses the influencing parameters as well as the equations governing them, and presents several numerical examples. The book is intended both for experienced designers and for those who are new to the subject.
< p=""> This highly informative book offers a comprehensive overview of the fundamentals of propulsion. The book focuses on foundational topics in propulsion, namely gas dynamics, turbomachinery, and combustion to more complex subjects such as practical design aspects of aircraft engines and thermodynamic aspects and analysis. It also includes pedagogical aspects such as end-of-chapter problems and worked examples to augment learning and self-testing. This book is a useful reference for students in the area of mechanical and aerospace engineering. Also, scientists and engineers working in the areas of aerospace propulsion and gas dynamics find this book a valuable addition. ^
The book contains 12 chapters written by well-known shock wave researchers from seven different countries. Each researcher provides a brief description of his main research interests and results, thereby providing the readers with an excellent view of shock wave research conducted in the past fifty years. It also provides hints as to what still needs further investigation. It will be an excellent guide for young researchers entering the field of shock wave phenomena. Among the described investigations are the following topics: Blast wave interaction with a body when the body is in the area of interference of two blast waves moving in different directions; equation of state for water based on the shock Hugoniot data; Mach waves occurring over a backward facing edge in supersonic flow; shock waves in dusty gas; shock wave interaction with various bodies; three shock interactions.
This book offers an easy-to-understand introduction to the computational mass transfer (CMT) method. On the basis of the contents of the first edition, this new edition is characterized by the following additional materials. It describes the successful application of this method to the simulation of the mass transfer process in a fluidized bed, as well as recent investigations and computing methods for predictions for the multi-component mass transfer process. It also demonstrates the general issues concerning computational methods for simulating the mass transfer of the rising bubble process. This new edition has been reorganized by moving the preparatory materials for Computational Fluid Dynamics (CFD) and Computational Heat Transfer into appendices, additions of new chapters, and including three new appendices on, respectively, generalized representation of the two-equation model for the CMT, derivation of the equilibrium distribution function in the lattice-Boltzmann method, and derivation of the Navier-Stokes equation using the lattice-Boltzmann model. This book is a valuable resource for researchers and graduate students in the fields of computational methodologies for the numerical simulation of fluid dynamics, mass and/or heat transfer involved in separation processes (distillation, absorption, extraction, adsorption etc.), chemical/biochemical reactions, and other related processes.
This book focuses on theoretical thermotics, the theory of transformation thermotics and its extended theories for the active control of macroscopic thermal phenomena of artificial systems, which is in sharp contrast to classical thermodynamics comprising the four thermodynamic laws for the passive description of macroscopic thermal phenomena of natural systems. The book covers the basic concepts and mathematical methods, which are necessary to understand thermal problems extensively investigated in physics, but also in other disciplines of engineering and materials. The analyses rely on models solved by analytical techniques accompanied with computer simulations and laboratory experiments. This book serves both as a reference work for senior researchers and a study text for zero beginners.
The book reports on the latest theoretical and experimental findings in the field of active flow and combustion control. It covers new developments in actuator technology and sensing, in robust and optimal open- and closed-loop control, as well as in model reduction for control, constant volume combustion and dynamic impingement cooling. The chapters reports oncutting-edge contributions presented during the fourth edition of the Active Flow and Combustion Control conference, held in September 19 to 21, 2018 at the Technische Universitat Berlin, in Germany. This conference, as well as the research presented in the book, have been supported by the collaborative research center SFB 1029 on "Substantial efficiency increase in gas turbines through direct use of coupled unsteady combustion and flow dynamics", funded by the DFG (German Research Foundation). It offers a timely guide for researchers and practitioners in the field of aeronautics, turbomachinery, control and combustion.
This book outlines the data-driven modelling of building energy performance to support retrofit decision-making. It explains how to determine the appropriate machine learning (ML) model, explores the selection and expansion of a reasonable dataset and discusses the extraction of relevant features and maximisation of model accuracy. This book develops a framework for the quick selection of a ML model based on the data and application. It also proposes a method for optimising ML models for forecasting buildings energy loads by employing multi-objective optimisation with evolutionary algorithms. The book then develops an energy performance prediction model for non-domestic buildings using ML techniques, as well as utilising a case study to lay out the process of model development. Finally, the book outlines a framework to choose suitable artificial intelligence methods for modelling building energy performances. This book is of use to both academics and practising energy engineers, as it provides theoretical and practical advice relating to data-driven modelling for energy retrofitting of non-domestic buildings.
This research monograph presents both fundamental science and applied innovations on several key and emerging technologies involving fossil and alternate fuel utilization in power and transport sectors from renowned experts in the field. Some of the topics covered include: autoignition in laminar and turbulent nonpremixed flames; Langevin simulation of turbulent combustion; lean blowout (LBO) prediction through symbolic time series analysis; lasers and optical diagnostics for next generation IC engine development; exergy destruction study on small DI diesel engine; and gasoline direct injection. The book includes a chapter on carbon sequestration and optimization of enhanced oil and gas recovery. The contents of this book will be useful to researchers and professionals working on all aspects on combustion.
This comprehensive textbook highlights features of two phase flows and introduces the readers to flow patterns and flow maps. It covers a wide range of fundamental and complex subjects focusing on phase change processes like boiling, condensation or cavitation, and boiling phenomenon starting from pool boiling curves to heat transfer under nucleate boiling, film, and flow boiling. It also discusses themes such as numerical techniques for solving boiling and condensation as well as equipment used in industry for evaporation, boiling, and condensation. It includes pedagogical aspects such as end-of-chapter problems and worked examples to augment learning and self-testing. This book is a valuable addition for students, researchers, and practicing engineers.
This book is a translation from a Russian book. In 2007, the authors created a new generation of layered composite-based sensors, whose advantages are high technology and thermal stability. The use of gradient heat flux sensors in laboratory and industrial conditions confirmed their reliability, showed high information, and allowed a number of priority results to be obtained. All of this is summarized in this book.
Provides comprehensive coverage of recent advances in combustion technology Explains definite concepts about the design and development in combustion systems Captures developments relevant for aerospace area including gel propellant, aluminium based propellants, gasification and gas turbine Aims to introduce the combustion system in different industries Expounds novel combustion systems with reference to pertinent renewable technologies |
![]() ![]() You may like...
1 Recce: Volume 3 - Onsigbaarheid Is Ons…
Alexander Strachan
Paperback
Resource Allocation and MIMO for 4G and…
Francisco Rodrigo Porto Cavalcanti
Hardcover
Truth To Power - My Three Years Inside…
Andre de Ruyter
Paperback
![]()
|