![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Engineering thermodynamics
This book raises the level of understanding of thermal design criteria. It provides the design team with sufficient knowledge to help them evaluate device architecture trade-offs and the effects of operating temperatures. The author provides readers a sound scientific basis for system operation at realistic steady state temperatures without reliability penalties. Higher temperature performance than is commonly recommended is shown to be cost effective in production for life cycle costs.
This book presents the select proceedings of the International Conference on Recent Advancements in Mechanical Engineering (ICRAME 2020). It provides a comprehensive overview of the various technical challenges faced, their systematic investigation, contemporary developments, and future perspectives in the domain of mechanical engineering. The book covers a wide array of topics including fluid flow techniques, compressible flows, waste management and waste disposal, bio-fuels, renewable energy, cryogenic applications, computing in applied mechanics, product design, dynamics and control of structures, fracture and failure mechanics, solid mechanics, finite element analysis, tribology, nano-mechanics and MEMS, robotics, supply chain management and logistics, intelligent manufacturing system, rapid prototyping and reverse engineering, quality control and reliability, conventional and non-conventional machining, and ergonomics. This book can be useful for students and researchers interested in mechanical engineering and its allied fields.
Offers coverage of design, engineering, chemical resistance, costs, standards, codes and specifications. The text provides a resistance guide that lists over 800 chemicals and nearly 400 trade names cross-referenced to formal chemical names, covering all known chemical resistance data for the most popular thermoplastic piping systems. The book covers applications, selection, installation and maintenance.
This book covers synthesis, characterization, stability, heat transfer and applications of nanofluids. It includes different types of nanofluids, their preparation methods as well as its effects on the stability and thermophysical properties of nanofluids. It provides a discussion on the mechanism behind the change in the thermal properties of nanofluids and heat transfer behaviour. It presents the latest information and discussion on the preparation and advanced characterization of nanofluids. It also consists of stability analysis of nanofluids and discussion on why it is essential for the industrial application. The book provides a discussion on thermal boundary layer properties in convection. Future directions for heat transfer applications to make the production and application of nanofluids at industrial level are also discussed.
This book presents the select proceedings of 1st International Conference on Future Trends in Materials and Mechanical Engineering (ICFTMME-2020), organised by Mechanical Engineering Department, SRM Institute of Science and Technology (Formerly known as SRM University), Delhi-NCR Campus, Ghaziabad, Uttar Pradesh, India. The book provides a deep insight of future trends in the advancement of materials and mechanical engineering. A broad range of topics and issues in material development and modern mechanical engineering are covered including polymers, nanomaterials, magnetic materials, fiber composites, stress analysis, design of mechanical components, theoretical and applied mechanics, tribology, solar, additive manufacturing and many more. This book will prove its worth to a broad readership of engineering students, researchers, and professionals.
This book presents recent research in the area of construction pathology, hygrothermal behaviour of buildings, service life and diagnostic techniques, and highlights the latest developments in building physics, hygrothermal behaviour, durability and numerical models applied to building materials analysis. Discussing the state of the art in the field, and covering topics relevant to variety of engineering disciplines, such as civil, materials and mechanical engineering, it will appeal to scientists, students, practitioners, lecturers and other stakeholders.
This book presents recent research in the field of transport phenomena in porous materials, including heat and mass transfer, drying and adsorption. Covering a comprehensive range of topics related to the transport phenomenon in engineering (including state-of-the-art, theory and technological applications), it discusses some of the most important theoretical advances, computational developments and applications in porous materials domain. Providing an update on the current state of knowledge, this self-contained reference resource will appeal to scientists, researchers and engineers in a variety of disciplines, such as chemical, civil, agricultural and mechanical engineering.
The mechanics of similarity encompasses the analysis of dimensions, performed by various procedures, the gasdynamic similarity and the model technology. The analysis of dimensions delivers the dimensionless numbers by which specific physical challenges can be described with a reduced number of variables. Thereby the assessment of physical problems is facilitated. For fluid dynamics and all sorts of heat transfer the discipline of the mechanics of similarity was so important in the past, that the historical background is highlighted of all the persons who have contributed to the development of this discipline. The goal of the classical gasdynamic similarity was to find rules, which enables the aerodynamic engineer to perform transformations from existing flow fields to others, which meet geometrical and other specific flow field parameters. Most of these rules and findings do no longer play a role today, because a lot of potent experimental and theoretical/numerical methods are now available. This problem is addressed in the book. A recent investigation regarding the longitudinal aerodynamics of space vehicles has revealed, that there exist other astonishing similarities for hypersonic and supersonic flight Mach numbers. It seems, that obviously most of the longitudinal aerodynamics is independent from the geometrical configurations of the space vehicle considered, if a simple transformation is applied. A section of this book is devoted to these new findings.
This book presents selected peer-reviewed papers presented at the International Conference on Innovative Technologies in Mechanical Engineering (ITME) 2019. The book discusses a wide range of topics in mechanical engineering such as mechanical systems, materials engineering, micro-machining, renewable energy, systems engineering, thermal engineering, additive manufacturing, automotive technologies, rapid prototyping, computer aided design and manufacturing. This book, in addition to assisting students and researchers working in various areas of mechanical engineering, can also be useful to researchers and professionals working in various allied and interdisciplinary fields.
In boiler furnace, there are four physical and chemical processes at the same time and same place, combustion, flow, heat transfer and mass transfer. Heat transfer in the furnace is not only related to the energy exchange, also related to the characteristics of efficiency and cleaning of combustion. For heat transfer in furnace, there is something specially compared to the process of heat transfer without chemical reaction. " Theory and calculation of heat transfer in furnace" covers all
the typical boilers with most of the fuels. There are two
demonstrations of boiler design calculation at the end of this
book. Readers can find what they are interesting both in basic
theory of radiation and industry design method about boiler.
The book includes all the subject matter covered in a typical undergraduate course in engineering thermodynamics. It includes 20 to 25 worked examples for each chapter, carefully chosen to expose students to diverse applications of engineering thermodynamics. Each worked example is designed to be representative of a class of physical problems. At the end of each chapter, there are an additional 10 to 15 problems for which numerical answers are provided.
This book examines key issues in improving the efficiency of small and medium power boiler units by adding control systems for the fuel combustion process. The original models, algorithms, software and hardware of the system developed for controlling the fuel combustion process are presented. In turn, the book presents a methodology for assessing the influence of climatic factors on the combustion process, and proposes new methods for measuring the thermophysical characteristics, which require taking into account the concentration of oxygen in the air. The system developed here was implemented on a boiler of the NIISTU-5 type, which is widely used for heat power engineering in Ukraine and other Eastern European countries. Given its scope, the book offers a valuable asset for researchers and engineers, as well as lecturers and graduate students at higher education institutions dealing with heat engineering equipment.
This book reports on topics at the interface between mechanical and chemical engineering, emphasizing design, simulation, and manufacturing. Specifically, it covers recent developments in the mechanics of solids and structures, numerical simulation of coupled problems, including fatigue, fluid behavior, particle movement, pressure distribution. Further, it reports on developments in chemical process technology, heat and mass transfer, energy-efficient technologies, and industrial ecology. Based on the 4th International Conference on Design, Simulation, Manufacturing: The Innovation Exchange (DSMIE-2021), held on June 8-11, 2021, in Lviv, Ukraine, this second volume of a 2-volume set provides academics and professionals with extensive information on trends, technologies, challenges and practice-oriented experience in the above-mentioned areas.
Introduces the two most common numerical methods for heat transfer and fluid dynamics equations, using clear and accessible language. This unique approach covers all necessary mathematical preliminaries at the beginning of the book for the reader to sail smoothly through the chapters. Students will work step-by-step through the most common benchmark heat transfer and fluid dynamics problems, firmly grounding themselves in how the governing equations are discretized, how boundary conditions are imposed, and how the resulting algebraic equations are solved. Providing a detailed discussion of the discretization steps and time approximations, and clearly presenting concepts of explicit and implicit formulations, this graduate textbook has everything an instructor needs to prepare students for their exams and future careers. Each illustrative example shows students how to draw comparisons between the results obtained using the two numerical methods, and at the end of each chapter they can test and extend their understanding by working through the problems provided. A solutions manual is also available for instructors.
This book marks the 60th birthday of Prof. Vladimir Erofeev - a well-known specialist in the field of wave processes in solids, fluids, and structures. Featuring a collection of papers related to Prof. Erofeev's contributions in the field, it presents articles on the current problems concerning the theory of nonlinear wave processes in generalized continua and structures. It also discusses a number of applications as well as various discrete and continuous dynamic models of structures and media and problems of nonlinear acoustic diagnostics.
This book comprises select peer-reviewed papers from the International Conference on Emerging Trends in Electromechanical Technologies & Management (TEMT) 2019. The focus is on current research in interdisciplinary areas of mechanical, electrical, electronics and information technologies, and their management from design to market. The book covers a wide range of topics such as computer integrated manufacturing, additive manufacturing, materials science and engineering, simulation and modelling, finite element analysis, operations and supply chain management, decision sciences, business analytics, project management, and sustainable freight transportation. The book will be of interest to researchers and practitioners of various disciplines, in particular mechanical and industrial engineering.
This book is about theories and applications of thermosyphons and heat pipes. It discusses the physical phenomena that drive the working principles of thermosyphons, heat pipes and related technologies. Many applications are discussed in this book, including: rationalizing energy use in industry, solar heating of houses, decrease of water consumption in cooling towers, improvement of the thermal performance of industrial and domestic ovens and driers and new devices for heating stored oil and gas in petrochemical plants. Besides, the book also presents heat pipe and thermosyphon technologies for the thermal management of electronic devices, from portable equipment to airplanes and satellites. The first part of the book explores the physical working principles of thermosyphons and heat pipes, by explaining current heat transfer and thermal resistance models. The author discusses the new heat pipe and thermosyphon technologies that have been developed in the last decade for solving a myriad of electronic, environment and industrial heat and thermal problems. The focus then shifts to the thermosyphon technology applications, and the models and simulations necessary for each application - including vehicles, domestic appliances, water conservation technologies and the thermal control of houses and other structures. Finally, the book looks at the new technologies for heat pipes (mini/micro) and similar devices (loop heat pipes), including new models for prediction of the thermal performance of porous media. This book inspires engineers to adopt innovative approaches to heat transfer problems in equipment and components by applying thermosyphon and heat pipe technologies. It is also of interest to researchers and academics working in the heat transfer field, and to students who wish to learn more about heat transfer devices.
In handbook form, this reference monograph provides both experimental and theoretical data describing thermodynamic properties of groups of isomers of different classes, particularly for organic compound reactions. Data have been derived through chemical equilibria studies, statistical thermodynamics, and to some degree, calorimetry. Data based on equilibria studies are also valuable as a cross-check to thermodynamic functions derived purely from calorimetric measurements.
This book gathers papers presented at the international workshop PMSDAM'19. The respective contributions offer valuable insights for researchers working on numerical solutions to advanced materials problems. The problems concerning the remineralization of teeth are considered. Of particular interest are articles exploring topics at the interface of different disciplines.
This book serves as an introduction to cryocooler technology and describes the principle applications of cryocoolers across a broad range of fields. It covers the specific requirements of these applications, and describes how the advantages and disadvantages of different cryocooler systems are taken into consideration. For example, Stirling coolers tend to be used only in space applications because of their high coefficient of performance, low weight and proven reliability, whilst Gifford-McMahon coolers are used for ground applications, such as in cryopumps and MRI shield cooling applications. Joule-Thomson cryocoolers are used in missile technology because of the fast cool down requirements. The cryocooler field is fast developing and the number of applications are growing because of the increasing costs of the cryogens such as Helium and Neon. The first chapter of the book introduces the different types of cryocoolers, their classification, working principles, and their design aspects, and briefly mentions some of the applications of these systems. This introductory chapter is followed by a number of contributions from prominent international researchers, each describing a specific field of application, the cooling requirements and the cryocooler systems employed. These areas of application include gas liquefaction, space technology, medical science, dilution refrigerators, missile systems, and physics research including particle accelerators. Each chapter describes the cooling requirements based on the end use, the approximate cooling load calculations, the criteria for cryocooler selection, the arrangement for cryocooler placement, the connection of the cooler to the object to be cooled, and includes genuine case studies. Intended primarily for researchers working on cryocoolers, the book will also serve as an introduction to cryocooler technology for students, and a useful reference for those using cryocooler systems in any area of application.
This book presents select proceedings of the International Conference on Innovations in Thermo-Fluid Engineering and Sciences (ICITFES 2020). It covers topics in theoretical and experimental fluid dynamics, numerical methods in heat transfer and fluid mechanics, different modes of heat transfer, multiphase flow, fluid machinery, fluid power, refrigeration and air conditioning, and cryogenics. The book will be helpful to the researchers, scientists, and professionals working in the field of fluid mechanics and machinery, and thermal engineering.
This book consists of peer-reviewed proceedings from the International Conference on Innovations in Mechanical Engineering (ICIME 2020). The contents cover latest research in all major areas of mechanical engineering, and are broadly divided into five parts: (i) thermal engineering, (ii) design and optimization, (iii) production and industrial engineering, (iv) materials science and metallurgy, and (v) multidisciplinary topics. Different aspects of designing, modeling, manufacturing, optimizing, and processing are discussed in the context of emerging applications. Given the range of topics covered, this book can be useful for students, researchers as well as professionals.
Advanced Thermodynamics for Engineers, Second Edition introduces the basic concepts of thermodynamics and applies them to a wide range of technologies. Authors Desmond Winterbone and Ali Turan also include a detailed study of combustion to show how the chemical energy in a fuel is converted into thermal energy and emissions; analyze fuel cells to give an understanding of the direct conversion of chemical energy to electrical power; and provide a study of property relationships to enable more sophisticated analyses to be made of irreversible thermodynamics, allowing for new ways of efficiently covering energy to power (e.g. solar energy, fuel cells). Worked examples are included in most of the chapters, followed by exercises with solutions. By developing thermodynamics from an explicitly equilibrium perspective and showing how all systems attempt to reach equilibrium (and the effects of these systems when they cannot), Advanced Thermodynamics for Engineers, Second Edition provides unparalleled insight into converting any form of energy into power. The theories and applications of this text are invaluable to students and professional engineers of all disciplines.
PCM Enhanced Building Envelopes presents the latest research in the field of thermal energy storage technologies that can be applied to solar heating and cooling with the aim of shifting and reducing building energy demand. It discusses both practical and technical issues, as well as the advantages of using common phase change materials (PCMs) in buildings as a more efficient, novel solution for passive solar heating/cooling strategies. The book includes qualitative and quantitative descriptions of the science, technology and practices of PCM-based building envelopes, and reflects recent trends by placing emphasis on energy storage solutions within building walls, floors, ceilings, facades, windows, and shading devices. With the aim of assessing buildings' energy performance, the book provides advanced modeling and simulation tools as a theoretical basis for the analysis of PCM-based building envelopes in terms of heat storage and transfer. This book will be of interest to all those dealing with building energy analysis such as researchers, academics, students and professionals in the fields of mechanical and civil engineering and architectural design
This book presents selected and peer-reviewed proceedings of the International Conference on Thermofluids (KIIT Thermo 2020). It focuses on the latest studies and findings in the areas of fluid dynamics, heat transfer, thermodynamics, and combustion. Some of the topics covered in the book include electronic cooling, HVAC system analysis, inverse heat transfer, combustion, nano-fluids, multiphase flow, high-speed flow, and shock waves. The book includes both experimental and numerical studies along with a few review chapters from experienced researchers, and is expected to lead to new research in this important area. This book is of interest to students, researchers as well as practitioners working in the areas of fluid dynamics, thermodynamics, and combustion. |
![]() ![]() You may like...
Wisconsin Reports - Cases Determined in…
Wisconsin Supreme Court
Paperback
R866
Discovery Miles 8 660
Comparative Effectiveness Research…
Carol M. Ashton, Nelda P. Wray
Hardcover
R2,363
Discovery Miles 23 630
Reports of the Decisions of Committees…
Francis Stafford Pipe Wolferstan
Paperback
R526
Discovery Miles 5 260
Learn to Design a Website for Your…
Michael Nelson, David Ezeanaka
Hardcover
R502
Discovery Miles 5 020
|