![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Engineering thermodynamics
In 1858 Hermann von Helmholtz published a paper that today is recognized as the foundation of vortex dynamics. To celebrate the sesquicentennial of Helmholtz s paper, IUTAM sponsored a symposium that was held at the technical university of Denmark in October 2008. The papers presented at the symposium gave a good overview of where the field of vortex dynamics stands today. This volume contains almost all of the papers presented as lectures at the symposium, and also a few of the poster papers. In this volume the reader will find up-to-date, state-of-theart papers on Point vortices, vortex sheets, vortex filaments, vortex rings, vortex patches, vortex streets, the vortex dynamics of swimming and flying, vortex knots, vortices in turbulent flows, vortices in computational fluid dynamics, the topology of vortex wakes, stability of vortex configurations, vortices on a sphere, geophysical vortices, cosmic vortices and much more."
My wife Tatyana, daughter Mariya, son Alexandr It is well known that the mixed-mode conditions appear when the direction of the applied loading does not coincide with the orthogonal K, -Kn-Km space. In general, in the industrial practice the mixed-mode fracture and the mixed-mode crack growth are more likely to be considered the rule than the exception. Miller et al. considers that cracks can grow due to a mixture of processes (ductile and brittle), mechanisms (static, fatigue, creep) and loading modes (tension, torsion, biax ial/multiaxial). Additionally mixed-mode crack-extension can be affected by many other considerations such as artifact geometry (thin plates, thick shells, and the size, shape and orientation of the defect), environmental effects (temperature, gaseous and liquid surroundings), material state (crystallographic structure, heat treatment and route of manufacture) and stress conditions (out-of-phase and ran dom loading effects). The main feature of the mixed-mode fracture is that the crack growth would no longer take place in a self-similar manner and does not follow a universal trajec tory that is it will grow on a curvilinear path. There are various fracture criteria, which predict the behavior of cracks in brittle and ductile materials loaded in combined modes. Linear elastic fracture mechanics (LEFM) criteria predict basi cally the same direction for crack propagation. Cracks in brittle materials have been shown to propagate normal to the maximum tangential stress. In ductile ma terials yielding occurs at the crack tip and LEFM is no longer applicable."
The research work of the collaborative research center SFB401 Flow Modulation and Fluid-Structure Interaction at Airplane Wings at the Rheinisch-Westfalische Technische Hochschule (RWTH) Aachen, which is reported in this book, was pos sible due to the financial support of the Deutsche Forschungsgemeinschaft (DFG). The proposal has been approved after evaluation by the referees of DFG selected from other universities and industry, which is gratefully acknowledged. The work is still in progress and now approved to continue until the end of year 2005. More than 50 scientists from universities of the United States, Russia, France, Italy, Japan, Great Britain, Sweden, Netherlands, Switzerland, Austria and research orga nizations NASA, ONERA, NLR, DLR could be invited and have visited the research center, gave seminars on their research on related topics and some of them stayed longer for joined work. Besides its scientific value, also the importance of the pro gram for scientific educa tion becomes evident by looking at the numbers of completed theses, which are up to now about 15 doctoral theses, 40 diploma theses and 70 study theses. The authors of this book acknowledge the valuable support coming from all these persons and institutions. They are especially grateful to the referees having reviewed this work, A. Cohen (Universite Pierre et Marie Curie), J. Cooper (Manchester School of Engineering), W. Devenport (Virginia Tech.), M. Drela (MIT), F. Gern (Avionics Specialties Inc.), A. Griewank (TU Dresden), H. Honlinger (DLR), P."
This short book deals with the mathematical modeling of jets impinging porous media. It starts with a short introduction to models describing turbulences in porous media as well as turbulent heat transfer. In its main part, the book presents the heat transfer of impinging jets using a local and a non-local thermal equilibrium approach.
"Flow Boiling in Microgap Channels: Experiment, Visualization and Analysis" presents an up-to-date summary of the details of the confined to unconfined flow boiling transition criteria, flow boiling heat transfer and pressure drop characteristics, instability characteristics, two phase flow pattern and flow regime map and the parametric study of microgap dimension. Advantages of flow boiling in microgaps over microchannels are also highlighted. The objective of this Brief is to obtain a better fundamental understanding of the flow boiling processes, compare the performance between microgap and conventional microchannel heat sinks, and evaluate the microgap heat sink for instabilities and hotspot mitigation.
"Thermo-Hydrodynamic Design of Fluidized Bed Combustors: Estimating Metal Wastage" is a unique volume that finds that the most sensitive parameters affecting metal wastage are superficial fluidizing velocity, particle diameter, and particle sphericity. Gross consistencies between disparate data sources using different techniques were found when the erosion rates are compared on the same basis using the concept of renormalization. The simplified mechanistic models and correlations, when validated, can be used to renormalize any experimental data so they can be compared on a consistent basis using a master equation."
This book presents the operational aspects of the rocket engine on a test facility. It will be useful to engineers and scientists who are in touch with the test facility. To aerospace students it shall provide an insight of the job on the test facility. And to interested readers it shall provide an impression of this thrilling area of aerospace.
Introduction to Thermoelectricity is the latest work by Professor Julian Goldsmid drawing on his 55 years experience in the field. The theory of the thermoelectric and related phenomena is presented in sufficient detail to enable researchers to understand their observations and develop improved thermoelectric materials. The methods for the selection of materials and their improvement are discussed. Thermoelectric materials for use in refrigeration and electrical generation are reviewed. Experimental techniques for the measurement of properties and for the production of thermoelements are described. Special emphasis is placed on nanotechnology which promises to yield great improvements in the efficiency of thermoelectric devices. Chapters are also devoted to transverse thermoelectric effects and thermionic energy conversion, both techniques offering the promise of important applications in the future.
The term transport phenomena is used to describe processes in which mass, momentum, energy and entropy move about in matter. Advances in Transport Phenomena provide state-of-the-art expositions of major advances by theoretical, numerical and experimental studies from a molecular, microscopic, mesoscopic, macroscopic or megascopic point of view across the spectrum of transport p- nomena, from scientific enquiries to practical applications. The annual review series intends to fill the information gap between regularly published journals and university-level textbooks by providing in-depth review articles over a broader scope than in journals. The authoritative articles, contributed by international- leading scientists and practitioners, establish the state of the art, disseminate the latest research discoveries, serve as a central source of reference for fundamentals and applications of transport phenomena, and provide potential textbooks to senior undergraduate and graduate students. The series covers mass transfer, fluid mechanics, heat transfer and thermo- namics. The 2009 volume contains the four articles on biomedical, environmental and nanoscale transports. The editorial board expresses its appreciation to the c- tributing authors and reviewers who have maintained the standard associated with Advances in Transport Phenomena. We also would like to acknowledge the efforts of the staff at Springer who have made the professional and attractive pr- entation of the volume. Serial Editorial Board Editor-in-Chief Professor L. Q. Wang The University of Hong Kong, Hong Kong; lqwang@hku. hk Editors Professor A. R. Balakrishnan Indian Institute of Technology Madras, India Professor A.
Natural fires can be considered as scale-dependant, non-linear processes of mass, momentum and heat transport, resulting from a turbulent reactive and radiative fluid medium flowing over a complex medium, the vegetal fuel. In natural outdoor conditions, the experimental study of natural fires at real scale needs the development of an original metrology, one able to capture the large range of time and length scales involved in its dynamic nature and also able to resist the thermal, mechanical and chemical aggression of flames on devices. Robust, accurate and poorly intrusive tools must be carefully set-up and used for gaining very fluctuating data over long periods. These signals also need the development of original post-processing tools that take into account the non-steady nature of their stochastic components. Metrology for Fire Experiments in Outdoor Conditions closely analyzes these features, and also describes measurements techniques, the thermal insulation of fragile electronic systems, data acquisition, measurement errors and optimal post-processing algorithms. This book is intended for practitioners as a reference guide for optimizing measurements techniques in an outdoor environment. Advanced-level students and researchers will also find the book invaluable.
Waste incineration is the art of completely combusting waste, while maintaining or reducing emission levels below current emission standards. Where possible, objectives include the recovering of energy as well as the combustion residues. Successful waste incineration makes it possible to achieve a deep reduction in waste volume, obtain a compact and sterile residue, and eliminate a wide array of pollutants. This book places waste incineration within the wider context of waste management, and demonstrates that, in contrast to landfills and composting, waste incineration can eliminate objectionable and hazardous properties such as flammability and toxicity, result in a significant reduction in volume, and destroy gaseous and liquid waste streams leaving little or no residues beyond those linked to flue gas neutralization and treatment. Moreover, waste incineration sterilizes and destroys putrescible matter, and produces usable heat. Incineration Technologies first appeared as a peer-reviewed contribution to the Encyclopedia of Sustainability Science and Technology. It provides detailed treatment of the challenges of this technically complex process, which requires huge investment and operating costs, as well as good technical skills in maintenance and plant operation. Particular attention is paid to technologies for ensuring the complete burn-out of flue gas and residues and for controlling the resulting pollutants.
The book is devoted to investigation of a series of problems of convective heat and mass transfer in rotating-disk systems. Such systems are widespread in scienti?c and engineering applications. As examples from the practical area, one can mention gas turbine and computer engineering, disk brakes of automobiles, rotating-disk air cleaners, systems of microclimate, extractors, dispensers of liquids, evaporators, c- cular saws, medical equipment, food process engineering, etc. Among the scienti?c applications, it is necessary to point out rotating-disk electrodes used for experim- tal determination of the diffusion coef?cient in electrolytes. The system consisting of a ?xed disk and a rotating cone that touches the disk by its vertex is widely used for measurement of the viscosity coef?cient of liquids. For time being, large volume of experimental and computational data on par- eters of ?uid ?ow, heat and mass transfer in different types of rotating-disk systems have been accumulated, and different theoretical approaches to their simulation have been developed. This obviously causes a need of systematization and generalization of these data in a book form.
During the last half century, the development and testing of prediction models of combustion chamber performance have been an ongoing task at the International Flame Research Foundation (IFRF) in IJmuiden in the Netherlands and at many other research organizations. This task has brought forth a hierarchy of more or less standard numerical models for heat transfer predictions, in particular for the prediction of radiative heat transfer. Unfortunately all the methods developed, which certainly have a good physical foundation, are based on a large number of extreme sim plifications or uncontrolled assumptions. To date, the ever more stringent requirements for efficient production and use of energy and heat from com bustion chambers call for prediction algorithms of higher accuracy and more detailed radiative heat transfer calculations. The driving forces behind this are advanced technology requirements, the costs of large-scale experimen tal work, and the limitation of physical modeling. This interest is growing more acute and has increased the need for the publication of a textbook for more accurate treatment of radiative transfer in enclosures. The writing of a textbook on radiative heat transfer, however, in ad dition to working regularly on other subjects is a rather difficult task for which some years of meditation are necessary. The book must satisfy two requirements which are not easily reconciled. From the mathematical point of view, it must be written in accordance with standards of mathemati cal rigor and precision."
Natural Convective Heat Transfer from Narrow Plates deals with a heat transfer situation that is of significant practical importance but which is not adequately dealt with in any existing textbooks or in any widely available review papers. The aim of the book is to introduce the reader to recent studies of natural convection from narrow plates including the effects of plate edge conditions, plate inclination, thermal conditions at the plate surface and interaction of the flows over adjacent plates. Both numerical and experimental studies are discussed and correlation equations based on the results of these studies are reviewed.
This volume includes revised and extended versions of selected papers presented at the Tenth International Symposium on Applications of Laser Techniques to Fluid Mechanics held at the Calouste Gulbenkian Foundation in Lisbon, during the period of July 10 to 13, 2000. The papers describe instrumentation developments for Velocity, Scalar and Multi-Phase Flows and results of measurements of Turbulent Flows, and Combustion and Engines. The papers demonstrate the continuing and healthy interest in the development of understanding of new methodologies and implementation in terms of new instrumentation. The prime objective of the Tenth Symposium was to provide a forum for the presentation of the most advanced research on laser techniques for flow measurements, and communicate significant results to fluid mechanics. The application of laser techniques to scientific and engineering fluid flow research was emphasized, but contributions to the theory and practice of laser methods were also considered where they facilitate new improved fluid mechanic research. Attention was placed on laser-Doppler anemometry, particle sizing and other methods for the measurement of velocity and scalars, such as particle image velocimetry and laser induced fluorescence.
Laser Processing and Chemistry gives an overview of the fundamentals and applications of laser-matter interactions, in particular with regard to laser material processing. Special attention is given to laser-induced physical and chemical processes at gas-solid, liquid-solid, and solid-solid interfaces. Starting with the background physics, the book proceeds to examine applications of laser techniques in micro-machining, and the patterning, coating, and modification of material surfaces. This fourth edition has been revised and enlarged to cover new topics such as 3D microfabrication, advances in nanotechnology, ultrafast laser technology and laser chemical processing (LCP). Graduate students, physicists, chemists, engineers, and manufacturers alike will find this book an invaluable reference work on laser processing.
Imaging Heat and Mass Transfer Processes: Visualization and Analysis applies Schlieren and shadowgraph techniques to complex heat and mass transfer processes. Several applications are considered where thermal and concentration fields play a central role. These include vortex shedding and suppression from stationary and oscillating bluff bodies such as cylinders, convection around crystals growing from solution, and buoyant jets. Many of these processes are unsteady and three dimensional. The interpretation and analysis of images recorded are discussed in the text.
The primary purpose of this text is to document many of the lessons that have been learned during the author s more than forty years in the field of blast and shock. The writing therefore takes on an historical perspective, in some sense, because it follows the author s experience. The book deals with blast waves propagating in fluids or materials that can be treated as fluids. It begins by distinguishing between blast waves and the more general category of shock waves. It then examines several ways of generating blast waves, considering the propagation of blast waves in one, two and three dimensions as well as through the real atmosphere. One section treats the propagation of shocks in layered gases in a more detailed manner. The book also details the interaction of shock waves with structures in particular reflections, progressing from simple to complex geometries, including planar structures, two-dimensional structures such as ramps or wedges, reflections from heights of burst, and three-dimensional structures. Intended for those with a basic knowledge of algebra and a solid grasp of the concepts of conservation of mass and energy, the text includes an introduction to blast wave terminology and conservation laws as well as a discussion of units and the importance of consistency."
In Next Generation Microchannel Heat Exchangers, the authors' focus on the new generation highly efficient heat exchangers and presentation of novel data and technical expertise not available in the open literature. Next generation micro channels offer record high heat transfer coefficients with pressure drops much less than conventional micro channel heat exchangers. These inherent features promise fast penetration into many new markets, including high heat flux cooling of electronics, waste heat recovery and energy efficiency enhancement applications, alternative energy systems, as well as applications in mass exchangers and chemical reactor systems. The combination of up to the minute research findings and technical know-how make this book very timely as the search for high performance heat and mass exchangers that can cut costs in materials consumption intensifies.
The homogenization of single phase gases or liquids with chemical reactive components by mixing belongs to one of the oldest basic operations applied in chemical engineering. The design of equipment for mixing processes is still derived from measurements of the mixing time which is related to the applied methods of measurement and the special design of the test equipment itself. This book was stimulated by improved modern methods for experimental research and visualization, for simulations and numerical calculations of mixing and chemical reactions in micro and macro scale of time and local coordinates. It is aimed to improve the prediction of efficiencies and selectivities of chemical reactions in macroscopic scale. The results should give an understanding of the influence of the construction of different mixing equipment on to the momentum, heat and mass transfer as well as reaction processes running on microscopic scales of time and local coordinates. Newly developed methods of measurement are adjusted to the scales of the selected special transport and conversion processes. They allow a more detailed modeling of the mixing processes by the formulation of an appropriate set of momentum-, heat- and mass balance equations as well as boundary conditions in time and local coordinates together with constitutive equations and reaction kinetics equations as closure laws for numerical and analytical calculations. The latter were empirically derived in the past and therefore of limited reliability only. The improved and more detailed modeling leads to a major progress in predicting mixing processes on the different scales adjusted to transport and reaction processes in molecular, micro- and macro dimensions. As a consequence improved numerical calculations are performed on the basis of newly derived experimental, measurement and modeling methods which are the basis for the prediction of mixing time as well as conversion rates and selectivities of chemical reactions during the mixing process. The research efforts are focused onto the design of the technical equipment for flow mixing processes. Mixing is performed inside velocity fields leading to deformation gradients from free or wall induced boundary layers. The different kinds of process equipment are jet mixer, static mixer and mixing vessels equipped with rotating stirrers. Especially in micro mixing newly developed constructions are investigated permitting the scale up from laboratory to technical dimensions.
Developing clean energy and utilizing waste energy has become increasingly vital. Research targeting the advancement of thermally powered adsorption cooling technologies has progressed in the past few decades, and the awareness of fuel cells and thermally activated (heat pipe heat exchangers) adsorption systems using natural refrigerants and/or alternatives to hydrofluorocarbon-based refrigerants is becoming ever more important. Heat Pipes and Solid Sorption Transformations: Fundamentals and Practical Applications concentrates on state-of-the-art adsorption research and technologies for relevant applications based on the use of efficient heat transfer devices-heat pipe and two-phase thermosyphons-with the objectives of energy efficiency and sustainability. This book also discusses heat pipe thermal control as it relates to spacecraft applications. The first few chapters of Heat Pipes and Solid Sorption Transformations: Fundamentals and Practical Applications focus on heating and cooling, the principles of adsorption, adsorption dynamics, and the availability of three-phase boundaries. Other chapters cover successful heat pipe applications and heat-pipe-based thermal control of fuel cells, solid sorption transformers, and electronic components and air-condition devices. The final chapters summarize the achievements in the field of heat and mass transfer study in heat pipes with variable properties such as gas loaded heat pipes. Several configurations of thermosyphons are showcased, with suggested applications. A number of examples of equipment using the thermosyphon technology are presented and, in the final chapter, the concept of flow boiling and flow condensation heat transfer in micochannels is analyzed in detail.
Schlieren and Shadowgraph Methods in Heat and Mass Transfer lays out the fundamentals of refractive index based imaging techniques, optical configurations, image analysis, and three dimensional reconstructions. The present monograph aims at temperature and concentration measurements in transparent media using ray bending effects in a variable refractive index field. Data analysis procedure for three-dimensional reconstruction of temperature and concentration field using images at different view angles is presented. Test cases illustrating the validation of the quantitative analysis procedure are presented.
Modelling Fluid Flow presents invited lectures, workshop summaries and a selection of papers from a recent international conference CMFF '03 on fluid technology. The lectures follow the current evolution and the newest challenges of the computational methods and measuring techniques related to fluid flow. The workshop summaries reflect the recent trends, open questions and unsolved problems in the mutually inspiring fields of experimental and computational fluid mechanics. The papers cover a wide range of fluids engineering, including reactive flow, chemical and process engineering, environmental fluid dynamics, turbulence modelling, numerical methods, and fluid machinery.
Efficiency is one of the most frequently used terms in thermodynamics, and it indicates how well an energy conversion or process is accomplished. Efficiency is also one of the most frequently misused terms in thermodynamics and is often a source of misunderstanding. This is because efficiency is often used without being properly defined first. This book intends to provide a comprehensive evaluation of various efficiencies used for energy transfer and conversion systems including steady-flow energy devices (turbines, compressors, pumps, nozzles, heat exchangers, etc.), various power plants, cogeneration plants, and refrigeration systems. The book will cover first-law (energy based) and second-law (exergy based) efficiencies and provide a comprehensive understanding of their implications. It will help minimize the widespread misuse of efficiencies among students and researchers in energy field by using an intuitive and unified approach for defining efficiencies. The book will be particularly useful for a clear understanding of second law (exergy) efficiencies for various systems. It may serve as a reference book to the researchers in energy field. The definitions and concepts developed in the book will be explained through illustrative examples.
Radio telescopes as well as communication antennas operate under the influence of gravity, temperature and wind. Among those, temperature influences may degrade the performance of a radio telescope through transient changes of the focus, pointing, path length and sensitivity, often in an unpredictable way. Thermal Design and Thermal Behaviour of Radio Telescopes and their Enclosures reviews the design and construction principles of radio telescopes in view of thermal aspects and heat transfer with the variable thermal environment; it explains supporting thermal model calculations and the application and efficiency of thermal protection and temperature control; it presents many measurements illustrating the thermal behaviour of telescopes in the environment of their observatory sites. The book benefits scientists and radio/communication engineers, telescope designers and construction firms as well as telescope operators, observatory staff, but also the observing astronomer who is directly confronted with the thermal behaviour of a telescope. |
You may like...
Advances in Heat Exchangers
Laura Castro Gomez, Victor Manuel Velazquez Flores
Hardcover
R2,554
Discovery Miles 25 540
Solar Heating and Cooling Systems…
Ioan Sarbu, Calin Sebarchievici
Paperback
Heat Exchangers
Laura Castro Gomez, Victor Manuel Velazquez Flores, …
Hardcover
R3,100
Discovery Miles 31 000
|