![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Engineering thermodynamics
This monograph focuses on the science of combustion, exploring its technological, social, and philosophical aspects. Presented here is a systematic overview of the field, with up-to-date treatments of topics of central importance: diffusion flames, deflagrations, detonations, flammability, and explosions. Special emphasis is given to turbulent combustion so that the many different approaches to this multifaceted subject can be exposed and categorized in a systematic manner. The author offers his projections for future developments, including identification of outstanding research areas. This book is a concise and penetrating overview of the field of combustion history and research, and will be of interest to motivated non-specialists interested in more than a facile exploration of the subject.
This book discusses heat transfer in underground energy systems. It covers a wide range of important and practical topics including the modeling and optimization of underground power cable systems, modeling of thermal energy storage systems utilizing waste heat from PV panels cooling. Modeling of PV pannels with cooling. While the performance of energy systems which utilize heat transfer in the ground is not yet fully understood, this book attempts to make sense of them. It provides mathematical modeling fundaments, as well as experimental investigation for underground energy systems. The book shows detailed examples, with solution procedures. The solutions are based on the Finite Element Method and the Finite Volume Method. The book allows the reader to perform a detailed design of various underground energy systems, as well as enables them to study the economic aspects and energy efficiency of underground energy systems. Therefore, this text is of interest to researchers, students, and lecturers alike.
This new edition describes pressure and temperature sensitive paints (PSP and TSP) in global surface pressure and temperature measurements in aerodynamics and fluid mechanics. The book includes the latest progress in paint formulations, instrumentation, and steady and unsteady aerodynamic measurements in various facilities including low-speed, transonic, supersonic and hypersonic wind tunnels. The updated technical aspects of PSP and TSP in the book will be useful for students and researchers in experimental aerodynamics and fluid mechanics.
This book is presented to demonstrate how energy efficiency can be achieved in existing systems or in the design of a new system, as well as a guide for energy savings opportunities. Accordingly, the content of the book has been enriched with many examples applied in the industry. Thus, it is aimed to provide energy savings by successfully managing the energy in the readers' own businesses. The authors primarily present the necessary measurement techniques and measurement tools to be used for energy saving, as well as how to evaluate the methods that can be used for improvements in systems. The book also provides information on how to calculate the investments to be made for these necessary improvements and the payback periods. The book covers topics such as: * Reducing unit production costs by ensuring the reduction of energy costs, * Efficient and quality energy use, * Meeting market needs while maintaining competitive conditions, * Ensuring the protection of the environment by reducing CO2 and CO emissions with energy saving and energy efficiency, * Ensuring the correct usage of systems by carrying out energy audits. In summary, this book explains how to effectively design energy systems and manage energy to increase energy savings. In addition, the study has been strengthened by giving some case studies and their results in the fields of intensive energy consumption in industry. This book is an ideal resource for practitioners, engineers, researchers, academics, employees and investors in the fields of energy, energy management, energy efficiency and energy saving.
< b=""> The book provides a concise description of the physical processes and mathematical models for explosions and formation of blast waves from explosions. The contents focus on quantitatively determining the energy released in the different types of explosions and the destructive blast waves that are generated. The contribution of flames, detonations and other physical processes to the explosion phenomenon is dealt with in detail. Gaseous and condensed phase explosions are discussed and the yield of explosions with their TNT equivalence is determined. Time scales involved in the explosion process and the scaling procedure are ascertained. Explosions over the ground, in water, and the interaction of explosions with objects are examined. In order to keep the text easily readable, the detailed derivation of the mathematical equations is given in the seven appendices at the end of the book. Case studies of various explosions are investigated and simple problems and their solutions are provided for the different topics to assist the reader in internalizing the explosion process. The book is a useful reference for professionals and academics in aeronautics, mechanical, civil and chemical engineering and for personnel working in explosive manufacture and high-energy materials, armaments, space, defense, and industrial and fire safety.
This book provides state-of-the-art advances in several areas of importance in energy, combustion, power, propulsion, environment using fossil fuels and alternative fuels, and biofuels production and utilization. Availability of clean and sustainable energy is of greater importance now than ever before in all sectors of energy, power, mobility and propulsion. Written by internationally renowned experts, the latest fundamental and applied research innovations on cleaner energy production as well as utilization for a wide range of devices extending from micro scale energy conversion to hypersonic propulsion using hydrocarbon fuels are provided. The tailored technical tracks and contributions from the world renowned technical experts are portrayed in the respective field to highlight different but complementary views on fuels, combustion, power and propulsion and air toxins with special focus on current and future R&D needs and activities. The energy and environment sustainability require a multi-pronged approach involving development and utilization of new and renewable fuels, design of fuel-flexible combustion systems that can be easily operated with the new fuels, and develop novel and environmentally friendly technologies for improved utilization of all kinds of gas, liquid and solid fuels. This volume is a useful book for practicing engineers, research engineers and managers in industry and research labs, academic institutions, graduate students, and final year undergraduate students in Mechanical, Chemical, Aerospace, Energy and Environmental Engineering.
This book is a concise, readable, yet authoritative primer of basic classic thermodynamics. Many students have difficulty with thermodynamics, and find at some stage of their careers in academia or industry that they have forgotten what they learned, or never really understood these fundamental physical laws. As the title of the book suggests, the author has distilled the subject down to its essentials, using many simple and clear illustrations, instructive examples, and key equations and simple derivations to elucidate concepts. Based on many years of teaching experience at the undergraduate and graduate levels, "Essential Classical Thermodynamics" is intended to provide a positive learning experience, and to empower the reader to explore the many possibilities for applying thermodynamics in other fields of science, engineering, and even economics where energy plays a central role. Thermodynamics is fun when you understand it!
This book highlights the design of a new type of solar chimney that has lower height and bigger diameter, and discusses its applications. The bigger diameter chimneys are introduced showing cold inflow phenomena that significantly reduced the performance of solar chimney. The cold inflow-free operation of solar chimneys restores the draft losses and enhances the performance of the solar chimneys. Numerical and experimental investigation results will be presented to highlight the performance of cold inflow-free solar chimney performance. In addition, this book covers the important basic design parameters that affect the design of solar chimney for different applications, mainly, solar chimney-assisted ventilation for passive cooling and power generation system.
Building up from first principles and simple scenarios, this comprehensive introduction to rigid body dynamics gradually introduces readers to tools to address involved real-world problems, and cutting-edge research topics. Using a unique blend of conceptual, theoretical and practical approaches, concepts are developed and rigorously applied to practical examples in a consistent and understandable way. It includes discussion of real-world applications including robotics and vehicle dynamics, and over 40 thought-provoking fully worked examples to cement readers' understanding. Providing a wealth of resources allowing readers to confidently self-assess - including over 100 problems with solutions, over 400 high quality multiple choice questions, and end-of-chapter puzzles dealing with everyday situations - this is an ideal companion for undergraduate students in aerospace, civil and mechanical engineering.
This book covers aspects of multiphase flow and heat transfer during phase change processes, focusing on boiling and condensation in microscale channels. The authors present up-to-date predictive methods for flow pattern, void fraction, pressure drop, heat transfer coefficient and critical heat flux, pointing out the range of operational conditions that each method is valid. The first four chapters are dedicated on the motivation to study multiphase flow and heat transfer during phase change process, and the three last chapters are focused on the analysis of heat transfer process during boiling and condensation. During the description of the models and predictive methods, the trends are discussed and compared with experimental findings.
This book gathers selected papers from the 16th UK Heat Transfer Conference (UKHTC2019), which is organised every two years under the aegis of the UK National Heat Transfer Committee. It is the premier forum in the UK for the local and international heat transfer community to meet, disseminate ongoing work, and discuss the latest advances in the heat transfer field. Given the range of topics discussed, these proceedings offer a valuable asset for engineering researchers and postgraduate students alike.
This book comprises the select proceedings of the International Conference on Future Learning Aspects of Mechanical Engineering (FLAME 2020). This volume focuses on current research in fluid and thermal engineering and covers topics such as heat transfer enhancement and heat transfer equipment, heat transfer in nuclear applications, microscale and nanoscale transport, multiphase transport and phase change, multi-mode heat transfer, numerical methods in fluid mechanics and heat transfer, refrigeration and air conditioning, thermodynamics, space heat transfer, transport phenomena in porous media, turbulent transport, theoretical and experimental fluid dynamics, flow measurement techniques and instrumentation, computational fluid dynamics, fluid machinery, turbo machinery and fluid power. Given the scope of its contents, this book will be interesting for students, researchers as well as industry professionals.
This book presents various dynamic processes in non-uniform piezoceramic cylindrical and spherical bodies based on numerical methods. It discusses different variants of nonhomogeneous structural polarized piezoceramic materials in the shape of cylinders and spheres, and highlights the validation of the reliability of the results obtained by numerical calculations. The content is based on an outlined theory and methods of three-dimensional electroelasticity problems.
This book offers a comprehensive presentation of the most important phenomena in building physics: heat transfer, moisture/humidity, sound/acoustics and illumination. As the book is primarily aimed at engineers, it addresses technical issues with the necessary pragmatism and incorporates many practical examples and related international standards. In order to ensure a complete understanding, it also explains the underlying physical principles and relates them to practical aspects in a simple and clear manner. The relationships between the various phenomena of building physics are clarified through consistent cross-referencing of formulas and ideas. The second edition features both new and revised sections on topics such as energy balance, solar gain, ventilation, road traffic and daylighting and takes into account new developments in international standards. It newly features almost 200 illustrations and 21 videos worth of supplementary material. The book is primarily aimed at students of civil engineering and architecture, as well as scientists and practitioners in these fields who wish to deepen or broaden their knowledge of topics within building physics.
This book is an interdisciplinary and accessible guide to environmental physics. It allows readers to gain a more complete understanding of physical process and their interaction with ecological ones underpin important environmental issues. The book covers a wide range of topics within environmental physics, including: * natural and anthropogenic canopies, including forests, urban or wavy terrains;* the fundamentals of heat transfer;* atmospheric flow dynamics;* global carbon budget;* climate change; and* the relevance of biochar as a global carbon sink. Including solved exercises, numerous illustrations and tables, as well as an entire chapter focused on applications, book is of interest to researchers, students and industrial engineers alike.
This book describes the feasibility and status of the use of alternative fuels in marine engineering, as well as the application of liquefied natural gas, biodiesel and their blends as marine fuels, and the combustion of synthetic coal-based fuels. Each chapter in the book ends with a summary, which gives the reader a quick and clear understanding of the main contents of the chapter. The book gives a lot of advice on the selection of equipment and parameters, fuel reserves and preparation for scholars related to alternative fuels in ships, and points them in the way. It contains lots of illustrations and tables and explains it in the form of chart comparison. The authors have developed mathematical models and methods for calculating the parameters of fuel systems for biodiesel fuels and liquefied natural gas. Recommendations for choosing the rational parameters of these systems are given, as are schematic solutions of the fuel systems, recommendations for selecting equipment, storing, and preparing the fuels. Application of the materials described in the book provides the SPP designers with a reliable tool for choosing rational characteristics of the fuel systems operating on alternative fuels and improving the efficiency of their application on ships.
This book presents and facilitates new research and development results with hot topics in the thermoelectric generators (TEGs) field. Topics include: novel thin film; multilayer, composite and nanostructured thermoelectric materials; simulation of phenomena related to thermoelectricity; thermoelectric thin film and multilayer materials manufacturing technologies; measurement techniques for characterization; thermoelectric generators; and the simulation, modeling, design, thermal, and mechanical degradation problems. This book helps researchers tackle the challenges that still remain in creating cheap and effective TEGs and presents the latest trends and technologies in development and production of advanced thermoelectric generation devices.
This textbook facilitates students' ability to apply fundamental principles and concepts in classical thermodynamics to solve challenging problems relevant to industry and everyday life. It also introduces the reader to the fundamentals of statistical mechanics, including understanding how the microscopic properties of atoms and molecules, and their associated intermolecular interactions, can be accounted for to calculate various average properties of macroscopic systems. The author emphasizes application of the fundamental principles outlined above to the calculation of a variety of thermodynamic properties, to the estimation of conversion efficiencies for work production by heat interactions, and to the solution of practical thermodynamic problems related to the behavior of non-ideal pure fluids and fluid mixtures, including phase equilibria and chemical reaction equilibria. The book contains detailed solutions to many challenging sample problems in classical thermodynamics and statistical mechanics that will help the reader crystallize the material taught. Class-tested and perfected over 30 years of use by nine-time Best Teaching Award recipient Professor Daniel Blankschtein of the Department of Chemical Engineering at MIT, the book is ideal for students of Chemical and Mechanical Engineering, Chemistry, and Materials Science, who will benefit greatly from in-depth discussions and pedagogical explanations of key concepts. Distills critical concepts, methods, and applications from leading full-length textbooks, along with the author's own deep understanding of the material taught, into a concise yet rigorous graduate and advanced undergraduate text; Enriches the standard curriculum with succinct, problem-based learning strategies derived from the content of 50 lectures given over the years in the Department of Chemical Engineering at MIT; Reinforces concepts covered with detailed solutions to illuminating and challenging homework problems.
This textbook provides an in-depth overview of the hydrodynamics of estuaries and semi-enclosed bodies of water. It begins by describing the typical classification of estuaries, followed by a presentation of the quantitative tools needed to study these basins: conservation of mass, salt, heat, momentum, and the thermodynamic equation of seawater. Further topics explore tides in homogeneous basins, including shallow water tides and tidal residual flows, wind-driven flows in homogeneous basins, density-driven flows, as well as interactions among tides, winds and density gradients. The book proposes a classification of semi-enclosed basins that is based on dominant dynamics, comparing forcing agents and restorative or balancing forces. Introduction to Estuarine Hydrodynamics provides an introduction for advanced students and researchers across a range of disciplines - Earth science, environmental science, biology, chemistry, geology, hydrology, physics - related to the study of estuarine systems.
The book covers various topics of heat transfer. It explains and analyzes several techniques and modes of heat transfer such as conduction in stationary media, convection in moving media and also by radiation. It is primarily a text book useful for undergraduate and postgraduate students. The book should also interest practicing engineers who wish to refresh their knowledge in the field. The book presents the various topics in a systematic way starting from first principles. The topics are developed to a fairly advanced level towards the end of each chapter. Several worked examples illustrate the engineering applications of the basic modeling tools developed in the text. The exercises at the end of the book are arranged chapter wise and challenge the reader to tackle typical real-life problems in heat transfer. This book will be of potential use for students of mechanical engineering, chemical engineering and metallurgy in most engineering colleges.
This short but revealing biography tells the story of Kurt Mendelssohn FRS, one of the founding figures in the field of cryogenics, from his beginnings in Berlin through his move to Oxford in the 1930s, and his groundbreaking work in low temperature and solid state physics. He set up the first helium liquefier in the United Kingdom, and did fundamental research that increased our understanding of superconductivity and superfluid helium. Dr. Mendelssohn's vision extended beyond his scientific and technical achievements; he saw the potential for growth of cryogenics in industry, visiting China, Japan and India to forge global collaborations, founded the leading scientific journal in the field and established a conference series which still runs to this day. He published two monographs which remain as classics in the field. This book explores the story behind the science, in particular his relationships with other key figures in the cryogenics field, most notably Nicholas Kurti at Oxford, and his work outside cryogenics, including his novel ideas on the engineering of the pyramids.
This book systematically describes the weld pool behavior in laser welding and its influencing factors from the perspectives of testing technology, theoretical calculation and process simulation technology, physical state transformation behavior of weld pools, and the impact of technical conditions on the weld pool behavior. The book covers extensive research achievements made in China in this field, some of which represent the latest cutting-edging researches conducted by the authors' research team. These latest research efforts mainly relate to the weld pool behavior of dual-beam laser welding, laser welding with filler wires, full-penetration laser welding of very-thick parts, and laser welding in vacuum and low vacuum conditions. The book is intended for undergraduate, graduate students and researchers who are interested in laser welding.
Solid chemisorption technology is an effective form of energy conversion for recovering low-grade thermal energy, but limited thermal conductivity and agglomeration phenomena greatly limit its performance. Over the past 20 years, researchers have explored the use of thermal conductive porous matrix to improve heat and mass transfer performance. Their efforts have yielded composite sorption technology, which is now extensively being used in refrigeration, heat pumps, energy storage, and de-NOx applications. This book reviews the latest technological advances regarding composite solid sorbents. Various development methods are introduced and compared, kinetic models are presented, and different cycles are analyzed. Given its scope, the book will benefit experts involved in developing novel materials and cycles for energy conversion, as well as engineers working to develop effective commercialized energy conversion systems based on solid sorption technology
Dynamic Behavior of Materials, Volume 1 of the Proceedings of the 2020 SEM Annual Conference & Exposition on Experimental and Applied Mechanics, the first volume of seven from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Experimental Mechanics, including papers on: Synchrotron Applications/Advanced Dynamic Imaging Quantitative Visualization of Dynamic Events Novel Experimental Techniques Dynamic Behavior of Geomaterials Dynamic Failure & Fragmentation Dynamic Response of Low Impedance Materials Hybrid Experimental/Computational Studies Shock and Blast Loading Advances in Material Modeling Industrial Applications
This book presents a snapshot of the state-of-art in the field of turbulence modeling, with an emphasis on numerical methods. Topics include direct numerical simulations, large eddy simulations, compressible turbulence, coherent structures, two-phase flow simulation and many more. It includes both theoretical contributions and experimental works, as well as chapters derived from keynote lectures, presented at the fifth Turbulence and Interactions Conference (TI 2018), which was held on June 25-29 in Martinique, France. This multifaceted collection, which reflects the conferences emphasis on the interplay of theory, experiments and computing in the process of understanding and predicting the physics of complex flows and solving related engineering problems, offers a timely guide for students, researchers and professionals in the field of applied computational fluid dynamics, turbulence modeling and related areas. |
You may like...
Heat Exchangers
Laura Castro Gomez, Victor Manuel Velazquez Flores, …
Hardcover
R3,100
Discovery Miles 31 000
Low-temperature Technologies
Tatiana Morosuk, Muhammad Sultan
Hardcover
R3,109
Discovery Miles 31 090
Statistical Mechanics - An Introductory…
A. J. Berlinsky, A. B. Harris
Hardcover
R2,995
Discovery Miles 29 950
Advances in Heat Exchangers
Laura Castro Gomez, Victor Manuel Velazquez Flores
Hardcover
R2,554
Discovery Miles 25 540
Solar Heating and Cooling Systems…
Ioan Sarbu, Calin Sebarchievici
Paperback
|