![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Engineering thermodynamics
In this book, the author focuses on the physics behind dew, breaths figures, and dropwise condensation phenomena to introduce scientists, engineers and students to the many original processes involved in condensation. Consisting of 15 Chapters, 18 Appendices and over 500 references, the reader learns the needed theoretical backgrounds and formulae to understand the complexity of dropwise condensation. Heat and mass transfer, nucleation and growth on various substrates are considered (solid, liquid, plastic, undergoing phase change or micro-patterned substrates). The particular role of thermal or geometrical discontinuities where growth can be enhanced or reduced, dynamical aspects of self-diffusion, problems related to drop collection by gravity and the optics of dropwise condensation are all discussed. Although the content mainly deals with condensation from humid air, it can readily be generalized to condensation of any substance. The specificities of pure vapor condensation (e.g. steam) are also examined. Numerous images are provided within the text to illustrate the physics. This book is meant for those studying or researching dew and dropwise condensation, but also for individuals wishing to develop their knowledge on the subject.
This short monograph focuses on the theoretical backgrounds and practical implementations concerning the thermodynamic modeling of multiphase equilibria of complex reservoir fluids using cubic equations of state. It aims to address the increasing needs of multiphase equilibrium calculations that arise in the compositional modeling of multiphase flow in reservoirs and wellbores. It provides a state-of-the-art coverage on the recent improvements of cubic equations of state. Considering that stability test and flash calculation are two basic tasks involved in any multiphase equilibrium calculations, it elaborates on the rigorous mathematical frameworks dedicated to stability test and flash calculation. A special treatment is given to the new algorithms that are recently developed to perform robust and efficient three-phase equilibrium calculations. This monograph will be of value to graduate students who conduct research in the field of phase behavior, as well as software engineers who work on the development of multiphase equilibrium calculation algorithms.
This book outlines the data-driven modelling of building energy performance to support retrofit decision-making. It explains how to determine the appropriate machine learning (ML) model, explores the selection and expansion of a reasonable dataset and discusses the extraction of relevant features and maximisation of model accuracy. This book develops a framework for the quick selection of a ML model based on the data and application. It also proposes a method for optimising ML models for forecasting buildings energy loads by employing multi-objective optimisation with evolutionary algorithms. The book then develops an energy performance prediction model for non-domestic buildings using ML techniques, as well as utilising a case study to lay out the process of model development. Finally, the book outlines a framework to choose suitable artificial intelligence methods for modelling building energy performances. This book is of use to both academics and practising energy engineers, as it provides theoretical and practical advice relating to data-driven modelling for energy retrofitting of non-domestic buildings.
This short but revealing biography tells the story of Kurt Mendelssohn FRS, one of the founding figures in the field of cryogenics, from his beginnings in Berlin through his move to Oxford in the 1930s, and his groundbreaking work in low temperature and solid state physics. He set up the first helium liquefier in the United Kingdom, and did fundamental research that increased our understanding of superconductivity and superfluid helium. Dr. Mendelssohn's vision extended beyond his scientific and technical achievements; he saw the potential for growth of cryogenics in industry, visiting China, Japan and India to forge global collaborations, founded the leading scientific journal in the field and established a conference series which still runs to this day. He published two monographs which remain as classics in the field. This book explores the story behind the science, in particular his relationships with other key figures in the cryogenics field, most notably Nicholas Kurti at Oxford, and his work outside cryogenics, including his novel ideas on the engineering of the pyramids.
This book presents and facilitates new research and development results with hot topics in the thermoelectric generators (TEGs) field. Topics include: novel thin film; multilayer, composite and nanostructured thermoelectric materials; simulation of phenomena related to thermoelectricity; thermoelectric thin film and multilayer materials manufacturing technologies; measurement techniques for characterization; thermoelectric generators; and the simulation, modeling, design, thermal, and mechanical degradation problems. This book helps researchers tackle the challenges that still remain in creating cheap and effective TEGs and presents the latest trends and technologies in development and production of advanced thermoelectric generation devices.
Essentials of Radiation Heat Transfer focuses only on the essential topics required to gain an understanding of radiation heat transfer to enable the reader to master more challenging problems. The strength of the book lies in its elaborate presentation of the powerful radiosity-irradiation method and shows how this technique can be used to solve a variety of problems of radiation in enclosures made of one to any number of surfaces in both transparent and participating media. The book also introduces atmospheric radiation in which engineers can contribute to the technology of remote sensing and atmospheric sciences in general, by a better understanding of radiation. The author has included pedagogical features such as end-of-chapter exercises and worked examples with varying degrees of difficulty to augment learning and self-testing. The book has been written in an easy- to- follow conversational style to enhance reader engagement and learning outcomes. This book will be a useful guide for upper undergraduate and graduate students in the areas of mechanical engineering, aerospace engineering, atmospheric sciences, and energy sciences.
The book provides design engineers an elemental understanding of the variables that influence pressure drop and heat transfer in plain and micro-fin tubes to thermal systems using liquid single-phase flow in different industrial applications. It also provides design engineers using gas-liquid, two-phase flow in different industrial applications the necessary fundamentals of the two-phase flow variables. The author and his colleagues were the first to determine experimentally the very important relationship between inlet geometry and transition. On the basis of their results, they developed practical and easy to use correlations for the isothermal and non-isothermal friction factor (pressure drop) and heat transfer coefficient (Nusselt number) in the transition region as well as the laminar and turbulent flow regions for different inlet configurations and fin geometry. This work presented herein provides the thermal systems design engineer the necessary design tools. The author further presents a succinct review of the flow patterns, void fraction, pressure drop and non-boiling heat transfer phenomenon and recommends some of the well scrutinized modeling techniques.
This book deals with the basic principles and techniques of nonequilibrium statistical mechanics. The importance of this subject is growing rapidly in view of the advances being made, both experimentally and theoretically, in statistical physics, chemical physics, biological physics, complex systems and several other areas. The presentation of topics is quite self-contained, and the choice of topics enables the student to form a coherent picture of the subject. The approach is unique in that classical mechanical formulation takes center stage. The book is of particular interest to advanced undergraduate and graduate students in engineering departments.
The nonequilibrium behavior of nanoscopic and biological systems, which are typically strongly fluctuating, is a major focus of current research. Lately, much progress has been made in understanding such systems from a thermodynamic perspective. However, new theoretical challenges emerge when the fluctuating system is additionally subject to time delay, e.g. due to the presence of feedback loops. This thesis advances this young and vibrant research field in several directions. The first main contribution concerns the probabilistic description of time-delayed systems; e.g. by introducing a versatile approximation scheme for nonlinear delay systems. Second, it reveals that delay can induce intriguing thermodynamic properties such as anomalous (reversed) heat flow. More generally, the thesis shows how to treat the thermodynamics of non-Markovian systems by introducing auxiliary variables. It turns out that delayed feedback is inextricably linked to nonreciprocal coupling, information flow, and to net energy input on the fluctuating level.
The Surface Wettability Effect on Phase Change collects high level contributions from internationally recognised scientists in the field. It thoroughly explores surface wettability, with topics spanning from the physics of phase change, physics of nucleation, mesoscale modeling, analysis of phenomena such drop evaporation, boiling, local heat flux at triple line, Leidenfrost, dropwise condensation, heat transfer enhancement, freezing, icing. All the topics are treated by discussing experimental results, mathematical modeling and numerical simulations. In particular, the numerical methods look at direct numerical simulations in the framework of VOF simulations, phase-field simulations and molecular dynamics. An introduction to equilibrium and non-equilibrium thermodynamics of phase change, wetting phenomena, liquid interfaces, numerical simulation of wetting phenomena and phase change is offered for readers who are less familiar in the field. This book will be of interest to researchers, academics, engineers, and postgraduate students working in the area of thermofluids, thermal management, and surface technology.
This book highlights key recent developments in air conditioning technologies for cooling and dehumidification with the specific objectives to improve energy efficiency and to minimize environmental impact. Today, air conditioning, comprising cooling and dehumidification, is a necessity in commercial and residential buildings and even in many industrial processes. This book provides key update on recent developments in air conditioning systems, cooling cycles and innovative cooling/dehumidification technologies. Key technologies related to cooling include heat-driven absorption and adsorption cooling and water-based dew point evaporative cooling. Technologies connected with dehumidification involve new generations of adsorbent-desiccant dehumidifiers, liquid-based desiccants and membranes that sieve out water vapor from air. Losses in cooling cycles and thermo-economic analysis for a sustainable economy are also judiciously documented.
Concise, detailed, and transparently structured, this upper-level undergraduate textbook is an excellent resource for a one-semester course on thermodynamics for students majoring in physics, chemistry, or materials science. Throughout the seven chapters and three-part appendix, students benefit from numerous practical examples and solved problems ranging in broad scope from cosmic to molecular evolution; cloud formation to rubber elasticity; and Carnot engines to Monte Carlo simulation of phase equilibria. Lauded in Physics Today as "a valuable resource for students and faculty", Hentschke's Thermodynamics presents in this long-anticipated second edition new and extended coverage of a range of topical material, such as thermodynamics of the universe and atmospheric thermodynamics, while also featuring a more application-oriented treatment of surfaces, interfaces, and polymers. Touching on subjects throughout soft-matter physics, superconductors, and complex fluids, this textbook delivers the foundation and breadth of scope necessary to prepare undergraduate students for further study in this timeless yet ever-changing field.
< b=""> The book provides a concise description of the physical processes and mathematical models for explosions and formation of blast waves from explosions. The contents focus on quantitatively determining the energy released in the different types of explosions and the destructive blast waves that are generated. The contribution of flames, detonations and other physical processes to the explosion phenomenon is dealt with in detail. Gaseous and condensed phase explosions are discussed and the yield of explosions with their TNT equivalence is determined. Time scales involved in the explosion process and the scaling procedure are ascertained. Explosions over the ground, in water, and the interaction of explosions with objects are examined. In order to keep the text easily readable, the detailed derivation of the mathematical equations is given in the seven appendices at the end of the book. Case studies of various explosions are investigated and simple problems and their solutions are provided for the different topics to assist the reader in internalizing the explosion process. The book is a useful reference for professionals and academics in aeronautics, mechanical, civil and chemical engineering and for personnel working in explosive manufacture and high-energy materials, armaments, space, defense, and industrial and fire safety.
This book offers a comprehensive presentation of the most important phenomena in building physics: heat transfer, moisture/humidity, sound/acoustics and illumination. As the book is primarily aimed at engineers, it addresses technical issues with the necessary pragmatism and incorporates many practical examples and related international standards. In order to ensure a complete understanding, it also explains the underlying physical principles and relates them to practical aspects in a simple and clear manner. The relationships between the various phenomena of building physics are clarified through consistent cross-referencing of formulas and ideas. The second edition features both new and revised sections on topics such as energy balance, solar gain, ventilation, road traffic and daylighting and takes into account new developments in international standards. It newly features almost 200 illustrations and 21 videos worth of supplementary material. The book is primarily aimed at students of civil engineering and architecture, as well as scientists and practitioners in these fields who wish to deepen or broaden their knowledge of topics within building physics.
This textbook facilitates students' ability to apply fundamental principles and concepts in classical thermodynamics to solve challenging problems relevant to industry and everyday life. It also introduces the reader to the fundamentals of statistical mechanics, including understanding how the microscopic properties of atoms and molecules, and their associated intermolecular interactions, can be accounted for to calculate various average properties of macroscopic systems. The author emphasizes application of the fundamental principles outlined above to the calculation of a variety of thermodynamic properties, to the estimation of conversion efficiencies for work production by heat interactions, and to the solution of practical thermodynamic problems related to the behavior of non-ideal pure fluids and fluid mixtures, including phase equilibria and chemical reaction equilibria. The book contains detailed solutions to many challenging sample problems in classical thermodynamics and statistical mechanics that will help the reader crystallize the material taught. Class-tested and perfected over 30 years of use by nine-time Best Teaching Award recipient Professor Daniel Blankschtein of the Department of Chemical Engineering at MIT, the book is ideal for students of Chemical and Mechanical Engineering, Chemistry, and Materials Science, who will benefit greatly from in-depth discussions and pedagogical explanations of key concepts. Distills critical concepts, methods, and applications from leading full-length textbooks, along with the author's own deep understanding of the material taught, into a concise yet rigorous graduate and advanced undergraduate text; Enriches the standard curriculum with succinct, problem-based learning strategies derived from the content of 50 lectures given over the years in the Department of Chemical Engineering at MIT; Reinforces concepts covered with detailed solutions to illuminating and challenging homework problems.
This book is the first comprehensive work on latent heat transfer. It covers all forms of latent heat: evaporation, sublimation, melting, condensation, freezing, and deposition. It has been designed to provide both insight and example for junior engineering graduate students. The three preparatory chapters, on history and significance, thermodynamics, and fluid dynamics, are followed by self-contained treatments of solidification (and fluidification), condensation, and evaporation (including boiling). Direct contact latent heat transfer is covered separately. The final chapter is devoted exclusively to worked examples. Emphasis throughout is placed on fundamentals which apply equally to industrial and environmental situations.
This book serves as an extensive practice manual for the understanding and practice of heat exchanger design fundamentals and principles. It also provides a useful resource to upper undergraduate students, who are required to complete final year design projects as part of graduation. The book complements other key topics in science and engineering courses well, such as the branch of thermodynamics which relates closely to the core design principles for heat exchanger networks (FThis book serves as an extensive practice manual for the understanding and practice of heat exchanger design fundamentals and principles. It also provides a useful resource to upper undergraduate students, who are required to complete final year design projects as part of graduation. The book complements other key topics in science and engineering courses well, such as the branch of thermodynamics which relates closely to the core design principles for heat exchanger networks (First and Second Laws of Thermodynamics). Provides balanced content with numerical and open-ended problems; Tailored to the needs of students and teachers; Concise yet rigorous treatment of concepts; Incorporates use of visuals to aid learning; Reinforces engineering concepts in real-life applications.
This textbook presents the classical treatment of the problems of heat transfer in an exhaustive manner with due emphasis on understanding of the physics of the problems. This emphasis will be especially visible in the chapters on convective heat transfer. Emphasis is also laid on the solution of steady and unsteady two-dimensional heat conduction problems. Another special feature of the book is a chapter on introduction to design of heat exchangers and their illustrative design problems. A simple and understandable treatment of gaseous radiation has been presented. A special chapter on flat plate solar air heater has been incorporated that covers mathematical modeling of the air heater. The chapter on mass transfer has been written looking specifically at the needs of the students of mechanical engineering. The book includes a large number and variety of solved problems with supporting line diagrams. A number of application-based examples have been incorporated where applicable. The end-of-chapter exercise problems are supplemented with stepwise answers. Though the book has been primarily designed to serve as a complete textbook for undergraduate and graduate students of mechanical engineering, it will also be useful for students of chemical, aerospace, automobile, production, and industrial engineering streams. The book fully covers the topics of heat transfer coursework and can also be used as an excellent reference for students preparing for competitive graduate examinations.
This book covers aspects of multiphase flow and heat transfer during phase change processes, focusing on boiling and condensation in microscale channels. The authors present up-to-date predictive methods for flow pattern, void fraction, pressure drop, heat transfer coefficient and critical heat flux, pointing out the range of operational conditions that each method is valid. The first four chapters are dedicated on the motivation to study multiphase flow and heat transfer during phase change process, and the three last chapters are focused on the analysis of heat transfer process during boiling and condensation. During the description of the models and predictive methods, the trends are discussed and compared with experimental findings.
In Flame Structure and Processes, renowned physical chemist Robert M. Fristrom comprehensively documents the numerous experimental techniques used to study flame microstructure, and provides an interdisciplinary overview of how such research is revealing exciting new information about combustion and high temperature processes. Using premixed laminar flames as models for studying individual high temperature chemistries, physical processes, and their interactions, Fristrom expertly details experimental and mathematical methods for analyzing overall flame structure or any other high temperature reacting flow system. Specialized techniques required to obtain high spatial resolution under extreme temperature conditions are also described. Fristrom goes on to discuss what is currently known about flame chemistry, physical processes common to all flames, and combustion. An extensive bibliography and many useful tables round out the book. The only up-to-date book solely devoted to flame structure and processes, this book will be welcomed by students and professionals in chemical/mechanical engineering and physical chemistry.
Building up from first principles and simple scenarios, this comprehensive introduction to rigid body dynamics gradually introduces readers to tools to address involved real-world problems, and cutting-edge research topics. Using a unique blend of conceptual, theoretical and practical approaches, concepts are developed and rigorously applied to practical examples in a consistent and understandable way. It includes discussion of real-world applications including robotics and vehicle dynamics, and over 40 thought-provoking fully worked examples to cement readers' understanding. Providing a wealth of resources allowing readers to confidently self-assess - including over 100 problems with solutions, over 400 high quality multiple choice questions, and end-of-chapter puzzles dealing with everyday situations - this is an ideal companion for undergraduate students in aerospace, civil and mechanical engineering.
Get up to speed with this robust introduction to the aerothermodynamics principles underpinning jet propulsion, and learn how to apply these principles to jet engine components. Suitable for undergraduate students in aerospace and mechanical engineering, and for professional engineers working in jet propulsion, this textbook includes consistent emphasis on fundamental phenomena and key governing equations, providing students with a solid theoretical grounding on which to build practical understanding; clear derivations from first principles, enabling students to follow the reasoning behind key assumptions and decisions, and successfully apply these approaches to new problems; practical examples grounded in real-world jet propulsion scenarios illustrate new concepts throughout the book, giving students an early introduction to jet and rocket engine considerations; and online materials for course instructors, including solutions, figures, and software resources, to enhance student teaching.
Der Leser bzw. die Leserin findet anschaulich dargestellte
Grundlagen verfahrenstechnischer Fragestellungen unter
Berucksichtigung moderner Methoden. Das Buch enthalt sowohl
Berechnungsmodelle als auch praxisnahe Berechnungsformeln bzw.
bewahrte Losungswege zur Auslegung thermischer Trennanlagen.
Ausserdem wird die industrielle Realisierung anhand von Abbildungen
und Tabellen inklusive der technischen Daten detailliert behandelt.
Viele Querverweise und ein umfangreiches Sachverzeichnis
erleichtern das Auffinden von Zusammenhangen bzw. alternativen
Losungswegen. Die Inhalte sind mit Abbildungen, Tabellen und
mathematischen Formeln illustriert.
This textbook provides an in-depth overview of the hydrodynamics of estuaries and semi-enclosed bodies of water. It begins by describing the typical classification of estuaries, followed by a presentation of the quantitative tools needed to study these basins: conservation of mass, salt, heat, momentum, and the thermodynamic equation of seawater. Further topics explore tides in homogeneous basins, including shallow water tides and tidal residual flows, wind-driven flows in homogeneous basins, density-driven flows, as well as interactions among tides, winds and density gradients. The book proposes a classification of semi-enclosed basins that is based on dominant dynamics, comparing forcing agents and restorative or balancing forces. Introduction to Estuarine Hydrodynamics provides an introduction for advanced students and researchers across a range of disciplines - Earth science, environmental science, biology, chemistry, geology, hydrology, physics - related to the study of estuarine systems. |
![]() ![]() You may like...
Digital Learning Anytime and Real Time…
Yonty Friesem, Renee Hobbs
Loose-leaf
R367
Discovery Miles 3 670
Mathematical Modeling and Applications…
Albert C.J. Luo, Huseyin Merdan
Hardcover
R1,973
Discovery Miles 19 730
A Reformulation-Linearization Technique…
Hanif D. Sherali, W. P. Adams
Hardcover
R6,364
Discovery Miles 63 640
Guide to DataFlow Supercomputing - Basic…
Veljko Milutinovic, Jakob Salom, …
Hardcover
|