![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Engineering thermodynamics
This Brief is aimed at engineers and researchers involved in the refrigeration industry: specifically, those interested in energy utilization and system efficiency. The book presents what the authors believe is the first comprehensive frost melting study involving all aspects of heat and mass transfer. The volume's description of in-plane and normal digital images of frost growth and melting is also unique in the field, and the digital analysis technique offers an advantage over invasive measurement methods. The scope of book's coverage includes modeling and experimentation for the frost formation and melting processes. The key sub-specialties to which the book are aimed include refrigeration system analysis and design, coupled heat and mass transfer, and phase-change processes.
Aimed at advanced undergraduate and graduate students, this book provides a clear unified view of continuum mechanics that will be a welcome addition to the literature. Samuel Paolucci provides a well-grounded mathematical structure and also gives the reader a glimpse of how this material can be extended in a variety of directions, furnishing young researchers with the necessary tools to venture into brand new territory. Particular emphasis is given to the roles that thermodynamics and symmetries play in the development of constitutive equations for different materials. Continuum Mechanics and Thermodynamics of Matter is ideal for a one-semester course in continuum mechanics, with 250 end-of-chapter exercises designed to test and develop the reader's understanding of the concepts covered. Six appendices enhance the material further, including a comprehensive discussion of the kinematics, dynamics and balance laws applicable in Riemann spaces.
This book proposes a radically new approach for characterizing thermophysical and mechanical properties of zeolite-based adsorbent coatings for Adsorptive Heat Transformers (AHT). It presents a developed standard protocol for the complete characterization of advanced coated adsorbers. Providing an in-depth analysis of the different procedures necessary for evaluating the performance of adsorbers, it also presents an analysis of their stability under the hydrothermal and mechanical stresses during their entire life cycle. Adsorptive Heat Transformers (AHT), especially adsorption chillers and heat pumps, are considered to be promising technologies to increase thermal energy efficiency. Nevertheless, an overall increase in performance of this apparatus is necessary for them to be considered a mature technology to be used commercially. Development of innovative coated adsorbers can be perceived as a key issue for the enhancement of AHT technology. This procedure relies on the deposition, either by means of a binder or by direct crystallization, of the adsorbent material over a metallic heat exchanger, aiming at the improvement of the heat transfer between the external heat source and the adsorbent itself. This book offers a valuable resource to those working on the development of novel adsorbent materials and advanced adsorbent beds for heating and cooling applications. It is also intended for researchers interested in renewable energy and energy efficiency.
First published in 1936, as the second edition of a 1920 original, this book was written to provide engineers with a working knowledge of elementary thermodynamics. The principles of the subject are first introduced in a non-mathematical form and applied to practical problems. Once the principles have been established on this basis they are discussed in mathematical terms. The text was written by the renowned Scottish engineer and physicist James Alfred Ewing (1885-1935) and the revised second edition was published posthumously with his amendments. This book will be of value to anyone with an interest in thermodynamics, engineering and the history of science.
This book explore how exergy analysis can be an important tool for assessing the sustainability of buildings. Building's account or around 40 percent of total energy conditions depending on local climatic conditions. Due to its nature, exergy analysis should become a valuable tool for the assessment of building sustainability, first of all considering their scope and the dependence of their energy demands on the local environmental and climatic conditions. Nonetheless, methodological bottlenecks do exist and a solution to some of them is proposed in this monograph. First and foremost, there is the still-missing thermodynamically viable method to apply the variable reference environment temperature in exergy analysis. The monograph demonstrates that a correct approach to the directions of heat exergy flows, when the reference temperature is considered variable, allows reflecting the specifics of energy transformation processes in heating, ventilation, and air conditioning systems in a thermodynamically viable way. The outcome of the case analysis, which involved coordinated application of methodologies based on the Carnot factor and coenthalpies, was exergy analysis indicators - exergy efficiency and exergy destroyed - obtained for air handling units and their components. These methods can be used for the purposes of analysing and improving building technical systems that, as a rule, operate at a variable environment temperature. Exergy analysis becomes more reliable in designing dynamic models of such systems and their exergy-based control algorithms. This would improve the possibility to deploy them in building information modelling (BIM) technologies and the application of life cycle analysis (LCA) principles in designing buildings, thus improving the quality of the decision-making process. Furthermore, this would benefit other systems where variable reference environment plays a key role. This book is relevant to academics, students and researchers in the field of thermodynamic analysis considering HVAC equipment, building energy systems, energy efficiency, sustainable development of technical systems of energy, mechanics, and construction, as well as preservation of natural resources. Planners, designers, engineers of HVAC equipment, building energy systems, and developers of appropriate simulation tools (e.g., BIM) will also find it of use.
This book presents a comprehensive introduction to the use of solid-liquid phase change materials to store significant amounts of energy in the latent heat of fusion. The proper selection of materials for different applications is covered in detail, as is the use of high conductivity additives to enhance thermal diffusivity. Dr. Fleischer explores how applications of PCMS have expanded over the past 10 years to include the development of high efficiency building materials to reduce heating and cooling needs, smart material design for clothing, portable electronic systems thermal management, solar thermal power plant design and many others. Additional future research directions and challenges are also discussed.
This Brief reviews contemporary research conducted in university and industry laboratories on thermal management in electrochemical energy storage systems (capacitors and batteries) that have been widely used as power sources in many practical applications, such as automobiles, hybrid transport, renewable energy installations, power backup and electronic devices. Placing a particular emphasis on supercapacitors, the authors discuss how supercapacitors, or ultra capacitors, are complementing and replacing, batteries because of their faster power delivery, longer life cycle and higher coulombic efficiency, while providing higher energy density than conventional electrolytic capacitors. Recent advances in both macro- and micro capacitor technologies are covered. The work facilitates systematic understanding of thermal transport in such devices that can help develop better power management systems.
Learn classical thermodynamics alongside statistical mechanics with this fresh approach to the subjects. Molecular and macroscopic principles are explained in an integrated, side-by-side manner to give students a deep, intuitive understanding of thermodynamics and equip them to tackle future research topics that focus on the nanoscale. Entropy is introduced from the get-go, providing a clear explanation of how the classical laws connect to the molecular principles, and closing the gap between the atomic world and thermodynamics. Notation is streamlined throughout, with a focus on general concepts and simple models, for building basic physical intuition and gaining confidence in problem analysis and model development. Well over 400 guided end-of-chapter problems are included, addressing conceptual, fundamental, and applied skill sets. Numerous worked examples are also provided together with handy shaded boxes to emphasize key concepts, making this the complete teaching package for students in chemical engineering and the chemical sciences.
This text focuses on a variety of topics in mathematics in common usage in graduate engineering programs including vector calculus, linear and nonlinear ordinary differential equations, approximation methods, vector spaces, linear algebra, integral equations and dynamical systems. The book is designed for engineering graduate students who wonder how much of their basic mathematics will be of use in practice. Following development of the underlying analysis, the book takes students through a large number of examples that have been worked in detail. Students can choose to go through each step or to skip ahead if they so desire. After seeing all the intermediate steps, they will be in a better position to know what is expected of them when solving assignments, examination problems, and when on the job. Chapters conclude with exercises for the student that reinforce the chapter content and help connect the subject matter to a variety of engineering problems. Students have grown up with computer-based tools including numerical calculations and computer graphics; the worked-out examples as well as the end-of-chapter exercises often use computers for numerical and symbolic computations and for graphical display of the results.
In this book the author presents selected challenges of thermal-hydraulics modeling of two-phase flows in minichannels with change of phase. These encompass the common modeling of flow boiling and flow condensation using the same expression. Approaches to model these two respective cases show, however, that experimental data show different results to those obtained by methods of calculation of heat transfer coefficient for respective cases. Partially that can be devoted to the fact that there are non-adiabatic effects present in both types of phase change phenomena which modify the pressure drop due to friction, responsible for appropriate modelling. The modification of interface shear stresses between flow boiling and flow condensation in case of annular flow structure may be considered through incorporation of the so called blowing parameter, which differentiates between these two modes of heat transfer. On the other hand, in case of bubbly flows, the generation of bubbles also modifies the friction pressure drop by the influence of heat flux. Presented are also the results of a peculiar M-shape distribution of heat transfer coefficient specific to flow boiling in minichannels. Finally, some attention is devoted to mathematical modeling of dryout phenomena. A five equation model enabling determination of the dryout location is presented, where the mass balance equations for liquid film, droplets and gas are supplemented by momentum equations for liquid film and two-phase core.
This book discusses the evaporation mechanism in the wick of copper heat pipes. The investigations are based on recent visualization experiments for operating horizontal flat-plate heat pipes.
This text is intended to provide a modern and integrated treatment of the foundations and applications of continuum mechanics. There is a significant increase in interest in continuum mechanics because of its relevance to microscale phenomena. In addition to being tailored for advanced undergraduate students and including numerous examples and exercises, this text also features a chapter on continuum thermodynamics, including entropy production in Newtonian viscous fluid flow and thermoelasticity. Computer solutions and examples are emphasized through the use of the symbolic mathematical computing program Mathematica (r).
Supercritical pressure fluids have been exploited in many engineering fields, where binary mixtures are frequently encountered. This book focuses on the coupled heat and mass transfer in them, where the coupling comes from cross-diffusion effects (i.e., Soret and Dufour effects) and temperature-dependent boundary reactions. Under this configuration, three main topics are discussed: relaxation and diffusion problems, hydrodynamic stability, and convective heat and mass transfer. This book reports a series of new phenomena, novel mechanisms, and an innovative engineering design in hydrodynamics and transport phenomena of binary mixtures at supercritical pressures. This book covers not only current research progress but also basic knowledge and background. It is very friendly to readers new to this field, especially graduate students without a deep theoretical background.
The priority research, Analysis, Modelling and Numerical Calculations ofMul tiphase Flows" was running for 6 years (from 1996 to 2002) and financially sup ported by the Deutsche Forschungsgemeinschaft (DFG). The main objective ofthe research programme was to provide a better understanding of the physical basis for multiphase gas-liquid flows as they are found in numerous chemical and bio chemical reactors. The research comprised steady and unsteady multiphase flows in three frequently found reactor configurations, namely bubble columns without interiors, loop reactors, and aerated stirred vessels. For this purpose, new and im proved measurement techniques should be developed. From the resulting knowl edge and data, new and refined models for describing the underlying physical processes should result, which can be used for the establishment and improvement of analytic as well as numerical methods for predicting multiphase reactors. Thereby, the development, lay-out and scale-up ofsuch processes should be pos sible on a more reliable basis. For achieving this objective three research areas were defined: development and improvement of experimental techniques which allow accu rate measurements in steady and unsteady multiphase flows elaboration of new modelling approaches in order to describe the basic trans port processes for mass, momentum, and heat in bubbly flows development of analytical and numerical methods supplemented by the new modelling strategies in order to support optimisation and lay-out of technical multiphase processes."
This book provides state-of-the-art advances in several areas of importance in energy, combustion, power, propulsion, environment using fossil fuels and alternative fuels, and biofuels production and utilization. Availability of clean and sustainable energy is of greater importance now than ever before in all sectors of energy, power, mobility and propulsion. Written by internationally renowned experts, the latest fundamental and applied research innovations on cleaner energy production as well as utilization for a wide range of devices extending from micro scale energy conversion to hypersonic propulsion using hydrocarbon fuels are provided. The tailored technical tracks and contributions from the world renowned technical experts are portrayed in the respective field to highlight different but complementary views on fuels, combustion, power and propulsion and air toxins with special focus on current and future R&D needs and activities. The energy and environment sustainability require a multi-pronged approach involving development and utilization of new and renewable fuels, design of fuel-flexible combustion systems that can be easily operated with the new fuels, and develop novel and environmentally friendly technologies for improved utilization of all kinds of gas, liquid and solid fuels. This volume is a useful book for practicing engineers, research engineers and managers in industry and research labs, academic institutions, graduate students, and final year undergraduate students in Mechanical, Chemical, Aerospace, Energy and Environmental Engineering.
This 2007 book presents the development of modern molecular models for fluids from the interdisciplinary fundamentals of classical and statistical mechanics, of electrodynamics and of quantum mechanics. The concepts and working equations of the various fields are briefly derived and illustrated in the context of understanding the properties of molecular systems. Special emphasis is devoted to the quantum mechanical basis, since this is used throughout in the calculation of the molecular energy of a system. The book is application oriented. It stresses those elements that are essential for practical model development. The fundamentals are then used to derive models for various types of applications. Finally, equation of state models are presented based on quantum chemically based models for the intermolecular potential energy and perturbation theory. The book is suited for graduate courses in chemical and mechanical engineering, physics and chemistry, but may also, by proper selection, be found useful on the undergraduate level.
Thermodynamics: Fundamentals and Applications is a 2005 text for a first graduate course in Chemical Engineering. The focus is on macroscopic thermodynamics; discussions of modeling and molecular situations are integrated throughout. Underpinning this text is the knowledge that while thermodynamics describes natural phenomena, those descriptions are the products of creative, systematic minds. Nature unfolds without reference to human concepts of energy, entropy, or fugacity. Natural complexity can be organized and studied by thermodynamics methodology. The power of thermodynamics can be used to advantage if the fundamentals are understood. This text's emphasis is on fundamentals rather than modeling. Knowledge of the basics will enhance the ability to combine them with models when applying thermodynamics to practical situations. While the goal of an engineering education is to teach effective problem solving, this text never forgets the delight of discovery, the satisfaction of grasping intricate concepts, and the stimulation of the scholarly atmosphere.
This textbook provides a strong foundation in the basic thermodynamics needed to analyze real-world engineering applications of thermodynamics in the field of energy systems. Written in a format readable to students new to the subject, this book will also help entrepreneurs venturing into the world of energy and power without a background in mechanical engineering.This book presents the basic theories of thermodynamics by focusing on the application of the subject matter to the most common applications of thermodynamics. It takes real-world problems from the author's over 40 years of experience as a practical, professional engineer and provides in-depth solutions to each problem using concepts the student has learned from earlier chapters. The case studies provide both examples of how thermodynamics is used in state-of-the-art tools to solve the case studies' problems, as well as ideas for future energy-efficient systems.Related Link(s)
The years 2006 and 2007 mark a dramatic change of peoples view regarding c- mate change and energy consumption. The new IPCC report makes clear that - mankind plays a dominant role on climate change due to CO emissions from en- 2 ergy consumption, and that a significant reduction in CO emissions is necessary 2 within decades. At the same time, the supply of fossil energy sources like coal, oil, and natural gas becomes less reliable. In spring 2008, the oil price rose beyond 100 $/barrel for the first time in history. It is commonly accepted today that we have to reduce the use of fossil fuels to cut down the dependency on the supply countries and to reduce CO emissions. The use of renewable energy sources and 2 increased energy efficiency are the main strategies to achieve this goal. In both strategies, heat and cold storage will play an important role. People use energy in different forms, as heat, as mechanical energy, and as light. With the discovery of fire, humankind was the first time able to supply heat and light when needed. About 2000 years ago, the Romans started to use ceramic tiles to store heat in under floor heating systems. Even when the fire was out, the room stayed warm. Since ancient times, people also know how to cool food with ice as cold storage.
Originating in the process compressor industry, this text primarily addresses: rotating equipment engineers, project engineers, engineering contractors, and compressor user companies in oil and gas field operations, natural gas processing, petroleum refining, petrochemical processing, industrial refrigeration, and chemical industries. It enables the reader to assess compressors and defines the constraints influencing the compressor design.
Developed by the late metallurgy professor and master experimentalist Hubert I. Aaronson, this collection of lecture notes details the fundamental principles of phase transformations in metals and alloys upon which steel and other metals industries are based. Mechanisms of Diffusional Phase Transformations in Metals and Alloys is devoted to solid-solid phase transformations in which elementary atomic processes are diffusional jumps, and these processes occur in a series of so-called nucleation and growth through interface migration. Instead of relying strictly on a pedagogical approach, it documents the evolution of phase transformation concepts. The authors present topics by describing a phenomenon and then following up with a corresponding hypothesis or alternative explanation. In this way, the book also shows how the field continues to evolve and meet new challenges. Integrated with information from a number of key papers and review articles, this volume reflects this revered and influential instructor's unique and passionate way of introducing well-established theories and knowledge in a systematic way, at the same time introducing, in great detail, how a new idea or interpretation of a phenomenon has emerged, evolved, and gained its current status. If the published version of a theory or a model was too condensed, Aaronson worked the problem out in painstaking detail so that graduate students could follow the derivations. This collection is full of such unique "Aaronsonian idiosyncrasies," which add immense value as a powerful tool for learning in this challenging materials field.
This text is intended to provide a modern and integrated treatment of the foundations and applications of continuum mechanics. There is a significant increase in interest in continuum mechanics because of its relevance to microscale phenomena. In addition to being tailored for advanced undergraduate students and including numerous examples and exercises, this text also features a chapter on continuum thermodynamics, including entropy production in Newtonian viscous fluid flow and thermoelasticity. Computer solutions and examples are emphasized through the use of the symbolic mathematical computing program Mathematica (r).
This book presents a new and direct computational method for transient heat transfer. The approach uses the well-known dimensionless Biot number and a second dimensionless number introduced by the author. The methodology allows for a transient heat transfer calculations without using finite difference programs. The book presents many examples and various tables demonstrating the potential of this new methodology. Many diagrams illustrate the physical phenomena.
Thermodynamics: Fundamentals and Applications is a 2005 text for a first graduate course in Chemical Engineering. The focus is on macroscopic thermodynamics; discussions of modeling and molecular situations are integrated throughout. Underpinning this text is the knowledge that while thermodynamics describes natural phenomena, those descriptions are the products of creative, systematic minds. Nature unfolds without reference to human concepts of energy, entropy, or fugacity. Natural complexity can be organized and studied by thermodynamics methodology. The power of thermodynamics can be used to advantage if the fundamentals are understood. This text's emphasis is on fundamentals rather than modeling. Knowledge of the basics will enhance the ability to combine them with models when applying thermodynamics to practical situations. While the goal of an engineering education is to teach effective problem solving, this text never forgets the delight of discovery, the satisfaction of grasping intricate concepts, and the stimulation of the scholarly atmosphere. |
![]() ![]() You may like...
Pearson Edexcel International A Level…
Joe Skrakowski, Harry Smith
Paperback
R881
Discovery Miles 8 810
Practical Design of Ships and Other…
Tetsuo Okada, Katsuyuki Suzuki, …
Hardcover
R9,706
Discovery Miles 97 060
Financial Mathematics - A Comprehensive…
Giuseppe Campolieti, Roman N. Makarov
Hardcover
R2,874
Discovery Miles 28 740
Fractography and Failure Analysis
Jorge Luis Gonzalez-Velazquez
Hardcover
R4,230
Discovery Miles 42 300
|