![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Engineering thermodynamics
This book presents a liber amicorum dedicated to Wolfgang H. Muller, and highlights recent advances in Prof. Muller's major fields of research: continuum mechanics, generalized mechanics, thermodynamics, mechanochemistry, and geomechanics. Over 50 of Prof. Muller's friends and colleagues contributed to this book, which commemorates his 60th birthday and was published in recognition of his outstanding contributions.
This book presents selected papers from the International Conference of Aerospace and Mechanical Engineering 2019 (AeroMech 2019), held at the Universiti Sains Malaysia's School of Aerospace Engineering. Sharing new innovations and discoveries concerning the Fourth Industrial Revolution (4IR), with a focus on 3D printing, big data analytics, Internet of Things, advanced human-machine interfaces, smart sensors and location detection technologies, it will appeal to mechanical and aerospace engineers.
This volume presents both methodologies and numerical applications for the design of non-conventional unit operations in chemical processes and plants, which are rarely studied in depth at an academic level but have wide applications in the industrial sector. The first part discusses the design, comparison and optimization of heating and cooling operations that are different from simple heat exchange. The second and larger part offers a brief but effective overview of non-conventional separation processes, mainly focusing on the heterogeneous phases. Based on sample case studies, it extrapolates the process model equations and includes the numerical solution in order to provide a straightforward application example. The end of each chapter features a C++ code implementation to solve the ODE or nonlinear equations system using the BzzMath library.
This book assesses the thermal feasibility of using materials with atomically thin layers such as graphene and the transition metal dichalcogenides family in electronics and optoelectronics applications. The focus is on thermal conductivity measurement techniques currently available for the investigation of thermal performance at the material and device level. In addition to providing detailed information on the available techniques, the book introduces readers to novel techniques based on photothermal effects.
This book provides a complete and accurate atomic level statistical mechanical explanation of entropy and the second law of thermodynamics. It assumes only a basic knowledge of mechanics and requires no knowledge of calculus. The treatment uses primarily geometric arguments and college level algebra. Quantitative examples are given at each stage to buttress physical understanding. This text is of benefit to undergraduate and graduate students, as well as educators and researchers in the physical sciences (whether or not they have taken a thermodynamics course) who want to understand or teach the atomic/molecular origins of entropy and the second law. It is particularly aimed at those who, due to insufficient mathematical background or because of their area of study, are not going to take a traditional statistical mechanics course.
This book discusses enhancing the overall energy performance of building central air-conditioning systems through fault diagnosis and robust control strategies. Fault diagnosis strategies aim to determine the exact cause of problems and evaluate the energy impact on the system, while robust control strategies aim to manage chilled water systems to avoid the occurrence of low delta-T syndrome and deficit flow problems. Presenting the first academic study of the diagnostic method and control mechanism of "small temperature difference syndrome", the book describes the highly robust and adaptive fault-tolerant control method developed to overcome the influences of external disturbance on the process control in practical applications. The diagnostic technology developed provides a predictive assessment of the energy dissipation effect of the fault. This book is a valuable reference resource for researchers and designers in the areas of building energy management and built environment control, as well as for senior undergraduate and graduate students.
This comprehensive handbook covers all fundamentals of electrochemistry for contemporary applications. It provides a rich presentation of related topics of electrochemistry with a clear focus on energy technologies. It covers all aspects of electrochemistry starting with theoretical concepts and basic laws of thermodynamics, non-equilibrium thermodynamics and multiscale modeling. It further gathers the basic experimental methods such as potentiometry, reference electrodes, ion-sensitive electrodes, voltammetry and amperometry. The contents cover subjects related to mass transport, the electric double layer, ohmic losses and experimentation affecting electrochemical reactions. These aspects of electrochemistry are especially examined in view of specific energy technologies including batteries, polymer electrolyte and biological fuel cells, electrochemical capacitors, electrochemical hydrogen production and photoelectrochemistry. Organized in six parts, the overall complexity of electrochemistry is presented and makes this handbook an authoritative reference and definitive source for advanced students, professionals and scientists particularly interested in industrial and energy applications.
This book comprises select proceedings of the International Conference on Emerging Trends in Mechanical Engineering (ICETME 2018). The book covers various topics of mechanical engineering like computational fluid dynamics, heat transfer, machine dynamics, tribology, and composite materials. In addition, relevant studies in the allied fields of manufacturing, industrial and production engineering are also covered. The applications of latest tools and techniques in the context of mechanical engineering problems are discussed in this book. The contents of this book will be useful for students, researchers as well as industry professionals.
The book focuses on design and computational issues related to fixtures and armatures in hydronic heating installations, especially regulation valves, their selection, operating principles, types and construction. The analysis is complemented by connection diagrams, drawings, photos of the valves and computational examples of their selection and operation parameters when used in a pipework and a controlled object, like a radiator. It also discusses issues related to the so-called valve authority, one of the main parameters determining the quality of the valve regulation process. Further, it includes an extensive theoretical framework along with a detailed mathematical analysis and proposes new algorithms, which have been verified and confirmed experimentally. Based on this analysis, the book presents the author's analytical approach for sizing a regulation valve, as well as an innovative design solution for a regulation valve without the limitations of the valves currently available on the market. Lastly, it introduces a new verified method of calculating the valve pre-setting. Intended for engineers dealing with heating issues, scientists and students studying environmental engineering, energetics and related fields, the book is also useful for lecturers, designers, and those operating heating installations, as well as authors of computer programs for thermal and hydraulic balancing of heating installations.
Advanced Thermodynamics Engineering, Second Edition is designed for readers who need to understand and apply the engineering physics of thermodynamic concepts. It employs a self-teaching format that reinforces presentation of critical concepts, mathematical relationships, and equations with concrete physical examples and explanations of applications to help readers apply principles to their own real-world problems. Less Mathematical/Theoretical Derivations More Focus on Practical Application Because both students and professionals must grasp theory almost immediately in this ever-changing electronic era, this book now completely in decimal outline format uses a phenomenological approach to problems, making advanced concepts easier to understand. After a decade teaching advanced thermodynamics, the authors infuse their own style and tailor content based on their observations as professional engineers, as well as feedback from their students. Condensing more esoteric material to focus on practical uses for this continuously evolving area of science, this book is filled with revised problems and extensive tables on thermodynamic properties and other useful information. The authors include an abundance of examples, figures, and illustrations to clarify presented ideas, and additional material and software tools are available for download. The result is a powerful, practical instructional tool that gives readers a strong conceptual foundation on which to build a solid, functional understanding of thermodynamics engineering.
This book investigates the role of gas networks in future low-carbon energy systems, and discusses various decarbonisation pathways, providing insights for gas network operators, developers, and policy makers. As more countries around the world move towards low-carbon energy systems and increase their exploitation of renewable energy sources, the use of natural gas and the associated infrastructure is expected to undergo a substantial transformation. As such there is a great uncertainty regarding the future role of gas networks and how they will be operated in coming years. The topics addressed include: Fundamentals of gas network operation The impact of variable renewable electricity generation on the operation and expansion of gas networks The impact of decarbonising heat supplies on gas networks Opportunities and challenges of utilising gas networks to transport alternative low-carbon gases such as bio-methane and hydrogen
This Brief deals with externally finned tubes, their geometric parameters, Reynolds number, dimensionless variables, friction factor, plain plate fins on round tubes, the effect of fin spacing, correlations, pain individually finned tubes, circular fins with staggered tubes, low integral fin tubes, wavy fin, enhanced plate fin geometries with round tubes, Offset Strip Fins, convex louver fins, louvered fin, perforated fin, mesh fin, vortex generator, enhanced circular fin geometries, spine or segmented fin, wire loop fin, flat extruded tubes with internal membranes, plate and fin automotive radiators, performance comparison, numerical simulation, advanced fin geometries, hydrophilic coatings, internally finned tubes and annuli, spirally fluted and indented tube, advanced internal fin geometries, and finned annuli. The book is ideal for professionals and researchers dealing with thermal management in devices.
This Brief deals with Performance Evaluation Criteria (PEC) for heat exchangers, single phase flow, objective function and constraints, algebraic formulation, constant flow rate, fixed flow area, thermal resistance, heat exchanger effectiveness, relations for St and f, finned tube banks, variations of PEC, reduced exchanger flow rate, exergy based PEC, PEC for two-phase heat exchangers, work consuming, work producing and heat actuated systems. The authors explain Performance Criteria of Enhanced Heat Transfer Surfaces-the ratio of enhanced performance to the basic performance-and its importance for Heat Transfer Enhancement and efficient thermal management in devices.
This Brief deals with heat transfer and friction in plate and fin extended heat transfer enhancement surfaces. It examines Offset-Strip Fin (OSF), Enhancement Principle, Analytically Based Models for j and f vs. Re, Transition from Laminar to Turbulent Region, Correlations for j and f vs. Re, Use of OSF with Liquids, Effect of Percent Fin Offset, Effect of Burred Edges, Louver fin, heat transfer and friction correlations, flow structure in the louver fin array, analytical model for heat transfer and friction, convex louver fin, wavy fin, 3D corrugated fin, perforated fin, pin fins and wire mesh, types of vortex generators, metal foam fin, plain fin, packings, numerical simulation of various types of fins.
The book presents an integrated planning concept for heat flows in production systems comprising various short term and long term related models. Detailed explanations about the modeling and implementation of all relevant system elements such as generic and specific machines types, technical building services (TBS), production planning and control aspects, heat storage units and (waste) heat designs follow. Due to resulting amounts of data, the concept foresees system level appropriate indicators and visualizations for a facilitatedevaluation of the model results. An application procedure embeds and describes all models as well.Three exemplary application cases demonstrate the applicability, including the manufacturing of shafts for automotive transmissions, a cooling water system and an academic learning environment.
This book compiles a variety of experimental data on blast waves. The book begins with an introductory chapter and proceeds to the topic of blast wave phenomenology, with a discussion on Rankine-Hugoniot equations and the Friedlander equation, used to describe the pressure-time history of a blast wave. Additional topics include arrival time measurement, the initiation of detonation by exploding wires, a discussion of TNT equivalency, and small scale experiments. Gaseous and high explosive detonations are covered as well. The topics and experiments covered were chosen based on the comparison of used scale sizes, from small to large. Each characteristic parameter of blast waves is analyzed and expressed versus scaled distance in terms of energy and mass. Finally, the appendix compiles a number of polynomial laws that will prove indispensable for engineers and researchers.
This book focuses on CFD (Computational Fluid Dynamics) techniques and the recent developments and research works in thermo-mechanics applications. It is devoted to the publication of basic and applied studies broadly related to this area. The chapters present the development of numerical methods, computational techniques, and case studies in the thermo-mechanics applications. They offer the fundamental knowledge for using CFD in real thermo-mechanics applications and complex flow problems through new technical approaches. Also, they discuss the steps in the CFD process and provide benefits and issues when using the CFD analysis in understanding of complicated flow phenomena and its use in the design process. The best practices for reducing errors and uncertainties in CFD analysis are also discussed. The presented case studies and development approaches aim to provide the readers, such as engineers and PhD students, the fundamentals of CFD prior to embarking on any real simulation project. Additionally, engineers supporting or being supported by CFD analysts can benefit from this book.
This thesis offers new insights into the fluid flow behavior of automotive centrifugal compressors operating under near-stall conditions. Firstly it discusses the validation of three-dimensional computational fluid dynamics (CFD) unsteady simulations against acoustic experimental measurements using an original procedure based on plane wave pressure decomposition. It then examines the configuration of the CFD cases, highlighting the key parameters needed for a successful calculation. Moreover, it describes both the compressor mean and unsteady flow field from best-efficiency to near-surge operating points. Lastly, it provides readers with explanations of the various phenomena that arise when the mass flow rate is reduced and the compressor is driven to poor and noisy performance. Written for students, researchers and professionals who want to improve their understanding of the complex fluid flow behavior in centrifugal compressors, the thesis offers valuable practical insights into reducing the acoustic emissions of turbochargers.
This thesis addresses a novel application of network modelling methodologies to power transformers. It develops a novel thermal model and compares its performance against that of a commercial computational fluid dynamics (CFD) code, as well as in experiments conducted in a dedicated setup built exclusively for this purpose. Hence, the thesis cross-links three of the most important aspects in high-quality research: model development, simulation and experimental validation. Network modelling is used to develop a tool to simulate the thermal performance of power transformers, widely acknowledged to be critical assets in electrical networks. After the strong de-regulation of electricity markets and de-carbonization of worldwide economies, electrical networks have been changing fast. Both asset owners and equipment manufacturers are being driven to develop increasingly accurate modelling capabilities in order to optimize either their operation or their design. Temperature is a critical parameter in every electric machine and power transformers are no exception. As such, the thesis is relevant for a wide range of stakeholders, from utilities to power transformer manufacturers, as well as researchers interested in the energy industry. It is written in straightforward language and employs a highly pedagogic approach, making it also suitable for non-experts.
This textbook introduces students to mass and energy balances and focuses on basic principles for calculation, design, and optimization as they are applied in industrial processes and equipment. While written primarily for undergraduate programs in chemical, energy, mechanical, and environmental engineering, the book can also be used as a reference by technical staff and design engineers interested who are in, and/or need to have basic knowledge of process engineering calculation. Concepts and techniques presented in this volume are highly relevant within many industrial sectors including manufacturing, oil/gas, green and sustainable energy, and power plant design. Drawing on 15 years of teaching experiences, and with a clear understanding of students' interests, the authors have adopted a very accessible writing style that includes many examples and additional citations to research resources from the literature, referenced at the ends of chapters.
This book provides an analysis of contemporary problems in combustion science, namely flame propagation, detonation and heterophaseous combustion based on the works of the author. The current problems in the area of gas combustion, as well as the methods allowing to calculate and estimate limiting conditions of ignition, and flame propagation on the basis of experimental results are considered. The book focuses on the virtually inaccessible works of Russian authors and will be useful for experienced students and qualified scientists in the area of experimental studies of combustion processes.
"Introduction to Skin Biothermomechanics and Thermal Pain" introduces the study of coupled bio-thermo-mechanical and neural behavior of skin tissue in response to thermal and mechanical loads. The research in this book focuses on the theoretical modeling and experimental investigation of heated skin tissue in order to provide a predictive framework for thermal therapies of diseased tissue in clinics. Furthermore, by developing solution tools, it focuses on changes in treatment parameters leading to more effective therapies. The book is intended for researchers and scientists in Bioengineering, Heat Transfer, Mechanics, Biology and Neurophysiology, as well as clinicians. Dr. Feng Xu is a research fellow at Harvard Medical School, Boston, MA, USA. Dr. Tianjian Lu is a professor at the School of Aerospace, Xi'an Jiaotong University, Xi'an, China. Dr. Xu and Dr. Lu are also affiliated with Biomedical Engineering and Biomechanics Center at Xi'an Jiaotong University, Xi'an, China.
The book deals with development of comprehensive computational models for simulating underground coal gasification (UCG). It starts with an introduction to the UCG process and process modelling inputs in the form of reaction kinetics, flow patterns, spalling rate, and transport coefficient that are elaborated with methods to generate the same are described with illustrations. All the known process models are reviewed, and relative merits and limitations of the modeling approaches are highlighted and compared. The book describes all the necessary steps required to determine the techno-economic feasibility of UCG process for a given coal reserve, through modeling and simulation.
This book focuses on Chemical Engineering and Processing, covering interdisciplinary innovation technologies and sciences closely related to chemical engineering, such as computer image analysis, modelling and IT. The book presents interdisciplinary aspects of chemical and biochemical engineering interconnected with process system engineering, process safety and computer science.
This book offers a comprehensive coverage of process simulation and flowsheeting, useful for undergraduate students of Chemical Engineering and Process Engineering as theoretical and practical support in Process Design, Process Simulation, Process Engineering, Plant Design, and Process Control courses. The main concepts related to process simulation and application tools are presented and discussed in the framework of typical problems found in engineering design. The topics presented in the chapters are organized in an inductive way, starting from the more simplistic simulations up to some complex problems. |
You may like...
Discovering Computers 2018 - Digital…
Misty Vermaat, Steven Freund, …
Paperback
Infinite Words, Volume 141 - Automata…
Dominique Perrin, Jean-Eric Pin
Hardcover
R4,065
Discovery Miles 40 650
Handbook of Research on Applied…
Snehanshu Saha, Abhyuday Mandal, …
Hardcover
R6,190
Discovery Miles 61 900
Geographical and Fingerprinting Data for…
Jordi Conesa, Antoni Perez-Navarro, …
Paperback
R3,042
Discovery Miles 30 420
|