![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Engineering thermodynamics
This book introduces the core concepts of the shock wave physics of condensed matter, taking a continuum mechanics approach to examine liquids and isotropic solids. The text primarily focuses on one-dimensional uniaxial compression in order to show the key features of condensed matter's response to shock wave loading. The first four chapters are specifically designed to quickly familiarize physical scientists and engineers with how shock waves interact with other shock waves or material boundaries, as well as to allow readers to better understand shock wave literature, use basic data analysis techniques, and design simple 1-D shock wave experiments. This is achieved by first presenting the steady one-dimensional strain conservation laws using shock wave impedance matching, which insures conservation of mass, momentum and energy. Here, the initial emphasis is on the meaning of shock wave and mass velocities in a laboratory coordinate system. An overview of basic experimental techniques for measuring pressure, shock velocity, mass velocity, compression and internal energy of steady 1-D shock waves is then presented. In the second part of the book, more advanced topics are progressively introduced: thermodynamic surfaces are used to describe equilibrium flow behavior, first-order Maxwell solid models are used to describe time-dependent flow behavior, descriptions of detonation shock waves in ideal and non-ideal explosives are provided, and lastly, a select group of current issues in shock wave physics are discussed in the final chapter.
Based on new information obtained on free microjets, this book explains the latest phenomena in flame evolution in the presence of a transverse acoustic field with round and plane propane microjet combustion. It gives an overview of recent experimental results on instability and dynamics of jets at low Reynolds numbers and provides the reader, step by step, with the milestones and recent advances in jet flow stability and combustion. Readers will also discover a clarification of the differences between top-hat and parabolic round and plane jet instability. Chapters demonstrate features of the interaction between jet and crossflow, and how experimental data testify to similarities of the perturbed flow patterns of laminar and turbulent round jets. A similar response of the jets to external acoustic oscillations is shown, as well as the peculiarities of the effect of a transverse acoustic field on downstream evolution of round and plane macro- and microjets. Basic features of round and plane, macro and micro jets' evolution affected by initial conditions at the nozzle outlet and by environmental perturbations are highlighted. Students of fluid mechanics will gain a solid foundation in hydrodynamic stability and combustion of subsonic jet flow and researchers will value the presentation of special aspects of instability and transition. The work treats both theoretical and practical facets, and it includes supplementary material such as PowerPoint multimedia notes based on results of laboratory scientific experiments.
This Brief addresses the phenomena of heat transfer and pressure drop in flow boiling in micro channels occurring in high heat flux electronic cooling. A companion edition in the Springer Brief Subseries on Thermal Engineering and Applied Science to "Critical Heat Flux in Flow Boiling in Micro channels," by the same author team, this volume is idea for professionals, researchers and graduate students concerned with electronic cooling.
Convection in Porous Media, 4th Edition, provides a user-friendly introduction to the subject, covering a wide range of topics, such as fibrous insulation, geological strata, and catalytic reactors. The presentation is self-contained, requiring only routine mathematics and the basic elements of fluid mechanics and heat transfer. The book will be of use not only to researchers and practicing engineers as a review and reference, but also to graduate students and others entering the field. The new edition features approximately 1,750 new references and covers current research in nanofluids, cellular porous materials, strong heterogeneity, pulsating flow, and more.
Solid Oxide Fuel Cells (SOFCs) operate at high temperatures allowing more fuel flexibility and also useful heat output and so increase total efficiency, but does give some interesting engineering challenges. Solid Oxide Fuels Cells: Facts and Figures provides clear and accurate data for a selection of SOFC topics from the specific details of Ni cermet anodes, chemical expansion in materials, and the measuring and modelling of mechanical stresses, to the broader scope of the history and present design of cells, to SOFC systems and the future of SOFC. Celebrating Ulf Bossel's work on Solid Oxide Fuel Cells, and especially his running of the European Fuel Cell Forum, Solid Oxide Fuels Cells: Facts and Figures covers important topics on the way including intermediate temperature fuel cells, metal supported fuel cells and both new materials and engineering solutions to some of the challenges of getting SOFC to market. The chapters are based on the special plenary talks given by some of the most respected and talented people in the field at the 2010 European SOFC Forum in Luzern and the title for this book comes from the report produced by Ulf for the IEA "Final Report on SOFC Data, Facts and Figures", Swiss Federal Office of Energy, Berne, 1992. The comprehensive nature of Solid Oxide Fuels Cells: Facts and Figures makes it a key resource of SOFC topics for students, lecturers, researchers and industry practitioners alike.
This text provides an introduction to the mathematical modeling and subsequent optimization of vehicle propulsion systems and their supervisory control algorithms. Automobiles are responsible for a substantial part of the world's consumption of primary energy, mostly fossil liquid hydrocarbons and the reduction of the fuel consumption of these vehicles has become a top priority. Increasing concerns over fossil fuel consumption and the associated environmental impacts have motivated many groups in industry and academia to propose new propulsion systems and to explore new optimization methodologies. This third edition has been prepared to include many of these developments. In the third edition, exercises are included at the end of each chapter and the solutions are available on the web.
The present Volume 4 of the successful monograh package "Multiphase Flow Dynamics"is devoted to selected Chapters of the multiphase fluid dynamics that are important for practical applications but did not find place in the previous volumes. The state of the art of the turbulence modeling in multiphase flows is presented. As introduction, some basics of the single phase boundary layer theory including some important scales and flow oscillation characteristics in pipes and rod bundles are presented. Then the scales characterizing the dispersed flow systems are presented. The description of the turbulence is provided at different level of complexity: simple algebraic models for eddy viscosity, simple algebraic models based on the Boussinesq hypothesis, modification of the boundary layer share due to modification of the bulk turbulence, modification of the boundary layer share due to nucleate boiling. The role of the following forces on the mathematical description of turbulent flows is discussed: the lift force, the lubrication force in the wall boundary layer, and the dispersion force. A pragmatic generalization of the k-eps models for continuous velocity field is proposed containing flows in large volumes and flows in porous structures. A Methods of how to derive source and sinks terms for multiphase k-eps models is presented. A set of 13 single- and two phase benchmarks for verification of k-eps models in system computer codes are provided and reproduced with the IVA computer code as an example of the application of the theory. This methodology is intended to help other engineers and scientists to introduce this technology step-by-step in their own engineering practice. In many practical application gases are solved in liquids under given conditions, released under other conditions and therefore affecting technical processes for good of for bad. Useful information on the solubility of oxygen, nitrogen, hydrogen and carbon dioxide in water under large interval of pressures and temperatures is collected, and appropriate mathematical approximation functions are provided. In addition methods for the computation of the diffusion coefficients are described. With this information solution and dissolution dynamics in multiphase fluid flows can be analyzed. For this purpose the non-equilibrium absorption and release on bubble, droplet and film surfaces under different conditions is mathematically described. A systematic set of internally consistent state equations for diesel fuel gas and liquid valid in broad range of changing pressure and temperature is provided. This new second edition includes various updates, extensions, improvements and corrections. In many practical application gases are solved in liquids under given conditions, released under other conditions and therefore affecting technical processes for good of for bad. Useful information on the solubility of oxygen, nitrogen, hydrogen and carbon dioxide in water under large interval of pressures and temperatures is collected, and appropriate mathematical approximation functions are provided. In addition methods for the computation of the diffusion coefficients are described. With this information solution and dissolution dynamics in multiphase fluid flows can be analyzed. For this purpose the non-equilibrium absorption and release on bubble, droplet and film surfaces under different conditions is mathematically described. A systematic set of internally consistent state equations for diesel fuel gas and liquid valid in broad range of changing pressure and temperature is provided. This new second edition includes various updates, extensions, improvements and corrections.
Multi-phase flows are part of our natural environment such as tornadoes, typhoons, air and water pollution and volcanic activities as well as part of industrial technology such as power plants, combustion engines, propulsion systems, or chemical and biological industry. The industrial use of multi-phase systems requires analytical and numerical strategies for predicting their behavior. .In its fourth extended edition the successful monograph package "Multiphase Flow Daynmics" contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations, providing a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics. In the present second volume the methods for describing the mechanical interactions in multiphase dynamics are provided. This fourth edition includes various updates, extensions, improvements and corrections. "The literature in the field of multiphase flows is numerous. Therefore, it is very important to have a comprehensive and systematic overview including useful numerical methods. The volumes have the character of a handbook and accomplish this function excellently. The models are described in detail and a great number of comprehensive examples and some cases useful for testing numerical solutions are included. These two volumes are very useful for scientists and practicing engineers in the fields of technical thermodynamics, chemical engineering, fluid mechanics, and for mathematicians with interest in technical problems. Besides, they can give a good overview of the dynamically developing, complex field of knowledge to students. This monograph is highly recommended," BERND PLATZER, ZAAM In the present second volume the methods for describing the mechanical interactions in multiphase dynamics are provided. This fourth edition includes various updates, extensions, improvements and corrections. "The literature in the field of multiphase flows is numerous. Therefore, it is very important to have a comprehensive and systematic overview including useful numerical methods. The volumes have the character of a handbook and accomplish this function excellently. The models are described in detail and a great number of comprehensive examples and some cases useful for testing numerical solutions are included. These two volumes are very useful for scientists and practicing engineers in the fields of technical thermodynamics, chemical engineering, fluid mechanics, and for mathematicians with interest in technical problems. Besides, they can give a good overview of the dynamically developing, complex field of knowledge to students. This monograph is highly recommended," BERND PLATZER, ZAAM "The literature in the field of multiphase flows is numerous. Therefore, it is very important to have a comprehensive and systematic overview including useful numerical methods. The volumes have the character of a handbook and accomplish this function excellently. The models are described in detail and a great number of comprehensive examples and some cases useful for testing numerical solutions are included. These two volumes are very useful for scientists and practicing engineers in the fields of technical thermodynamics, chemical engineering, fluid mechanics, and for mathematicians with interest in technical problems. Besides, they can give a good overview of the dynamically developing, complex field of knowledge to students. This monograph is highly recommended," BERND PLATZER, ZAAM
Theuseoflasersinmaterialsprocessinghasbecomewidespreadinrecent years,sothatanunderstandingofthenatureofheatandmasstransferin thisbranchofmoderntechnologyisofincreasingimportance. Theaimofthe authorsofthisbookistoconcentrateonthephysicalprocesses;thesecanbe developedfromamathematicalpointofview,orfromdirectexperimental- derivedobservation. Thetwoapproachesarecomplementary;eachcanprovide insightsandthesynthesisofthetwocanleadtoaverypowerfulunderstanding oftheprocessesinvolved. Mathematicalmodellingofphysicalprocesseshas hadanimportantroletoplayinthedevelopmentoftechnologyoverthe centuriesandparticularlysointhelastonehundredand?ftyyearsorso. Itcanbearguedthatitismoreimportanttodaythaneverbeforesincethe availabilityofhigh-speedcomputersallowsaccuratenumericalsimulationof industrialprocessesatafractionofthecostofthecorrespondingexperiments. Thisisoneaspectofmathematicalmodelling,highpro?leandmuchvalued, butitisnottheonlyone. Inthepastmathematicalmodellinghadtorelyonqualitativeinves- gation,veryspecialanalyticalsolutions,orinaccurateandtime-consuming calculationsperformedwithlittleinthewayoftabulatedormechanical assistance. Logtablesandsliderulesarestillrememberedbypeopleworking today,thoughtherearesurelyfewwhoregrettheirdisappearance. Thevalueanddistinctivefunctionofmethodsbasedontheanalytical approachisnowbecomingmuchclearer,nowthattheyarenolongerexpected toproducedetailedimitationsofwhathappensinrealexperimentsofind- trialprocesses,afunctionnowful?lledmostlybynumericalmethods,c- sideredbelow. Theemphasistodayisontheirabilitytocon?rmandextend ourunderstandingofthebasicphysicalmechanismsinvolvedintheprocesses of interest. These are essential for any intelligent use of numerical simulation. Theargumentaboutthevalueofteachingpeoplehowtodoarithmetic themselveswithouttheaidofacalculatorseemstobepassingintohistory, vi Preface butitisanimportantoneandprovidesasimpleanalogy. Ifsomeonedoes nothaveafeelingfornumbersandthewayarithmeticworks,theywillalltoo easilyfailtospotanerrorproducedbyamachine. Computersarenotinfallible -andneitherarethosewhobuildorprogramthem. Computersarenow takingonlessmundanemathematicaltasksandthesamecontroversiesare appearinginconnectionwithalgebraicmanipulation. Equally,andwitheven greaterpenaltiesintermsofcostintheeventoferrors,thesameconsiderations applytonumericalsimulationofmajorindustrialprocesses. Awarenessofthe analyticalsolutionscanbeinvaluableindistinguishingtherightfromthe wrong,i. e. forthepractitionertounderstandthebasisofthework,andto haveanideaofthekindsofoutcomesthatareplausible-andtorecognise thosewhicharenot. Thephrase"mathematicalmodelling"is,however,ambiguous,perhaps morenowthanithaseverbeen. Thereisanenormousamountofworkdone todayonsimulationbasedontheuseofverypowerfulcomputerprograms, anditisquitecorrectlyreferredtoasmathematicalmodelling. Theprograms aresometimesconstructedin-housebutareusuallycommercialpackages. This isanentirelyvalidapproachwithspeci?c(generallycommercial)objectives. Ingeneraltherearetwouses. Thedominantobjectiveisnumericalagreement withaparticularexperimentinthe?rstinstance,leadingtopredictivec- mercialuseinthesecondinstance. Thesecondobjectiveistheclari?cation ofphysicalmechanisms,aimedatthegenerationofunderstandingofcomplex interconnectedprocesses,ratherthantheexactreproductionofaparticular experiment. Itissometimesoverlookedthat,withsu?cientcare,anum- icalapproachisequallyvalidintheinvestigationofphysicalfundamentals. Numericalsimulationisnotacentraltopicofthisbook,butbecauseofits crucialimportancetoeachofthetwousestowhichnumericalmodellingcan beput,itisvitalthatthecomputationalbasisoftheworkshouldbec- pletelysound. Inaddition,thelevelofprocessdetailwhichcanbeconsidered bythenumericalapproachusuallyexceedswhatispossiblewiththeanaly- calapproachsigni?cantly,leavinglittlechoicebuttoreverttothenumerical treatmentwheninvestigatingtheinterconnectionsbetweenprocesses. Itis forthesereasonsthatthebookconcludeswithachapteroncomprehensive numericalsimulation. Inmanyways,theapproachadoptedhereiscomplementarytothemore phenomenologicalapproach. Itisalwaysimportantina?eldwhichhasvery directindustrialapplicationstobearinmindhowtechniquessuchasthose describedherewillbeused,butitisessentialnottolosesightofthef- damentals. Thereareserioussafetyimplications;therearecostimplications; therearemoralimplications;thereareconsiderationsoftheappropriateness ofthetechnologytotheapplicationunderconsideration. Aproperrespectfor alltheserequiresanunderstandingofthefundamentals. Wearealltoowellawarethatthisbookdoeslittlemorethanscratch thesurfaceoftheproblemsinvolvedinafundamentalunderstandingofthese phenomena. Ifwehaveprovidedideasandinformationthatcauseothersto Preface vii testthemexperimentallyorintellectually,agreewiththemordisputethem vigorously,anddevelopthemfurther,wewillconsiderthatwehaveachieved ouraim. Colchester April,2008 JohnDowden Contents 1MathematicsinLaserProcessing JohnDowden...1 1. 1 MathematicsanditsApplication...1 1. 2 FormulationinTermsofPartialDi?erentialEquations...3 1. 2. 1 LengthScales...3 1. 2. 2 ConservationEquationsandtheirGeneralisations...4 1. 2. 3 GoverningEquationsofGeneralised ConservationType...7 1. 2. 4 Gauss'is,however,ambiguous,perhaps morenowthanithaseverbeen. Thereisanenormousamountofworkdone todayonsimulationbasedontheuseofverypowerfulcomputerprograms, anditisquitecorrectlyreferredtoasmathematicalmodelling. Theprograms aresometimesconstructedin-housebutareusuallycommercialpackages. This isanentirelyvalidapproachwithspeci?c(generallycommercial)objectives. Ingeneraltherearetwouses. Thedominantobjectiveisnumericalagreement withaparticularexperimentinthe?rstinstance,leadingtopredictivec- mercialuseinthesecondinstance. Thesecondobjectiveistheclari?cation ofphysicalmechanisms,aimedatthegenerationofunderstandingofcomplex interconnectedprocesses,ratherthantheexactreproductionofaparticular experiment. Itissometimesoverlookedthat,withsu?cientcare,anum- icalapproachisequallyvalidintheinvestigationofphysicalfundamentals. Numericalsimulationisnotacentraltopicofthisbook,butbecauseofits crucialimportancetoeachofthetwousestowhichnumericalmodellingcan beput,itisvitalthatthecomputationalbasisoftheworkshouldbec- pletelysound. Inaddition,thelevelofprocessdetailwhichcanbeconsidered bythenumericalapproachusuallyexceedswhatispossiblewiththeanaly- calapproachsigni?cantly,leavinglittlechoicebuttoreverttothenumerical treatmentwheninvestigatingtheinterconnectionsbetweenprocesses. Itis forthesereasonsthatthebookconcludeswithachapteroncomprehensive numericalsimulation. Inmanyways,theapproachadoptedhereiscomplementarytothemore phenomenologicalapproach. Itisalwaysimportantina?eldwhichhasvery directindustrialapplicationstobearinmindhowtechniquessuchasthose describedherewillbeused,butitisessentialnottolosesightofthef- damentals. Thereareserioussafetyimplications;therearecostimplications; therearemoralimplications;thereareconsiderationsoftheappropriateness ofthetechnologytotheapplicationunderconsideration. Aproperrespectfor alltheserequiresanunderstandingofthefundamentals. Wearealltoowellawarethatthisbookdoeslittlemorethanscratch thesurfaceoftheproblemsinvolvedinafundamentalunderstandingofthese phenomena. Ifwehaveprovidedideasandinformationthatcauseothersto Preface vii testthemexperimentallyorintellectually,agreewiththemordisputethem vigorously,anddevelopthemfurther,wewillconsiderthatwehaveachieved ouraim. Colchester April,2008 JohnDowden Contents 1MathematicsinLaserProcessing JohnDowden...1 1. 1 MathematicsanditsApplication...1 1. 2 FormulationinTermsofPartialDi?erentialEquations...3 1. 2. 1 LengthScales...3 1. 2. 2 ConservationEquationsandtheirGeneralisations...4 1. 2. 3 GoverningEquationsofGeneralised ConservationType...7 1. 2. 4 Gauss'Theuseoflasersinmaterialsprocessinghasbecomewidespreadinrecent years,sothatanunderstandingofthenatureofheatandmasstransferin thisbranchofmoderntechnologyisofincreasingimportance. Theaimofthe authorsofthisbookistoconcentrateonthephysicalprocesses;thesecanbe developedfromamathematicalpointofview,orfromdirectexperimental- derivedobservation. Thetwoapproachesarecomplementary;eachcanprovide insightsandthesynthesisofthetwocanleadtoaverypowerfulunderstanding oftheprocessesinvolved. Mathematicalmodellingofphysicalprocesseshas hadanimportantroletoplayinthedevelopmentoftechnologyoverthe centuriesandparticularlysointhelastonehundredand?ftyyearsorso. Itcanbearguedthatitismoreimportanttodaythaneverbeforesincethe availabilityofhigh-speedcomputersallowsaccuratenumericalsimulationof industrialprocessesatafractionofthecostofthecorrespondingexperiments. Thisisoneaspectofmathematicalmodelling,highpro?leandmuchvalued, butitisnottheonlyone. Inthepastmathematicalmodellinghadtorelyonqualitativeinves- gation,veryspecialanalyticalsolutions,orinaccurateandtime-consuming calculationsperformedwithlittleinthewayoftabulatedormechanical assistance. Logtablesandsliderulesarestillrememberedbypeopleworking today,thoughtherearesurelyfewwhoregrettheirdisappearance. Thevalueanddistinctivefunctionofmethodsbasedontheanalytical approachisnowbecomingmuchclearer,nowthattheyarenolongerexpected toproducedetailedimitationsofwhathappensinrealexperimentsofind- trialprocesses,afunctionnowful?lledmostlybynumericalmethods,c- sideredbelow. Theemphasistodayisontheirabilitytocon?rmandextend ourunderstandingofthebasicphysicalmechanismsinvolvedintheprocesses of interest. These are essential for any intelligent use of numerical simulation. Theargumentaboutthevalueofteachingpeoplehowtodoarithmetic themselveswithouttheaidofacalculatorseemstobepassingintohistory, vi Preface butitisanimportantoneandprovidesasimpleanalogy. Ifsomeonedoes nothaveafeelingfornumbersandthewayarithmeticworks,theywillalltoo easilyfailtospotanerrorproducedbyamachine. Computersarenotinfallible -andneitherarethosewhobuildorprogramthem. Computersarenow takingonlessmundanemathematicaltasksandthesamecontroversiesare appearinginconnectionwithalgebraicmanipulation. Equally,andwitheven greaterpenaltiesintermsofcostintheeventoferrors,thesameconsiderations applytonumericalsimulationofmajorindustrialprocesses. Awarenessofthe analyticalsolutionscanbeinvaluableindistinguishingtherightfromthe wrong,i. e. forthepractitionertounderstandthebasisofthework,andto haveanideaofthekindsofoutcomesthatareplausible-andtorecognise thosewhicharenot. Thephrase"mathematicalmodelling"is,however,ambiguous,perhaps morenowthanithaseverbeen. Thereisanenormousamountofworkdone todayonsimulationbasedontheuseofverypowerfulcomputerprograms, anditisquitecorrectlyreferredtoasmathematicalmodelling. Theprograms aresometimesconstructedin-housebutareusuallycommercialpackages. This isanentirelyvalidapproachwithspeci?c(generallycommercial)objectives. Ingeneraltherearetwouses. Thedominantobjectiveisnumericalagreement withaparticularexperimentinthe?rstinstance,leadingtopredictivec- mercialuseinthesecondinstance. Thesecondobjectiveistheclari?cation ofphysicalmechanisms,aimedatthegenerationofunderstandingofcomplex interconnectedprocesses,ratherthantheexactreproductionofaparticular experiment. Itissometimesoverlookedthat,withsu?cientcare,anum- icalapproachisequallyvalidintheinvestigationofphysicalfundamentals. Numericalsimulationisnotacentraltopicofthisbook,butbecauseofits crucialimportancetoeachofthetwousestowhichnumericalmodellingcan beput,itisvitalthatthecomputationalbasisoftheworkshouldbec- pletelysound. Inaddition,thelevelofprocessdetailwhichcanbeconsidered bythenumericalapproachusuallyexceedswhatispossiblewiththeanaly- calapproachsigni?cantly,leavinglittlechoicebuttoreverttothenumerical treatmentwheninvestigatingtheinterconnectionsbetweenprocesses. Itis forthesereasonsthatthebookconcludeswithachapteroncomprehensive numericalsimulation. Inmanyways,theapproachadoptedhereiscomplementarytothemore phenomenologicalapproach. Itisalwaysimportantina?eldwhichhasvery directindustrialapplicationstobearinmindhowtechniquessuchasthose describedherewillbeused,butitisessentialnottolosesightofthef- damentals. Thereareserioussafetyimplications;therearecostimplications; therearemoralimplications;thereareconsiderationsoftheappropriateness ofthetechnologytotheapplicationunderconsideration. Aproperrespectfor alltheserequiresanunderstandingofthefundamentals. Wearealltoowellawarethatthisbookdoeslittlemorethanscratch thesurfaceoftheproblemsinvolvedinafundamentalunderstandingofthese phenomena. Ifwehaveprovidedideasandinformationthatcauseothersto Preface vii testthemexperimentallyorintellectually,agreewiththemordisputethem vigorously,anddevelopthemfurther,wewillconsiderthatwehaveachieved ouraim. Colchester April,2008 JohnDowden Contents 1MathematicsinLaserProcessing JohnDowden...1 1. 1 MathematicsanditsApplication...1 1. 2 FormulationinTermsofPartialDi?erentialEquations...3 1. 2. 1 LengthScales...3 1. 2. 2 ConservationEquationsandtheirGeneralisations...4 1. 2. 3 GoverningEquationsofGeneralised ConservationType...7 1. 2. 4 Gauss'sLaw...10 1. 3 BoundaryandInterfaceConditions...11 1. 3. 1 GeneralisedConservationConditions...11 1. 3. 2 TheKinematicConditioninFluidDynamics...13 1. 4 Fick'sLaws...15 1. 5 Electromagnetism...15 1. 5. 1 Maxwell'sEquations...15 1. 5. 2 Ohm'sLaw...18 References...19 2SimulationofLaserCutting WolfgangSchulz,MarkusNiessen,UrsEppelt,KerstinKowalick...21 2. 1 Introduction...22 2. 1. 1 PhysicalPhenomenaandExperimentalObservation...23 2. 2 MathematicalFormulationandAnalysis...26 2. 2. 1 TheOne-PhaseProblem...29 2. 2. 2 TheTwo-PhaseProblem...42 2. 2. 3 Three-PhaseProblem...51 2. 3 Outlook...64 2. 4 Acknowledgements...65 References...65 x Contents 3KeyholeWelding:TheSolidandLiquidPhases AlexanderKaplan...71 3. 1 HeatGenerationandHeatTransfer...71 3. 1. 1 Absorption...
Jiji's extensive understanding of how students think and learn, what they find difficult, and which elements need to be stressed is integrated in this work. He employs an organization and methodology derived from his experience and presents the material in an easy to follow form, using graphical illustrations and examples for maximum effect. The second, enlarged edition provides the reader with a thorough introduction to external turbulent flows, written by Glen Thorncraft. Additional highlights of note: Illustrative examples are used to demonstrate the application of principles and the construction of solutions, solutions follow an orderly approach used in all examples, systematic problem-solving methodology emphasizes logical thinking, assumptions, approximations, application of principles and verification of results. Chapter summaries help students review the material. Guidelines for solving each problem can be selectively given to students.
This book is a generalist textbook; it is designed for anybody interested in heat transmission, including scholars, designers and students. Two criteria constitute the foundation of Annaratone's books, including the present one. The first one consists of indispensable scientific rigor without theoretical exasperation. The inclusion in the book of some theoretical studies, even if admirable for their scientific rigor, would have strengthened the scientific foundation of this publication, yet without providing the reader with further applicable know-how. The second criterion is to deliver practical solution to operational problems. This criterion is fulfilled through equations based on scientific rigor, as well as a series of approximated equations, leading to convenient and practically acceptable solutions, and through diagrams and tables. When a practical case is close to a well defined theoretical solution, corrective factors are shown to offer simple and correct solutions to the problem.
This volume represents the proceedings of the First International Conference on S- tainability in Energy and Buildings, SEB'09, held in the City of Brighton and Hove in the United Kingdom, organised by KES International with the assistance of the World Renewable Energy Congress / Network, and hosted by the University of Brighton. KES International is a knowledge transfer organisation providing high-quality c- ference events and publishing opportunities for researchers. The KES association is a community consisting of several thousand research scientists and engineers who p- ticipate in KES activities. For over a decade KES has been a leader in the area of Knowledge Based and Intelligent information and Engineering Systems. Now KES is starting to make a contribution in the area of Sustainability and Renewable Energy with this first conference specifically on renewable energy and its application to - mestic and other buildings. Sustainability in energy and buildings is a topic of - creasing interest and importance on the world agenda. We therefore hope and intend that this first SEB event may grow and evolve into a conference series. KES International is a member of the World Renewable Energy Congress / N- work which is Chaired by Professor Ali Sayigh. We are grateful to Professor Sayigh for the collaboration and assistance of WREC/N in the organisation of SEB'09. We hope to continue to work with WREC/N in the future on projects of common interest.
November, 2008 Anna Schwarz, Johannes Janicka In the last thirty years noise emission has developed into a topic of increasing importance to society and economy. In ?elds such as air, road and rail traf?c, the control of noise emissions and development of associated noise-reduction techno- gies is a central requirement for social acceptance and economical competitiveness. The noise emission of combustion systems is a major part of the task of noise - duction. The following aspects motivate research: * Modern combustion chambers in technical combustion systems with low pol- tion exhausts are 5 - 8 dB louder compared to their predecessors. In the ope- tional state the noise pressure levels achieved can even be 10-15 dB louder. * High capacity torches in the chemical industry are usually placed at ground level because of the reasons of noise emissions instead of being placed at a height suitable for safety and security. * For airplanes the combustion emissions become a more and more important topic. The combustion instability and noise issues are one major obstacle for the introduction of green technologies as lean fuel combustion and premixed burners in aero-engines. The direct and indirect contribution of combustion noise to the overall core noise is still under discussion. However, it is clear that the core noise besides the fan tone will become an important noise source in future aero-engine designs. To further reduce the jet noise, geared ultra high bypass ratio fans are driven by only a few highly loaded turbine stages.
Combustion Engines Development nowadays is based on simulation, not only of the transient reaction of vehicles or of the complete driveshaft, but also of the highly unsteady processes in the carburation process and the combustion chamber of an engine. Different physical and chemical approaches are described to show the potentials and limits of the models used for simulation.
The emphasis of this book is on engineering aspects of fluid turbulence. The book explains for example how to tackle turbulence in industrial applications. It is useful to several disciplines, such as, mechanical, civil, chemical, aerospace engineers and also to professors, researchers, beginners, under graduates and post graduates. The following issues are emphasized in the book: - Modeling and computations of engineering flows: The author discusses in detail the quantities of interest for engineering turbulent flows and how to select an appropriate turbulence model; Also, a treatment of the selection of appropriate boundary conditions for the CFD simulations is given. - Modeling of turbulent convective heat transfer: This is encountered in several practical situations. It basically needs discussion on issues of treatment of walls and turbulent heat fluxes. - Modeling of buoyancy driven flows, for example, smoke issuing from chimney, pollutant discharge into water bodies, etc
Underground thermal energy storage (UTES) provide us with a flexible tool to combat global warming through conserving energy while utilizing natural renewable energy resources. Primarily, they act as a buffer to balance fluctuations in supply and demand of low temperature thermal energy. Underground Thermal Energy Storage provides an comprehensive introduction to the extensively-used energy storage method. Underground Thermal Energy Storage gives a general overview of UTES from basic concepts and classifications to operation regimes. As well as discussing general procedures for design and construction, thermo-hydro geological modeling of UTES systems is explained. Finally, current real life data and statistics are include to summarize major global developments in UTES over the past decades. The concise style and thorough coverage makes Underground Thermal Energy Storage a solid introduction for students, engineers and geologists alike.
This book provides a cohesive overview of carbon concentrating mechanism (CCM) of photosynthetic microorganisms such as cyanobacteria and microalgae. This unique mechanism is by far the most spectacular physiological process in algal growth and productivity. Due to this fact, the study of CCM has captivated phycologists, algal molecular and cellular biologists, botanists, agriculturalists, crop growers, and most recently algal biofuel researchers, around the world. In the brief, the authors draw a contextual in-depth overview, on the basis of the latest findings, to develop an account of the core concepts regarding state-of-the-art of CCM. Subsequent chapters use this account to explore carbon concentrating mechanism of cyanobacteria and microalgae. They highlight the concise summaries of cutting-edge research and integrated industrial applications of photosynthetic microorganism based CO2 mitigation system, across a wide spectrum of energy and environment. The brief also presents sustainable perspectives of carbon concentrating mechanism in the context of current global energy and environmental challenges.
This book is about optimization techniques and is subdivided into two parts. In the first part a wide overview on optimization theory is presented. Optimization is presented as being composed of five topics, namely: design of experiment, response surface modeling, deterministic optimization, stochastic optimization, and robust engineering design. Each chapter, after presenting the main techniques for each part, draws application oriented conclusions including didactic examples. In the second part some applications are presented to guide the reader through the process of setting up a few optimization exercises, analyzing critically the choices which are made step by step, and showing how the different topics that constitute the optimization theory can be used jointly in an optimization process. The applications which are presented are mainly in the field of thermodynamics and fluid dynamics due to the author's background.
This 2nd edition volume of Modern Gas-Based Temperature and Pressure Measurements follows the first publication in 1992. It collects a much larger set of information, reference data, and bibliography in temperature and pressure metrology of gaseous substances, including the physical-chemical issues related to gaseous substances. The book provides solutions to practical applications where gases are used in different thermodynamic conditions. Modern Gas-Based Temperature and Pressure Measurements, 2nd edition is the only comprehensive survey of methods for pressure measurement in gaseous media used in the medium-to-low pressure range closely connected with thermometry. It assembles current information on thermometry and manometry that involve the use of gaseous substances which are likely to be valid methods for the future. As such, it is an important resource for the researcher. This edition is updated through the very latest scientific and technical developments of gas-based temperature and pressure measurements using thermometry and manometry, and brings all of the techniques together under one cover. This book fills the gap in international literature, as no other recently published book provides a comprehensive survey for gaseous media closely connected with thermometry. Updates in this new edition include revised appendices and new chapters on Mutual Recognition Agreement of the Comite International des Poids et Mesures and its main applications, and developments in the European Metrology Society.
Advanced Thermal Management Materials provides a comprehensive and hands-on treatise on the importance of thermal packaging in high performance systems. These systems, ranging from active electronically-scanned radar arrays to web servers, require components that can dissipate heat efficiently. This requires materials capable of dissipating heat and maintaining compatibility with the packaging and dye. Coverage includes all aspects of thermal management materials, both traditional and non-traditional,with an emphasis on metal based materials. An in-depth discussion of properties and manufacturing processes, and current applications are provided. Also presented are a discussion of the importance of cost, performance and reliability issues when making implementation decisions, product life cycle developments, lessons learned and future directions.
Transport phenomena problems that occur in engineering and physics are often multi-dimensional and multi-phase in character. When taking recourse to numerical methods the spectral method is particularly useful and efficient. The book is meant principally to train students and non-specialists to use the spectral method for solving problems that model fluid flow in closed geometries with heat or mass transfer. To this aim the reader should bring a working knowledge of fluid mechanics and heat transfer and should be readily conversant with simple concepts of linear algebra including spectral decomposition of matrices as well as solvability conditions for inhomogeneous problems. The book is neither meant to supply a ready-to-use program that is all-purpose nor to go through all manners of mathematical proofs. The focus in this tutorial is on the use of the spectral methods for space discretization, because this is where most of the difficulty lies. While time dependent problems are also of great interest, time marching procedures are dealt with by briefly introducing and providing a simple, direct, and efficient method. Many examples are provided in the text as well as numerous exercises for each chapter. Several of the examples are attended by subtle points which the reader will face while working them out. Some of these points are deliberated upon in endnotes to the various chapters, others are touched upon in the book itself.
Despite scientific evidence that business-as-usual is unsustainable, there is a huge and widespread inertia to 'greening' the planet. Warming to Ecocide considers climate change from a thermodynamic perspective and asks whether market-driven organisations have carried us to the point of no return through the flawed economics of endless growth. Warming to Ecocide begins by exploring the thermodynamic origins of climate change. It demonstrates that equilibrium thermodynamics can provide full explanations for the basic processes of life such as photosynthesis and metabolism, and that non-equilibrium thermodynamics is close to providing an explanation for how life started. Armed with a solid appreciation of the power of thermodynamics, the second half of Warming to Ecocide discusses whether multinational corporations have convinced the public that climate change is insignificant and thereby neutered any all attempts by governments to espouse environmentally-friendly policies. It then goes on to offer strategies whereby mankind may avoid propelling the global average temperature above the pre-industrial level by more than 2 DegreesC, which scientists view as a threshold presaging catastrophic run-away processes.
These lecture notes provide a fresh approach to investigating singularly perturbed systems using asymptotic and geometrical techniques. It gives many examples and step-by-step techniques, which will help beginners move to a more advanced level. Singularly perturbed systems appear naturally in the modelling of many processes that are characterized by slow and fast motions simultaneously, for example, in fluid dynamics and nonlinear mechanics. This book's approach consists in separating out the slow motions of the system under investigation. The result is a reduced differential system of lesser order. However, it inherits the essential elements of the qualitative behaviour of the original system. Singular Perturbations differs from other literature on the subject due to its methods and wide range of applications. It is a valuable reference for specialists in the areas of applied mathematics, engineering, physics, biology, as well as advanced undergraduates for the earlier parts of the book, and graduate students for the later chapters.
This textbook takes an interdisciplinary approach to the subject of thermodynamics and is therefore suitable for undergraduates in chemistry, physics and engineering courses. The book is an introduction to phenomenological thermodynamics and its applications to phase transitions and chemical reactions, with some references to statistical mechanics. It strikes the balance between the rigorousness of the Callen text and phenomenological approach of the Atkins text. The book is divided in three parts. The first introduces the postulates and laws of thermodynamics and complements these initial explanations with practical examples. The second part is devoted to applications of thermodynamics to phase transitions in pure substances and mixtures. The third part covers thermodynamic systems in which chemical reactions take place. There are some sections on more advanced topics such as thermodynamic potentials, natural variables, non-ideal mixtures and electrochemical reactions, which make this book of suitable also to post-graduate students.
Entransy in Phase-Change Systems summarizes recent developments in the area of entransy, especially on phase-change processes. This book covers new developments in the area including the great potential for energy saving for process industries, decreasing carbon dioxide emissions, reducing energy bills and improving overall efficiency of systems. This concise volume is an ideal book for engineers and scientists in energy-related industries. |
![]() ![]() You may like...
Biological DNA Sensor - The Impact of…
Ken Ishii, Choon Kit Tang
Hardcover
Democratizing Cryptography - The Work of…
Rebecca Slayton
Hardcover
Schaum's Outline of Differential…
Richard Bronson, Gabriel B Costa
Paperback
R502
Discovery Miles 5 020
Evaluating Websites and Web Services
Denis Yannacopoulos, Panagiotis Manolitzas, …
Hardcover
R5,871
Discovery Miles 58 710
James Serrin. Selected Papers - Volume 2
Patrizia Pucci, Vicentiu D. Radulescu, …
Hardcover
R4,640
Discovery Miles 46 400
|