![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Engineering thermodynamics
Internal combustion engines (ICE) still have potential for substantial improvements, particularly with regard to fuel efficiency and environmental compatibility. In order to fully exploit the remaining margins, increasingly sophisticated control systems have to be applied. This book offers an introduction to cost-effective model-based control-system design for ICE. The primary emphasis is put on the ICE and its auxiliary devices. Mathematical models for these processes are developed and solutions for selected feedforward and feedback control-problems are presented. The discussions concerning pollutant emissions and fuel economy of ICE in automotive applications constantly intensified since the first edition of this book was published. Concerns about the air quality, the limited resources of fossil fuels and the detrimental effects of greenhouse gases exceedingly spurred the interest of both the industry and academia in further improvements. The most important changes and additions included in this second edition are: restructured and slightly extended section on superchargers, short subsection on rotational oscillations and their treatment on engine test-benches, complete section on modeling, detection, and control of engine knock, improved physical and chemical model for the three-way catalytic converter, new methodology for the design of an air-to-fuel ratio controller, short introduction to thermodynamic engine-cycle calculation and corresponding control-oriented aspects.
This SpringerBrief offers careful assessments of the appropriateness and effectiveness of currently available methodologies for fire flow. It explains the water supply requirements for firefighting including rate of flow, the residual pressure required at that flow, and the duration that is necessary to control a major fire in a specific structure. First reviewing existing fire flow calculation methodologies in the U.S. and globally, the authors determine the new information necessary to validate the existing fire flow calculation methodologies. After identifying 19 methods from the U.S., UK, France, Germany, the Netherlands, New England, and Canada, two types of methods are evaluated: those for building planning based on fire and building code requirements, and those for on-scene fire service use. Building planning methods are also examined, including an explanation of the range of building variables that determine fire flow. A survey form for fire departments is provided to help fire departments identify key predictive features based on construction and building parameters. Researchers and professionals in fire engineering will find the recommendations in Evaluation of Fire Flow Methodologies valuable.
The high temperatures generated in gases by shock waves give rise to physical and chemical phenomena such as molecular vibrational excitation, dissociation, ionization, chemical reactions and inherently related radiation. In continuum regime, these processes start from the wave front, so that generally the gaseous media behind shock waves may be in a thermodynamic and chemical non-equilibrium state. This book presents the state of knowledge of these phenomena. Thus, the thermodynamic properties of high temperature gases, including the plasma state are described, as well as the kinetics of the various chemical phenomena cited above. Numerous results of measurement and computation of vibrational relaxation times, dissociation and reaction rate constants are given, and various ionization and radiative mechanisms and processes are presented. The coupling between these different phenomena is taken into account as well as their interaction with the flow-field. Particular points such as the case of rarefied flows and the inside of the shock wave itself are also examined. Examples of specific non-equilibrium flows are given, generally corresponding to those encountered during spatial missions or in shock tube experiments.
The analysis of the reliability and availability of power plants is frequently based on simple indexes that do not take into account the criticality of some failures used for availability analysis. This criticality should be evaluated based on concepts of reliability which consider the effect of a component failure on the performance of the entire plant. System reliability analysis tools provide a root-cause analysis leading to the improvement of the plant maintenance plan. Taking in view that the power plant performance can be evaluated not only based on thermodynamic related indexes, such as heat-rate, Thermal Power Plant Performance Analysis focuses on the presentation of reliability-based tools used to define performance of complex systems and introduces the basic concepts of reliability, maintainability and risk analysis aiming at their application as tools for power plant performance improvement, including: * selection of critical equipment and components, * definition of maintenance plans, mainly for auxiliary systems, and * execution of decision analysis based on risk concepts. The comprehensive presentation of each analysis allows future application of the methodology making Thermal Power Plant Performance Analysis a key resource for undergraduate and postgraduate students in mechanical and nuclear engineering.
Bridging the gap between concepts derived from Second Law of Thermodynamics and their application to Engineering practice, the property exergy and the exergy balance can be a tool for analyzing and improving the performance of energy conversion processes. With the exergy analysis it is possible to evaluate the performance of energy conversion processes not only on a thermodynamics basis but also by including production costs and environmental aspects and impacts of the studied processes. This comprehensive approach of the use of energy has, as one of the most important feature, the identification of sustainable ways of energy resources utilization. Based on the fundamentals of the exergy concept, its calculation, graphical representations and exergy balances evaluation, Exergy: Production Cost And Renewability describes the application of detailed exergy and thermoeconomic analysis to power plants and polygeneration systems, petroleum production and refining plants (including hydrogen production), chemical plants, biofuel production routes, combined production of ethanol and electricity, aircraft systems design, environmental impact mitigation processes and human body behavior. The presented case studies aim at providing students, researchers and engineers with guidelines to the utilization of the exergy and thermoeconomic analysis to model, simulate and optimize real processes and industrial plants.
The recently published book by the author, "Engineering Heat Transfer", already dealt with exact computation of heat exchangers and tube banks. In design c- putationthisisaccomplishedviacorrectivefactors;thelattermakesitpossibleto compute the actual mean temperature difference by starting from the logarithmic onerelativeto?uidsinparallel?oworcounter?ow. As far as veri?cation computation is concerned, corrective factors were int- ducedtocomputeacertaincharacteristicfactorcorrectly,asisfundamentalforthis typeofcomputation. Basedontheabove,theauthordecidedtoinvestigatefurther,re?ne,andwiden thistopic:theoutcomeofthisworkhasresultedinthishandbook. Newtypesofexchangerswereexamined;thecalculationwasre?nedtoproduce practicallyexactvaluesforthefactors. Thescopeoftheinvestigationwasincreased by widening the range of the starting factors. Furthermore, a greater number of valuestobeincludedinthetableswasconsidered. Finally,afewcharacteristicsof certainvaluesofthecorrectivefactorswerehighlighted. The?rstsectionisanintroduction;itsummarizesthefundamentalcriteriaofheat transferandproceedstoillustratethebehaviorof?uidsinbothparallelandcounter ?ow. Italsoshowshowtocomputethemeanisobaricspeci?cheatforsome? uids; itillustratesthesigni?canceofdesigncomputationandveri?cationcomputation. In addition,itillustrateshowtoproceedwithheatexchangersandtubebankstocarry outbothdesignandveri?cationcomputationcorrectly. AppendixAthenincludes36tablesasareferencefordesigncomputation,The tablescontainthecorrectivefactorsrequiredtoobtaintheactualmeantemperature differencebystartingfromthemeanlogarithmictemperaturedifferencerelativeto ?uidsinparallel?oworcounter?ow. Finally, Appendix B includes 35 tables for veri?cation computation. As far as heatexchangers areconcerned, itshowsthevaluesoffactor ? whichisrequired forthistypeofcomputation. Thevaluesofthecorrectivefactorsforcoilsandtube banksarealsopresented. Milano,Italy DonatelloAnnaratone v Notation c=speci?cheat(J/kgK) d=diameter(m) E=ef?ciencyfactor h=enthalpy(kJ/kg) k=thermalconductivity(W/mK) M=mass?owrate(kg/s) m=massmoisturepercentage(%) q=heatpertimeunit(W) 2 S=surface(m ) ? t=temperature( C) 2 U=overallheattransfercoef?cient(W/m K) x=thickness(m) 2 ? =heattransfercoef?cient(W/m K) ? =characteristicfactor ? =characteristicfactor ? =ef?ciency ? =correctivefactor ? =correctivefactor ? =characteristicfactor ? ?t =temperaturedifference( C) vii viii Notation Superscripts =heating?uid =heated?uid Subscripts c=counter?ow e=exchanger i=inside l=logarithmic m=mean o=outside p=constantpressure(isobaric),parallel?ow w=wall 1=inlet(forheatingorheated?uid) 2=outlet(forheatingorheated?uid) Contents 1 Introduction to Computation ...1 1. 1 GeneralConsiderations ...1 1. 2 MeanIsobaricSpeci?cHeat ...3 1. 2. 1 WaterandSuperheatedSteam ...4 1. 2. 2 AirandOtherGases...4 2 Design Computation...7 2. 1 Introduction ...7 2. 2 FluidsinParallelFloworinCounterFlow ...8 2. 3 TheMeanDifferenceinTemperatureinReality ...12 2. 3. 1 FluidsinCrossFlow...14 2. 3. 2 HeatExchangers...15 2. 3. 3 Coils...19 2. 3. 4 TubeBankswithVariousPassagesoftheExternalFluid . 21 3 Veri?cation Computation ...25 3. 1 Introduction ...25 3. 2 FluidsinParallelFloworinCounterFlow ...25 3. 3 Factor?inRealCases...33 3. 3. 1 FluidswithCrossFlow ...
Applied Data Analysis and Modeling for Energy Engineers and Scientists fills an identified gap in engineering and science education and practice for both students and practitioners. It demonstrates how to apply concepts and methods learned in disparate courses such as mathematical modeling, probability,statistics, experimental design, regression, model building, optimization, risk analysis and decision-making to actual engineering processes and systems. The text provides a formal structure that offers a basic, broad and unified perspective,while imparting the knowledge, skills and confidence to work in data analysis and modeling. This volume uses numerous solved examples, published case studies from the author's own research, and well-conceived problems in order to enhance comprehension levels among readers and their understanding of the "processes"along with the tools.
This is a work in four parts, dealing with the mechanics and thermodynamics of materials with memory, including properties of the dynamical equations which describe their evolution in time under varying loads. The first part is an introduction to Continuum Mechanics with sections dealing with classical Fluid Mechanics and Elasticity, linear and non-linear. The second part is devoted to Continuum Thermodynamics, which is used to derive constitutive equations of materials with memory, including viscoelastic solids, fluids, heat conductors and some examples of non-simple materials. In part three, free energies for materials with linear memory constitutive relations are comprehensively explored. The new concept of a minimal state is also introduced. Formulae derived over the last decade for the minimum and related free energies are discussed in depth. Also, a new single integral free energy which is a functional of the minimal state is analyzed in detail. Finally, free energies for examples of non-simple materials are considered. In the final part, existence, uniqueness and stability results are presented for the integrodifferential equations describing the dynamical evolution of viscoelastic materials. A new approach to these topics, based on the use of minimal states rather than histories, is discussed in detail. There are also chapters on the controllability of thermoelastic systems with memory, the Saint-Venant problem for viscoelastic materials and on the theory of inverse problems.
This book provides a solid foundation in the principles of heat and mass transfer and shows how to solve problems by applying modern methods. The basic theory is developed systematically, exploring in detail the solution methods to all important problems. The revised second edition incorporates state-of-the-art findings on heat and mass transfer correlations. The book will be useful not only to upper- and graduate-level students, but also to practicing scientists and engineers. Many worked-out examples and numerous exercises with their solutions will facilitate learning and understanding, and an appendix includes data on key properties of important substances.
This book fills the need for a practical reference for all scientists and graduate students who are seeking to define a mathematical model for Solid Oxide Fuel Cell (SOFC) simulation. Structured in two parts, part one presents the basic theory, and the general equations describing SOFC operation phenomena. Part two deals with the application of the theory to practical examples, where different SOFC geometries, configurations, and different phenomena are analyzed in detail.
Focuses on the methods of solving incompressible flows, although flows with significant property change due to heat transfer are also covered. Covers turbulent flow simulation, unstructured mesh, and two-phase flows. Uses a practical approach for CFD to build a foundation for those planning to work on low-speed flows. Provides detailed steps of solving 1-D and 2-D flow examples and MATLAB (R) codes of important algorithms. Includes numerous real-word examples and worked problems.
Overthe nearly 20 years of Kelvin probe force microscopy, an increasing interest in the technique and its applications has developed. This book gives a concise introduction into the method and describes various experimental techniques. Surface potential studies on semiconductor materials, nanostructures and devices are described, as well as application to molecular and organic materials. The current state of surface potential at the atomic scale is also considered. This book presents an excellent introduction for the newcomer to this field, as much as a valuable resource for the expert."
This book is a collection of papers dedicated to Professor Dr. Krzysztof Wilman 'ski onthe occasionof his 70thbirthday. The bookcontains25 cont- butions of his friends and colleagues. He met the invited authors at di?erent stagesofhisscienti?ccareerofalmost50yearssothatthecontributionscover a wide range of ?elds stemming from continuum mechanics. This happened at numerous universities and research institutes where he both taught and did his excellent research work, e. g. * the University of Lod ' ' z, Poland, where he studied Civil Engineering and did his diploma work onElastic-plastic thermal stresses in a thin ring and where he graduated with his PhD-work in the ?eld of Continuous Models of Discrete Systems, * theInstituteofFundamentalTechnologicalResearchofthePolishAcademy of Sciences in Warsaw, where he got his habilitation in the ?eld Non- cal Continuum Mechanics and where he was the head of the Research Group Continuum Thermodynamics. He collaborated with W. Fiszdon, L. Turski, Cz. Wozniak, H. Zorski and others on the topics axiomatic and kinetic foundations of continuumthermodynamics, theory of mixtures, phase transformations in solids, * theJohnsHopkinsUniversityinBaltimore,US,wherehe workedtogether, e. g. with C. Truesdell, J. Ericksen and W. Williams, on axiomatic and kinetic foundations of continuum thermodynamics, * the College of Engineering, University of Baghdad, Iraq, where he was a Visiting Professor and taught many courses, * theUniversityofPaderbornandtheTechnicalUniversityBerlin,Germany, wherehe had an Alexander von Humboldt Stipend andcontractsasa V- iting Professor (works on a model of crystallizing polymers, on a nonlocal thermodynamicmodelofplasmasandelectrolytesandonmartensiticphase transformations), * the Wissenschaftskolleg zu Berlin (Institute for Advanced Studies), G- many,whereheworkedtogetherwithe. g. I.
This book provides a profound understanding, which physical processes and mechanisms cause the heat transfer in composite and cellular materials. It shows models for all important classes of composite materials and introduces into the latest advances. In three parts, the book covers Composite Materials (Part A), Porous and Cellular Materials (Part B) and the appearance of a conjoint solid phase and fluid aggregate (Part C).
Thermal Separation Technology is a key discipline for many industries and lays the engineering foundations for the sustainable and economic production of high-quality materials. This book provides fundamental knowledge on this field and may be used both in university teaching and in industrial research and development. Furthermore, it is intended to support professional engineers in their daily efforts to improve plant efficiency and reliability. Previous German editions of this book have gained widespread recognition. This first English edition will now make its content available to the international community of students and professionals. In the first chapters of the book the fundamentals of thermodynamics, heat and mass transfer, and multiphase flow are addressed. Further chapters examine in depth the different unit operations distillation and absorption, extraction, evaporation and condensation, crystallization, adsorption and chromatography, and drying, while the closing chapter provides valuable guidelines for a conceptual process development.
Nanofins Science and Technology describes the heat transfer effectiveness of polymer coolants and their fundamental interactions with carbon nanotube coatings that act as nanofins. Heat transfer at micro/nano-scales has attracted significant attention in contemporary literature. This has been primarily driven by industrial requirements where significant decrease in the size of electronic devices/chips with concomitant enhancement in the heat flux have caused challenging needs for cooling of these platforms. With quantum effects kicking in, traditional cooling techniques need to be replaced with more effective technologies. A promising technique is to enhance heat transfer by surface texturing using nanoparticle coatings or engineered nanostructures. These nanostructures are termed as nanofins because they augment heat transfer by a combination of surface area enhancement as well as liquid-solid interactions at the molecular scale.
Christian Rockenhauser adresses phase formation and cation interdiffusion of the GdxCe1-xO2-x/2-and SmxCe1-xO2-x/2-material systems at temperatures ranging from 970 to 1270 DegreesC. Diffusion couples with CeO2/Sm2O3 and CeO2/Gd2O3 interfaces were fabricated for the investigations. The resulting reaction phases were investigated utilizing transmission electron microscopy (TEM) and allow conclusions regarding the phase diagrams in the examined temperature range. A miscibility gap can be ruled out for GdxCe1-xO2-x/2 across the whole composition range. Cation interdiffusion coefficients were determined for both material systems by measuring and evaluating concentration profiles at the material interfaces. The activation enthalpies for interdiffusion were calculated using the temperature dependence of the interdiffusion coefficients. The study for the first time compiles comprehensively the previous results regarding the phase diagrams of the two material systems since 1923.
This monograph introduces a numerical computational methodology for thermal performance modeling of cross-flow heat exchangers, with applications in chemical, refrigeration and automobile industries. This methodology allows obtaining effectiveness-number of transfer units (e-NTU) data and has been used for simulating several standard and complex flow arrangements configurations of cross-flow heat exchangers. Simulated results have been validated through comparisons with results from available exact and approximate analytical solutions. Very accurate results have been obtained over wide ranges of NTU and C* values in all cases. The proposed procedure constitutes a useful research tool for both theoretical and experimental studies of cross-flow heat exchangers. The following are the unique features of the book: - The monograph includes the computational code named HETE (Heat Exchanger Thermal Effectiveness) in Chapter 5. A version of this code is available for downloading. - The computational procedure could be used for reducing experimental data using the effectiveness - NTU (e-NTU) method in research and industrial laboratories. - Even after more than one century in heat exchanger research, the search for new flow arrangements with higher effectiveness still is an unsolved problem. The present methodology could be a useful tool in pursuing that goal.
This book equips a reader with knowledge necessary for critical analysis of innovations in electric arc furnaces and helps to select the most effective ones and for their successful implementation. The book also covers general issues related to history of development, current state and prospects of steelmaking in Electric Arc Furnaces. Therefore, it can be useful for everybody who studies metallurgy, including students of colleges and universities. The modern concepts of mechanisms of Arc Furnace processes are discussed in the book at the level sufficient to solve practical problems: To help readers lacking knowledge required in the field of heat transfer as well as hydro-gas dynamics, it contains several chapters which provide the required minimum of information in these fields of science. In order to better assess different innovations, the book describes experience of the application of similar innovations in open-hearth furnaces and oxygen converters. Some promising ideas on key issues regarding intensification of the heat, which are of interest for developers of new processes and equipment for Electric Arc Furnaces, are also the concern of the book It should be noted, that carrying out the simplified calculations as distinct from using "off the shelf" programs greatly promotes comprehensive understanding of physical basics of processes and effects produced by various factors. This book gives numerous examples of such calculations performed by means of simplified methods and formulas. Getting familiar with material in this book will allow the reader to perform required calculations on his / her own without any difficulties.
Jiji's extensive understanding of how students think and learn, what they find difficult, and which elements need to be stressed is integrated in this work. He employs an organization and methodology derived from his experience and presents the material in an easy to follow form, using graphical illustrations and examples for maximum effect. The second, enlarged edition provides the reader with a thorough introduction to external turbulent flows, written by Glen Thorncraft. Additional highlights of note: Illustrative examples are used to demonstrate the application of principles and the construction of solutions, solutions follow an orderly approach used in all examples, systematic problem-solving methodology emphasizes logical thinking, assumptions, approximations, application of principles and verification of results. Chapter summaries help students review the material. Guidelines for solving each problem can be selectively given to students.
This short primer provides a concise and tutorial-style introduction to transport phenomena in Newtonian fluids , in particular the transport of mass, energy and momentum. The reader will find detailed derivations of the transport equations for these phenomena, as well as selected analytical solutions to the transport equations in some simple geometries. After a brief introduction to the basic mathematics used in the text, Chapter 2, which deals with momentum transport, presents a derivation of the Navier-Stokes-Duhem equation describing the basic flow in a Newtonian fluid. Also provided at this stage are the derivations of the Bernoulli equation, the pressure equation and the wave equation for sound waves. The boundary layer, turbulent flow and flow separation are briefly reviewed. Chapter 3, which addresses energy transport caused by thermal conduction and convection, examines a derivation of the heat transport equation. Finally, Chapter 4, which focuses on mass transport caused by diffusion and convection, discusses a derivation of the mass transport equation.
This book describes thermal plant simulation, that is, dynamic simulation of plants which produce, exchange and otherwise utilize heat as their working medium. Directed at chemical, mechanical and control engineers involved with operations, control and optimization and operator training, the book gives the mathematical formulation and use of simulation models of the equipment and systems typically found in these industries. The author has adopted a fundamental approach to the subject. The initial chapters provide an overview of simulation concepts and describe a suitable computer environment. Reviews of relevant numerical computation methods and fundamental thermodynamics are followed by a detailed examination of the basic conservation equations. The bulk of the book is concerned with development of specific simulation models. Care is taken to trace each model derivation path from the basic underlying physical equations, explaining simplifying and restrictive assumptions as they arise and relating the model coefficients to the physical dimensions and physical properties of the working materials. Numerous photographs of real equipment complement the text and most models are illustrated by numerical examples based on typical real plant operations.
Thermomechanics and Infra-Red Imaging represents one of eight volumes of technical papers presented at the Society for Experimental Mechanics Annual Conference on Experimental and Applied Mechanics, held at Uncasville, Connecticut, June 13-16, 2011. The full set of proceedings also includes volumes on Dynamic Behavior of Materials, Mechanics of Biological Systems and Materials, Mechanics of Time-Dependent Materials and Processes in Conventional and Multifunctional Materials, MEMS and Nanotechnology; Optical Measurements, Modeling and, Metrology; Experimental and Applied Mechanics, and Engineering Applications of Residual Stress.
Underground thermal energy storage (UTES) provide us with a flexible tool to combat global warming through conserving energy while utilizing natural renewable energy resources. Primarily, they act as a buffer to balance fluctuations in supply and demand of low temperature thermal energy. Underground Thermal Energy Storage provides an comprehensive introduction to the extensively-used energy storage method. Underground Thermal Energy Storage gives a general overview of UTES from basic concepts and classifications to operation regimes. As well as discussing general procedures for design and construction, thermo-hydro geological modeling of UTES systems is explained. Finally, current real life data and statistics are include to summarize major global developments in UTES over the past decades. The concise style and thorough coverage makes Underground Thermal Energy Storage a solid introduction for students, engineers and geologists alike.
November, 2008 Anna Schwarz, Johannes Janicka In the last thirty years noise emission has developed into a topic of increasing importance to society and economy. In ?elds such as air, road and rail traf?c, the control of noise emissions and development of associated noise-reduction techno- gies is a central requirement for social acceptance and economical competitiveness. The noise emission of combustion systems is a major part of the task of noise - duction. The following aspects motivate research: * Modern combustion chambers in technical combustion systems with low pol- tion exhausts are 5 - 8 dB louder compared to their predecessors. In the ope- tional state the noise pressure levels achieved can even be 10-15 dB louder. * High capacity torches in the chemical industry are usually placed at ground level because of the reasons of noise emissions instead of being placed at a height suitable for safety and security. * For airplanes the combustion emissions become a more and more important topic. The combustion instability and noise issues are one major obstacle for the introduction of green technologies as lean fuel combustion and premixed burners in aero-engines. The direct and indirect contribution of combustion noise to the overall core noise is still under discussion. However, it is clear that the core noise besides the fan tone will become an important noise source in future aero-engine designs. To further reduce the jet noise, geared ultra high bypass ratio fans are driven by only a few highly loaded turbine stages. |
You may like...
Water (R718) Turbo Compressor and…
Milan N. Sarevski, Vasko N. Sarevski
Paperback
Heat Exchangers
Laura Castro Gomez, Victor Manuel Velazquez Flores, …
Hardcover
R3,100
Discovery Miles 31 000
|