![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Engineering thermodynamics
This book proposes the formulation of an efficient methodology that estimates energy system uncertainty and predicts Remaining Useful Life (RUL) accurately with significantly reduced RUL prediction uncertainty. Renewable and non-renewable sources of energy are being used to supply the demands of societies worldwide. These sources are mainly thermo-chemo-electro-mechanical systems that are subject to uncertainty in future loading conditions, material properties, process noise, and other design parameters.It book informs the reader of existing and new ideas that will be implemented in RUL prediction of energy systems in the future. The book provides case studies, illustrations, graphs, and charts. Its chapters consider engineering, reliability, prognostics and health management, probabilistic multibody dynamical analysis, peridynamic and finite-element modelling, computer science, and mathematics.
This book focuses on the electromagnetic and thermal modeling and analysis of electrical machines, especially canned electrical machines for hydraulic pump applications. It addresses both the principles and engineering practice, with more weight placed on mathematical modeling and theoretical analysis. This is achieved by providing in-depth studies on a number of major topics such as: can shield effect analysis, machine geometry optimization, control analysis, thermal and electromagnetic network models, magneto motive force modeling, and spatial magnetic field modeling. For the can shield effect analysis, several cases are studied in detail, including classical canned induction machines, as well as state-of-the-art canned permanent magnet machines and switched reluctance machines. The comprehensive and systematic treatment of the can effect for canned electrical machines is one of the major features of this book, which is particularly suited for readers who are interested in learning about electrical machines, especially for hydraulic pumping, deep-sea exploration, mining and the nuclear power industry. The book offers a valuable resource for researchers, engineers, and graduate students in the fields of electrical machines, magnetic and thermal engineering, etc.
The book comprises an assembly of benchmarks and examples for porous media mechanics collected over the last twenty years. Analysis of thermo-hydro-mechanical-chemical (THMC) processes is essential to many applications in environmental engineering, such as geological waste deposition, geothermal energy utilisation, carbon capture and storage, water resources management, hydrology, even climate chance. In order to assess the feasibility as well as the safety of geotechnical applications, process-based modelling is the only tool to put numbers, i.e. to quantify future scenarios. This charges a huge responsibility concerning the reliability of computational tools. Benchmarking is an appropriate methodology to verify the quality of modelling tools based on best practices. Moreover, benchmarking and code comparison foster community efforts. The benchmark book is part of the OpenGeoSys initiative - an open source project to share knowledge and experience in environmental analysis and scientific computation.
This book equips a reader with knowledge necessary for critical
analysis of innovations in electric arc furnaces and helps to
select the most effective ones and for their successful
implementation. The book also covers general issues related to
history of development, current state and prospects of steelmaking
in Electric Arc Furnaces. Therefore, it can be useful for everybody
who studies metallurgy, including students of colleges and
universities.
The first part of this textbook presents the mathematical background needed to precisely describe the basic problem of continuum thermomechanics. The book then concentrates on developing governing equations for the problem dealing in turn with the kinematics of material continuum, description of the state of stress, discussion of the fundamental conservation laws of underlying physics, formulation of initial-boundary value problems and presenting weak (variational) formulations. In the final part the crucial issue of developing techniques for solving specific problems of thermomechanics is addressed. To this aim the authors present a discretized formulation of the governing equations, discuss the fundamentals of the finite element method and develop some basic algorithms for solving algebraic and ordinary differential equations typical of problems on hand. Theoretical derivations are followed by carefully prepared computational exercises and solutions.
Mixed finite element methods are a tool to solve complex engineering problems of different nature. This subject is treated in the volume from the engineering and the mathematical point. Different applications are considered which depict the value of mixed formulations in engineering on one side. On the other side the mathematical background is provided including proofs of convergence and stability of these methods and adequate solvers for mixed problems are discussed. This broad spectrum yields an indepth treatment of mixed methods from different perspectives.
The capacity and quality of the atmospheric flight performance of space flight vehicles is characterized by their aerodynamic data bases. A complete aerodynamic data base would encompass the coefficients of the static longitudinal and lateral motions and the related dynamic coefficients. In this book the aerodynamics of 27 vehicles are considered.
Only a few of them did really fly. Therefore the aerodynamic data
bases are often not complete, in particular when the projects or
programs were more or less abruptly stopped, often due to political
decisions. Configurational design studies or the development of
demonstrators Flight mechanics needs the aerodynamic coefficients as function of a lot of variables. The allocation of the aerodynamic coefficients for a particular flight operation at a specific trajectory point is conducted by an aerodynamic model. The establishment of such models is described in this book. This book is written for graduate and doctoral students to give
them insight into the aerodynamics of the various flight
configurations. Further for design and development engineers in
industry and at research institutes (including universities)
searching for an appropriate vehicle shape, as well as for
non-specialists, who may be interested in
This monograph describes mathematical models that enable prediction of phase compositions for various technological processes, as developed on the base of a complex physico-chemical analysis of reaction. It studies thermodynamics and kinetics of specific stages of complex pyrometallurgical processes involving boron, carbon, sulfur, tungsten, phosphorus, and many more, as well as their exposure to all sorts of factors. First and foremost, this enables to optimize processes and technologies at the stage of design, while traditional empirical means of development of new technologies are basically incapable of providing an optimal solution. Simulation results of metals and alloys production, welding and coating technologies allow obtaining materials with pre-given composition, structure and properties in a cost-saving and conscious manner. Moreover, a so-called "inverse problem," i.e., selecting source materials which would ensure the required results, cannot be solved by any other means.
Encompassing both practical applications and recent research developments, this book takes the reader from fundamental physics, through cutting-edge new designs of ejectors for refrigeration. The authors' unique vision marries successful design, system optimization, and operation experience with insights on the application of cutting-edge Computational Fluid Dynamics (CFD) models. This robust treatment leads the way forward in developing improved ejector technologies. The book covers ejectors used for heat powered refrigeration and for expansion work recovery in compression refrigerators, with special emphasis on two-phase flows of "natural" fluids within the ejector, i.e. steam and carbon dioxide. It features worked examples, detailed research results, and analysis tools.
Developing a new treatment of 'Free Convection Film Flows and Heat Transfer' began in Shang's first monograph and is continued in this monograph. The current book displays the recent developments of laminar forced convection and forced film condensation. It is aimed at revealing the true features of heat and mass transfer with forced convection film flows to model the deposition of thin layers. The novel mathematical similarity theory model is developed to simulate temperature- and concentration- dependent physical processes. The following topics are covered in this book: 1. Mathematical methods - advanced similarity analysis method to replace the traditional Falkner-Skan type transformation - a novel system of similarity analysis and transformation models to overcome the difficult issues of forced convection and forced film flows - heat and mass transfer equations based on the advanced similarity analysis models and equations formulated with rigorous key numerical solutions 2. Modeling the influence of physical factors - effect of thermal dissipation on forced convection heat transfer - a system of models of temperature and concentration-dependent variable physical properties based on the advanced temperature-parameter model and rigorous analysis model on vapor-gas mixture physical properties for the rigorous and convenient description of the governing differential equations - an available approach to satisfy interfacial matching conditions for rigorous and reliable solutions - a system of numerical results on velocity, temperature and concentration fields, as well as, key solutions on heat and mass transfer - the effect of non-condensable gas on heat and mass transfer for forced film condensation. This way it is realized to conveniently and reliably predict heat and mass transfer for convection and film flows and to resolve a series of current difficult issues of heat and mass transfer with forced convection film flows. Professionals in this fields as well as graduate students will find this a valuable book for their work.
This book reports on a novel approach for generating mechanical energy from different, external heat sources using the body of a typical piston engine with valves. By presenting simple yet effective numerical models, the authors show how this new approach, which combines existing internal combustion technology with a lubrication system, is able to offer an economic solution to the problem of mechanical energy generation in piston engines. Their results also show that a stable heat generation process can be guaranteed outside of the engine. The book offers a detailed report on physical and numerical models of 4-stroke and 2-stroke versions of the EHVE together with different models of heat exchange, valves and results of their simulations. It also delivers the test results of an engine prototype run in laboratory conditions. By presenting a novel theoretical framework and providing readers with extensive knowledge of both the advantages and challenges of the method, this book is expected to inspire academic researchers, advanced PhD students and professionals in their search for more effective solutions to the problem of renewable energy generation.
This book examines ways of assessing the rational management of nonrenewable resources. Integrating numerous methods, it systematically exposes the strengths of exergy analysis in resources management. Divided into two parts, the first section provides the theoretical background to assessment methods, while the second section provides practical application examples. The topics covered in detail include the theory of exergy cost and thermo-ecological cost, cumulative calculus and life cycle evaluation. This book serves as a valuable resource for researchers looking to investigate a range of advanced thermodynamic assessments of the influence of production processes on the depletion of nonrenewable resources.
This book is the first collection of lipid-membrane research conducted by leading mechanicians and experts in continuum mechanics. It brings the overall intellectual framework afforded by modern continuum mechanics to bear on a host of challenging problems in lipid membrane physics. These include unique and authoritative treatments of differential geometry, shape elasticity, surface flow and diffusion, interleaf membrane friction, phase transitions, electroelasticity and flexoelectricity, and computational modelling.
The Engineering Thermofluids is a unique textbook, which brings the three pillars of thermal sciences; thermodynamics, fluid mechanics, and heat transfer under one umbrella. These three distinct, yet intertwined subjects are treated in an integrated manner. The primary audiences for this book are senior undergraduate, graduate, and practicing engineers in the fields of aeronautical, chemical industrial, mechanical, and nuclear engineering. Topics are discussed in detail while still using a simple and easy to follow approach. Numerous walk-through examples are solved and illustrations are provided to guide the reader through more subtle topics. Each chapter starts with a section for the introduction of various terminologies used. The chapter on thermodynamics covers the first law, the second law, the power cycles, and the mixture of gases. The chapter on fluid mechanics covers both steady-state and transient single phase-flow as well as two-phase flow. The chapter on heat transfer covers conduction, convection, radiation, boiling, and condensation. These chapters are followed by the chapter on applications of the engineering thermofluid, which covers the design and operations of various heat exchangers, turbomachines, and flowmeters. Many practical design problems are either solved or provided as homework. Practicing engineers will find this book a useful text to have around for the many practical problems and solutions, illustrations, definitions, methods, tables, and figures provided. The preference throughout the text is on obtaining analytical solutions of a closed form. Numerical solutions as well as experimental results are presented when analytical solutions cannot be found.
Bridging the gap between concepts derived from Second Law of Thermodynamics and their application to Engineering practice, the property exergy and the exergy balance can be a tool for analyzing and improving the performance of energy conversion processes. With the exergy analysis it is possible to evaluate the performance of energy conversion processes not only on a thermodynamics basis but also by including production costs and environmental aspects and impacts of the studied processes. This comprehensive approach of the use of energy has, as one of the most important feature, the identification of sustainable ways of energy resources utilization. Based on the fundamentals of the exergy concept, its calculation, graphical representations and exergy balances evaluation, Exergy: Production Cost And Renewability describes the application of detailed exergy and thermoeconomic analysis to power plants and polygeneration systems, petroleum production and refining plants (including hydrogen production), chemical plants, biofuel production routes, combined production of ethanol and electricity, aircraft systems design, environmental impact mitigation processes and human body behavior. The presented case studies aim at providing students, researchers and engineers with guidelines to the utilization of the exergy and thermoeconomic analysis to model, simulate and optimize real processes and industrial plants.
This book presents the necessary fundamental knowledge in the research, development, design, selection, and application of desiccant heating, ventilating, and air-conditioning systems. It covers the established installations in different climatic conditions and building types. In addition, advanced performance evaluation techniques are presented, covering thermodynamic, economic, and environmental aspects. Hence, the book is an important resource for undergraduate and graduate students, design and installation engineers, researchers and scientists, building owners and occupants, and energy and environmental policy makers.
Internal combustion engines (ICE) still have potential for substantial improvements, particularly with regard to fuel efficiency and environmental compatibility. In order to fully exploit the remaining margins, increasingly sophisticated control systems have to be applied. This book offers an introduction to cost-effective model-based control-system design for ICE. The primary emphasis is put on the ICE and its auxiliary devices. Mathematical models for these processes are developed and solutions for selected feedforward and feedback control-problems are presented. The discussions concerning pollutant emissions and fuel economy of ICE in automotive applications constantly intensified since the first edition of this book was published. Concerns about the air quality, the limited resources of fossil fuels and the detrimental effects of greenhouse gases exceedingly spurred the interest of both the industry and academia in further improvements. The most important changes and additions included in this second edition are: restructured and slightly extended section on superchargers, short subsection on rotational oscillations and their treatment on engine test-benches, complete section on modeling, detection, and control of engine knock, improved physical and chemical model for the three-way catalytic converter, new methodology for the design of an air-to-fuel ratio controller, short introduction to thermodynamic engine-cycle calculation and corresponding control-oriented aspects.
This book presents a collection of recent research works intended to assist in the effective management of service loss. It develops and evaluates methodologies for the assessment of defects and failures, and proposes methodologies for preventing and mitigating building defects. As such, the book will appeal to a broad readership of scientists, practitioners, students and lecturers.
"Advanced Thermal Management Materials" provides a comprehensive and hands-on treatise on the importance of thermal packaging in high performance systems. These systems, ranging from active electronically-scanned radar arrays to web servers, require components that can dissipate heat efficiently. This requires materials capable of dissipating heat and maintaining compatibility with the packaging and dye. Coverage includes all aspects of thermal management materials, both traditional and non-traditional, with an emphasis on metal based materials. An in-depth discussion of properties and manufacturing processes, and current applications are provided. Also presented are a discussion of the importance of cost, performance and reliability issues when making implementation decisions, product life cycle developments, lessons learned and future directions.
This book, "Heat and Mass Transfer in Porous Media," presents a set of new developments in the field of basic and applied research work on the physical and chemical aspects of heat and mass transfer phenomena in a porous medium domain, as well as related material properties and their measurements. The book contents include both theoretical and experimental developments, providing a self-contained major reference that is appealing to both the scientists and the engineers. At the same time, these topics will encounter of a variety of scientific and engineering disciplines, such as chemical, civil, agricultural, mechanical engineering, etc. The book is divided in several chapters that intend to be a short monograph in which the authors summarize the current state of knowledge for benefit of professionals.
Microfluidics for Biological Applications provides researchers and scientists in the biotechnology, pharmaceutical, and life science industries with an introduction to the basics of microfluidics and also discusses how to link these technologies to various biological applications at the industrial and academic level. Readers will gain insight into a wide variety of biological applications for microfluidics. The material presented here is divided into four parts, Part I gives perspective on the history and development of microfluidic technologies, Part II presents overviews on how microfluidic systems have been used to study and manipulate specific classes of components, Part III focuses on specific biological applications of microfluidics: biodefense, diagnostics, high throughput screening, and tissue engineering and finally Part IV concludes with a discussion of emerging trends in the microfluidics field and the current challenges to the growth and continuing success of the field.
This volume presents applications of the Pi-Theorem to fluid mechanics and heat and mass transfer. The Pi-theorem yields a physical motivation behind many flow processes and therefore it constitutes a valuable tool for the intelligent planning of experiments in fluids. After a short introduction to the underlying differential equations and their treatments, the author presents many novel approaches how to use the Pi-theorem to understand fluid mechanical issues. The book is a great value to the fluid mechanics community, as it cuts across many subdisciplines of experimental fluid mechanics.
This book is a beginners introduction to chemical thermodynamics
for engineers.
Designed to cover the fundamental concepts of thermodynamics used in engineering, the book introduces topics such as the laws of thermodynamics, exergy analysis, thermodynamic cycles, measurement theory, and applications. Using step by step examples and numerous illustrations, the book is designed with a "self-teaching" methodology, including a variety of exercises with corresponding answers to enhance mastery of the content. The book provides an engineer with a basic understanding or review of thermodynamic principles. Features Designed to cover the fundamental concepts of thermodynamics used in engineering Introduces topics such as the laws of thermodynamics, exergy analysis, thermodynamic cycles, measurement theory, and applications Includes a variety of exercises such as conceptual questions for review, and numerical exercises(with answers) to enhance mastery of the content
The fast progress in many areas of research related to non-equilibrium ther- dynamics has prompted us to write a fourth edition of this book. Like in the previous editions, our main concern is to open the subject to the widest au- ence, including students, teachers, and researchers in physics, chemistry, engine- ing, biology, and materials sciences. Our objective is to present a general view on several open problems arising in non-equilibrium situations, and to afford a wide perspective of applications illustrating their practical outcomes and con- quences. A better comprehension of the foundations is generally correlated to an increase of the range of applications, implying mutual feedback and cross fert- ization. Truly, thermodynamic methods are widely used in many areas of science but, surprisingly, the active dynamism of thermodynamics as a ?eld on its own is not suf?ciently perceived outside a relatively reduced number of specialized researchers. Extended irreversible thermodynamics (EIT) goes beyond the classical f- malisms based on the local equilibrium hypothesis; it was also referred to in an earlier publication by the authors (Lebon et al. 1992) as a thermodynamics of the third type, as it provides a bridge between classical irreversible thermodynamics and rational thermodynamics, enlarging at the same time their respective range of application. The salient feature of the theory is that the ?uxes are incorporated into the set of basic variables. |
You may like...
Good Practice in Archaeological…
Cristina Corsi, Bozidar Slapsak, …
Hardcover
R4,925
Discovery Miles 49 250
Complex Analysis and Dynamical Systems…
Mark Agranovsky, Anatoly Golberg, …
Hardcover
R3,412
Discovery Miles 34 120
Handbook of Mathematical Economics…
Michael D. Intriligator, Kenneth J. Arrow
Hardcover
R1,382
Discovery Miles 13 820
Nonlinear Flow Phenomena and Homotopy…
Kuppalapalle Vajravelu, Robert A. Van Gorder
Hardcover
R1,424
Discovery Miles 14 240
Human Sexuality - Function, Dysfunction…
Ami Rokach, Karishma Patel
Paperback
R2,059
Discovery Miles 20 590
Mobile Information Systems Leveraging…
Gloria Bordogna, Paola Carrara
Hardcover
R2,678
Discovery Miles 26 780
|