![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Environmental engineering & technology > Environmental monitoring
Applied mathematics is a central connecting link between scientific observations and their theoretical interpretation. Nonlinear analysis has surely contributed major developments which nowadays shape the face of applied mathematics. At the beginning of the millennium, all sciences are expanding at increased speed. Technological, ecological, economical and medical problem solving is a central issue of every modern society. Mathematical models help to expose fundamental structures hidden in these problems and serve as unifying tools to deepen our understanding. What are the new challenges applied mathematics has to face with the increased diversity of scientific problems? In which direction should the classical tools of nonlinear analysis be developed further? How do new available technologies influence the development of the field? How can problems be solved which have been beyond reach in former times? It is the aim of this book to explore new developments in the field by way of discussion of selected topics from nonlinear analysis.
The subject of this volume is the observation and modelling of the
gravity wave field in the atmosphere. The focus is on the question
of how to include the effects of small-scale gravity waves in
sophisticated global climate models.
Z. Sonoda It is my great honour to declare the opening of the 2nd IBM Japan International Symposium on 'The Global Environment'. It is especially my honour, on behalf of IBM Japan, to welcome all of you most distinguished experts of the world. Historically, IBM Japan has maintained a strong interest in the protection of the global environment, not only as a member of the industrial community, but also as a member of the global community where environmental disruption has become more and more significant and of common concern. In 1990, we held the first environmental symposium on 'Global Warming'. It offered a stage to which both social and natural scientists could bring problems about 'The Global Environment' for in-depth discussions. One of its conclusions includes collaboration about socio economic aspects among the industrialized and developing countries. With this in mind, we now host the 2nd symposium which focuses upon a socio-economic approach to global environmental problems. I understand that the symposium will seek a solution by examining actual experiences and circumstances from various parts of the world, with special attention given to North/South issues. Thus, we have invited guests from America, Europe, and neighbouring Asian countries alike. I wish, and believe, that the symposium will bring about new clues, toward a breakthrough for the betterment of the environment through positive and harmonious discussions in this beautiful setting at the foot of Mt Fuji."
J.-E. Dubois and N. Gershon This book was inspired by the Symposium on "Communications and Computer Aided Systems" held at the 14th International CODATA Conference in September 1994 in Chambery, France. It was conceived and influenced by the discussions at the symposium and most of the contributions were written following the Conference. This is the first comprehensive book, published in one volume, of issues concerning the challenges and the vital impact of the information revolution (including the Internet and the World Wide Web) on science and technology. Topics concerning the impact of the information revolution on science and technology include: * Dramatic improvement in sharing of data and information among scientists and engineers around the world * Collaborations (on-line and off-line) of scientists and engineers separated by distance . * Availability of visual tools and methods to view, understand, search, and share information contained in data * Improvements in data and information browsing, search and access and * New ways of publishing scientific and technological data and information. These changes have dramatically modified the way research and development in science and technology are being carried out. However, to facilitate this information flow nationally and internationally, the science and technology communities need to develop and put in place new standards and policies and resolve some legal issues.
GKSS SCHOOL OF ENVIRONMENTAL RESEARCH The National Research Laboratory GKSS (member of the Hermann von Helmholtz-Association of German Reserach Centres) located in Geesthacht, near Hamburg, is engaged in environmental research. The main interest of the research center focuses on regional climatology and climate dynamics, interdecadal variations in the state of the Baltic and North Sea and related estuaries, and the flow ofheavy metals, nutrients, and other materials in river catchments to the coastal zones. This research aims at-developing an under standing ofchanges in the environment, both as a result ofinternal (natural) dynamics and as a result of anthropogenic interference. In an effort to dis seminate the results of these research activities, as well as to initiate a broad discussion among senior scientists in the field, and younger colleagues from all areas of the globe, the Institutes of Hydrophysics and Atmospheric Physics at GKSS have instituted the GKSS School of Environmental Research. Appliedenvironmental research has always containedanelement ofaware ness ofthe societal implications and boundary conditions associated with en vironmental concerns. Consequently, the School of Environmental Research adheres to the philosophy that all discussion regarding environmental change should incorporate a social component. This necessity has been well acknowl edged and is apparent by the incorporation ofsocial scientists into the series of lectures. Senior scientists from Europe and North America were invited to give lectures to "students" from all parts of the globe."
The pKa of a compound describes its acidity or basicity and, therefore, is one of its most important properties. Its value determines what form of the compound-positive ion, negative ion, or neutral species-will be present under different circumstances. This is crucial to the action and detection of the compound as a drug, pollutant, or other active chemical agent. In many cases it is desirable to predict pKa values prior to synthesizing a compound, and enough is now known about the salient features that influence a molecule's acidity to make these predictions. Computational Approaches for the Prediction of pKa Values describes the insights that have been gained on the intrinsic and extrinsic features that influence a molecule's acidity and discusses the computational methods developed to estimate acidity from a compound's molecular structure. The authors examine the strengths and weaknesses of the theoretical techniques and show how they have been used to obtain information about the acidities of different classes of chemical compounds. The book presents theoretical methods for both general and more specific applications, covering methods for various acids in aqueous solutions-including oxyacids and related compounds, nitrogen acids, inorganic acids, and excited-state acids-as well as acids in nonaqueous solvents. It also considers temperature effects, isotope effects, and other important factors that influence pKa. This book provides a resource for predicting pKa values and understanding the bases for these determinations, which can be helpful in designing better chemicals for future uses.
In regard to global change, emphasis is generally placed on the
increase in global temperature, but large changes in the
distribution of precipitation are also likely to occur. Such
changes have been redorded in the past by paleoclimatological
studies or in the field of climatology. Different approaches to
monitoring and forecasting the evolution of climate-scale
precipitation are reviewed by paleoclimatologists, hydrologists,
satellite meteorologists, and climate modellers.
This volume includes revised versions of most of the presentations made at the International Conference "Understanding the Earth Sys tem: Compartments, Processes and Interactions" held on November 24-26, 1999 in Bonn. The Conference was organized by the German National Committee on Global Change Research as part of the Bonn Science Festival 1999-2000. The Bonn Science Festival (Wissen schaftsfestival Region Bonn) was organized and funded by sfg Strukturforderungsgesellschaft Bonn/Rhein-Siegl Ahrweiler mbH. The generous support for organizing the conference and printing this volume by sfg is gratefully acknowledged. Additional financial and organizational support for separate workshop sessions and publica tions have also been provided by the German Federal Ministry for Science and Research, BMBF and Germany's major research funding agency, Deutsche Forschungsgemeinschaft. The editors wish to gratefully acknowledge the help, advice and especially patience of many individuals who have contributed to this volume. The contributions are intended to document the debate on crucial issues of the emerging concept of earth system science and to stimulate the necessary scientific discussion. While every effort has been made on the part of the editors to ensure consistency in termi nology, style and methods of quotation, the variety of contributors has inevitably resulted in certain discrepancies. E. EHLERS Bonn, February 2001 T. KRAFFT Contents Part I Panorama: The Earth System: Analysis from Science and the Humanities Chapter 1 Understanding the Earth System - From Global Change Research to Earth System Science . . . . . . . 3 E. EHLERS and T. KRAFFT Chapter 2 Earth System Analysis and Management. . . . . . . . . . . . .. . . . 17 . . .
Bivalve filter-feeding mollusks are important components of coastal ecosystems because they remove large quantities of suspended material from the water and excrete abundant amounts of reactive nutrients. These animals are also major prey for numerous predators including birds, fish, mammals, and invertebrates; furthermore, they are significant food resources for humans. While studies on the organismic and population level have dominated bivalve ecology, the recent focus on the ecosystem roles of filter feeding systems has led to larger-scale investigations. With this approach the specific topics of physiology, grazing, predation, nutrient cycling, physical environment, computer simulation modeling, and environmental management are combined into a meaningful whole.
Experts report the state of the art in the study of global climate
change using remote sensing techniques. Topics covered include the
principles of remote sensing, the management of data, data
requirements in climatology, the principles of modelling, the input
of data into models, and the application of remote sensing to the
atmosphere, ice and snow, seas and land.
It has been evident from many years of research work in the geohydrologic sciences that a summary of relevant past work, present work, and needed future work in multivariate statistics with geohydrologic applications is not only desirable, but is necessary. This book is intended to serve a broad scientific audience, but more specifi cally is geared toward scientists doing studies in geohydrology and related geo sciences.lts objective is to address both introductory and advanced concepts and applications of the multivariate procedures in use today. Some of the procedures are classical in scope but others are on the forefront of statistical science and have received limited use in geohydrology or related sciences. The past three decades have seen a significant jump in the application of new research methodologies that focus on analyzing large databases. With more general applications being developed by statisticians in various disciplines, multivariate quantitative procedures are evolving for better scientific applica tion at a rapid rate and now provide for quick and informative analyses of large datasets. The procedures include a family of statistical research methods that are alternatively called "multivariate analysis" or "multivariate statistical methods.""
Experts in soil and environmental sciences as well as in the theory of wave propagation and numerical modeling methods provide a comprehensive account of different aspects of pollutant migration in soils, aquifers, and other geological formations. Emphasis is laid on the analysis of contributing phenomena and their interactions, modeling, and the practical use of such knowledge and models for guidance in disposal operations, preventive measures to minimize ecological damage, prediction of consequences of seepage, and design of remedial actions. Topics covered include the chemical behavior of soils, sorption and retardation, biochemistry of pollutants, ion exchange and kinetics of reactions in soils, measurement of adsorption and desorption, multiphase hydrodynamics, multicomponent wave theory and the coherence concept, nonlinear wave propagation in geological formations, multiphase convective transport, diffusion and fast reaction, modeling pollutant transport, numerical methods, dispersion of contaminants from landfills, risk analysis, water reuse, and radioactive soil contamination at Chernobyl.
The Siberian environment is a unique region of the world that is both very strongly affected by global climate change and at the same time particularly vulnerable to its consequences. The news about the melting of sea ice in the Arctic Ocean and the prospect of an ice-free shipping passage from Scandinavia to Alaska along the Russian north coast has sparked an international debate about natural resource exploitation, national boundaries and the impacts of the rapid changes on people, animals and plants. Over the last decades Siberia has also witnessed severe forest fires to an extent that is hard to imagine in other parts of the world where the po- lation density is higher, the fire-prone ecosystems cover much smaller areas and the systems of fire control are better resourced. The acceleration of the fire regime poses the question of the future of the boreal forest in the taiga region. Vegetation models have already predicted a shift of vegetation zones to the north under s- narios of global climate change. The implications of a large-scale expansion of the grassland steppe ecosystems in the south of Siberia and a retreat of the taiga forest into the tundra systems that expand towards the Arctic Ocean would be very signi- cant for the local population and the economy. I have studied Russian forests from remote sensing and modelling for about 11 years now and still find it a fascinating subject to investigate.
In this brief we consider some stochastic models that may be used to study problems related to environmental matters, in particular, air pollution. The impact of exposure to air pollutants on people's health is a very clear and well documented subject. Therefore, it is very important to obtain ways to predict or explain the behaviour of pollutants in general. Depending on the type of question that one is interested in answering, there are several of ways studying that problem. Among them we may quote, analysis of the time series of the pollutants' measurements, analysis of the information obtained directly from the data, for instance, daily, weekly or monthly averages and standard deviations. Another way to study the behaviour of pollutants in general is through mathematical models. In the mathematical framework we may have for instance deterministic or stochastic models. The type of models that we are going to consider in this brief are the stochastic ones.
Organic chemicals constitute minor gaseous components of the earth's atmosphere. Despite low concentrations they play an important role in the global processes influencing the composition of our atmosphere. The author summarizes the multidisciplinary data on sources and thermo- and photochemical transformations of organic components in the atmosphere. Modern methods of atmospheric microimpurity analysis are explained. Models for their time-dimensional distribution both in the urban atmosphere and in unpolluted air are developed. The book provides a unique source of contemporary information for scientists involved in atmospheric chemistry, meteorology, ecology and geophysics.
The 21st century promises to be an era dominated by international response to c- tain global environmental challenges such as climate change, depleting biodiversity and biocapacity as well as general atmospheric, water and soil pollution problems. Consequently, Environmental decision making (EDM) is a socially important ?eld of development for Operations Research and Management Science (OR/MS). - certainty is an important feature of these decision problems and it intervenes at very different time and space scales. The Handbook on "Uncertainty and Environmental Decision Making" provides a guided tour of selected methods and tools that OR/MS offer to deal with these issues. Below, we brie?y introduce, peer reviewed, chapters of this handbook and the topics that are treated by the invited authors. The ?rst chapter is a general introduction to the challenges of environmental decision making, the use of OR/MS techniques and a range of tools that are used to deal with uncertainty in this domain.
With remarkable vision, Prof. Otto Hutzinger initiated The Handbook of Envir- mental Chemistry in 1980 and became the founding Editor-in-Chief. At that time, environmental chemistry was an emerging ?eld, aiming at a complete description of the Earth's environment, encompassing the physical, chemical, biological, and geological transformations of chemical substances occurring on a local as well as a global scale. Environmental chemistry was intended to provide an account of the impact of man's activities on the natural environment by describing observed changes. While a considerable amount of knowledge has been accumulated over the last three decades, as re?ected in the more than 70 volumes of The Handbook of Environmental Chemistry, there are still many scienti?c and policy challenges ahead due to the complexity and interdisciplinary nature of the ?eld. The series will therefore continue to provide compilations of current knowledge. Contri- tions are written by leading experts with practical experience in their ?elds. The Handbook of Environmental Chemistry grows with the increases in our scienti?c understanding, and provides a valuable source not only for scientists but also for environmental managers and decision-makers. Today, the series covers a broad range of environmental topics from a chemical perspective, including methodol- ical advances in environmental analytical chemistry.
Recent developments in air pollution modeling and its application are explored here in contributions by researchers at the forefront of their field. The book is focused on local, urban, regional and intercontinental modeling; data assimilation and air quality forecasting; model assessment and evaluation; aerosol transformation; the relationship between air quality and human health and the effects of climate change on air quality. The work will provide useful reference material for students and professors interested in air pollution modeling at the graduate level as well as researchers and professionals involved in developing and utilizing air pollution models.
Although this book is about a specific area of the world (i.e., Gotland, Sweden), the interdisciplinary nature of the study, with regard to resources, environment, and society, makes it of interest to a number of fields. We have tried to make this book readable for a wide variety of interested parties including systems ecologists, environmental scientists, resource economists, geographers, regional planners, and regional scientists, as well as those interested in Nordic conditions. Since this project was part of UNESCO's Man and the Biosphere (MAB) pro gram, this book should be of general interest to the international community. This book is certainly not a textbook, but we see it as being useful for courses in regional analysis with plenty of examples for illustrating analysis and models related to energy, environment, and economics, or to the general field of systems ecology. An instructor could, of course, supplement the material on systems and models with other sources. We hope this small book will serve as a helpful example of the analysis of the complex interdisciplinary problems associated with resources and society. In Chapter 1, we present a brief introduction to the Gotland study as well as to some of the concepts and theories that have guided our investigations."
During the past ten years a variety of methods involving mass spectrom etry have been developed for the analysis of environmentally important compounds. Much has been accomplished in that period to solve some of the important problems in the field. Growth of this methodology and its accomplishments has reached the point where an individual scientist can no longer have an in-depth knowledge of all the areas involved. We have attempted to provide this in-depth picture to those scientists con cerned by having the important topics treated by experts in the subject matter. In order to provide all the relevant material in one volume we begin with the general topics which provide the basic background material necessary to understand the techniques discussed in the in-depth topics. These general chapters are kept brief, containing only the essentials needed by the working scientist to deal with the practical applications. References in these chapters are chosen to permit a more complete study of each chapter. The concept for this book was developed during the activities of two of the editors under a NATO travel grant. These editors gratefully acknowledge this support which made the initial planning of this book possible. The editors would like to thank the individual authors of each chap ter for their cooperation and generously giving of their time for this project."
Soil organic matter (SOM) represents a major pool of carbon within the biosphere, roughly twice than in atmospheric CO2. SOM models embody our best understanding of soil carbon dynamics and are needed to predict how global environmental change will influence soil carbon stocks. These models are also required for evaluating the likely effectiveness of different mitigation options. The first important step towards systematically evaluating the suitability of SOM models for these purposes is to test their simulations against real data. Since changes in SOM occur slowly, long-term datasets are required. This volume brings together leading SOM model developers and experimentalists to test SOM models using long-term datasets from diverse ecosystems, land uses and climatic zones within the temperate region.
This book is the latest volume in the series entitled " Data and Knowledge in a Changing World ", published by the Committee on Data for Science and Technology (CODATA) of the International Council of Scientific Unions (Icsu). This series was established to collect together, from many diverse fields, the wealth of information pertaining t.o the intelligent exploitation of data in the conduct of science and technology. This volume is the first in a two-volume series that will discuss techniques for the analysis of natural dynamic systems, and their applications to a variety of geophysical problems. The present volume lays out the theoretical foun dations for these techniques. The second volume will use these techniques in applications to fields such as seismology, geodynamics, geoelectricity, ge omagnetism, aeromagnetics, topography and bathymetry. The book consists of two parts, which describe two complementary ap proaches to the analysis of natural systems. The first, written by A. Gvishi ani, deals with dynamic pattern recognition. It lays out the mathematical VI Foreword theory and the formalized algorithms that. forms the basis for the classifi cation of vector objects and the use of this classification in the study of dynamical systems, with particular emphasis on the prediction of system behavior in space and time. It discusses the construction of classification schemes, and the evaluation of their stability and reliability.
This book constitutes the refereed proceedings of the First International Conference on Information and Communication Technology for the Fight against Global Warming, ICT-Glow 2011, held in Toulouse, France in August 2011. The 16 revised papers presented were carefully reviewed and selected from 24 submissions. They address the following topics: parallel computing, ICT for transportation, cloud and pervasive computing, measurement and control and storage.
This book explores the dynamic processes in economic systems, concentrating on the extraction and use of the natural resources required to meet economic needs. Sections cover methods for dynamic modeling in economics, microeconomic models of firms, modeling optimal use of both nonrenewable and renewable resources, and chaos in economic models. This book does not require a substantial background in mathematics or computer science. |
You may like...
Emerging Research and Trends in…
Harsha Gangadharbatla, Donna Z Davis
Hardcover
R5,482
Discovery Miles 54 820
Artificial Intelligence for Future…
Rabindra Nath Shaw, Ankush Ghosh, …
Paperback
R3,864
Discovery Miles 38 640
Animals and the Law in Antiquity
Saul M. Olyan, Jordan D. Rosenblum
Hardcover
R1,823
Discovery Miles 18 230
|