![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Civil engineering, surveying & building > Building construction & materials > Fire protection & safety
The book supplements "Guidelines for Chemical Process Quantitative Risk Analysis" by providing the failure rate data needed to perform a chemical process quantitative risk analysis.
This book offers a timely report on methods for risk assessment procedures for dams, with a special emphasis on dams with small storage dimensions. It starts by introducing all important definitions relating to dams, dam safety, such as the most common failure modes, and risks. In turn, it describes in detail the most important evaluation procedures for various failure modes such as piping, flood, earthquake and stability are described in this chapter. Consequence assessment procedures, together with the different steps of the risk evaluation process, are analyzed, providing a guide on how to identify the appropriate failure mode for the examined dam and setting up the appropriate safety plan. The book introduces the most common methods for predicting peak breach discharge, analyzing some relevant case studies. Upon comparing the findings obtained with the different methods, the book concludes with some general suggestions and ideas for future developments. This book fills an important gap between theoretical works and real-life problems being investigating in practical research studies on dam safety and risk management. It provides readers with the necessary knowledge on risk analysis and shows how to apply this in practice to carry out dam safety studies. It offers practical guidelines to set up risk assessment procedures for different failure modes and predicting failure parameters such as failure time, peak breach discharge and breach width.
This book examines key issues in improving the efficiency of small and medium power boiler units by adding control systems for the fuel combustion process. The original models, algorithms, software and hardware of the system developed for controlling the fuel combustion process are presented. In turn, the book presents a methodology for assessing the influence of climatic factors on the combustion process, and proposes new methods for measuring the thermophysical characteristics, which require taking into account the concentration of oxygen in the air. The system developed here was implemented on a boiler of the NIISTU-5 type, which is widely used for heat power engineering in Ukraine and other Eastern European countries. Given its scope, the book offers a valuable asset for researchers and engineers, as well as lecturers and graduate students at higher education institutions dealing with heat engineering equipment.
This book provides information on the generation and the effects of hazardous substances that are produced during welding and allied processes. These processes are thermal cutting, thermal spraying, soldering and brazing. The book offers guidance on the determination of hazardous substances and it simplifies assessment of the hazard due to hazardous substances. In addition, the book explains tests in order to understand the concentration and intensity of key hazardous substances. Last but not least, the book suggests several possibilities of avoiding the risk to worker's health as a result of exposing them to these substances.
This proceedings volume presents new scientific works of the research workers and experts from the field of Wood Science & Fire. It looks into the properties of various tree species across the continents affecting the fire-technical properties of wood and wood-based materials, its modifications, fire-retardant methods and other technological processes that have an impact on wood ignition and burning. The results of these findings have a direct impact on Building Construction and Design describing the fire safety of wooden buildings, mainly large and multi-story ones. The results of these experiments and findings may be applied, or are directly implemented into Fire Science, Hazard Control, Building Safety which makes the application of wood and wood materials in buildings possible, while maintaining strict fire regulations. One part of the contributions focuses on the symbiosis of the material and the fire-fighting technologies. Wood burning has its own specific features, therefore, the fire protection technologies need to be updated regularly. It also includes the issue of the intervention of fire-fighting and rescue teams in the fires of wooden buildings. Presentations deal with the issue of forest fires influenced by the climate changes, relief, fuel models based on the type and the age of the forest stand.
This proceedings volume includes articles presented during the Advanced Research Workshop on Soft Target Protection. The book presents important topics related to the protection of vulnerable objects and spaces, called Soft Targets. The chapters published in this book are thematically assigned to the blocks as follows: Theoretical aspect of soft target protection; Blast resistance of soft targets; Counter terrorism; Technical and technological solutions for soft target protection; Scheme and organizational measures; Blast protection and Forces for soft target protection. In this book, the reader will find a wealth of information about the theoretical background for designing protection of soft targets, as well as the specifics of protecting objects in armed conflict areas. New methods and procedures applicable to the soft target protection are described.
This book presents an overview of recent academic and industrial research efforts concerning halogen-free flame-retardant (FR) polymers and their nanocomposites. It summarizes the synthesis methods for various types of halogen-free FR polymers and their nanocomposites, and critically reviews their flame-retardant behavior, toxic-gas evolution during combustion, and inhibition methods. In turn, the book discusses the importance of metal oxide nanoparticles, nanoclay, and graphene in flame inhibition and addresses the FR properties of various FR compounds containing polymers, their FR mechanisms, and fire toxicant releasing and inhibition methods in detail. It systematically covers the synergetic effects between different FR compounds, and explains the significance of thermal stability and melt dripping for polymers' FR properties. The fundamental concepts described here are essential to understanding the FR behaviors of various polymers and their nanocomposites, and to developing efficient, environmentally friendly FR polymers and nanocomposites for a wide range of applications. This book is ideally suited for researchers in the fields of polymer science and engineering, and for graduate students in chemistry and materials science.
This book presents the proceedings of the International Conference on Health, Safety, Fire, Environment, and Allied Sciences (HSFEA 2018). The book highlights the latest developments in the field of science and technology aimed at improving health and safety in the workplace. The volume comprises content from leading scientists, engineers, and policy makers, discussing the effect of vehicular pollution, process, engineering, construction and other industrial activities on air quality and the impact these have on health and the environment. The contents of this volume will be of interest to researchers, practitioners, and policy makers alike.
This edited volume is an up-to-date guide for students, policy makers and engineers on earthquake engineering, including methods and technologies for seismic hazard detection and mitigation. The book was written in honour of the late Professor Jai Krishna, who was a pioneer in teaching and research in the field of earthquake engineering in India during his decades-long work at the University of Roorkee (now the Indian Institute of Technology Roorkee). The book comprehensively covers the historical development of earthquake engineering in India, and uses this background knowledge to address the need for current advances in earthquake engineering, especially in developing countries. After discussing the history and growth of earthquake engineering in India from the past 50 years, the book addresses the present status of earthquake engineering in regards to the seismic resistant designs of bridges, buildings, railways, and other infrastructures. Specific topics include response spectrum superposition methods, design philosophy, system identification approaches, retaining walls, and shallow foundations. Readers will learn about developments in earthquake engineering over the past 50 years, and how new methods and technologies can be applied towards seismic risk and hazard identification and mitigation.
This book gathers selected, extended and revised papers presented at the 5th Iberian-Latin American Congress on Fire Safety, CILASCI 5, held on 15-17 July 2019, in Porto, Portugal. The respective chapters address experimental efforts and the computational and numerical modelling of materials (e.g. wood, concrete, and steel) and structures to assess their fire behavior and/or improve their fire resistance. In addition, they present simulation studies on fire events and findings from fire performance tests on walls. Given its scope, the book offers a valuable resource for researchers, graduate students, and practitioners whose work involves fire safety-related topics.
This book addresses the hazard of gas explosions in sealed underground coal mines, and how the risk of explosion can be assessed, modeled, and mitigated. With this text, coal mine operators and managers will be able to identify the risks that lead to underground mine gas explosions, and implement practical strategies to optimize mining safety for workers. In six chapters, the book offers a framework for understanding the sealed coal mine atmosphere, the safety characteristics that are currently in place, and the guidelines to be followed by engineers to improve upon these characteristics. The first part of the book describes the importance and characteristics of underground gas mine explosions in a historical context with data showing the high number of fatalities from explosion incidents, and how risk has been mitigated in the past. Chapters also detail mathematical models and explosibility diagrams for determining and understanding the risk factors involved in mine explosions. Readers will also learn about safety operations, and assessments for the sealed mine atmosphere. With descriptions of chapter case studies, mining engineers and researchers will learn how to apply safety measures in underground coal mines to improve mining atmospheres and save lives.
This book features selected papers from the 11th Asia-Oceania Symposium on Fire Science and Technology (AOSFST 2018), held in Taipei, Taiwan. Covering the entire spectrum of fire safety science, it focuses on research on fires, explosions, combustion science, heat transfer, fluid dynamics, risk analysis and structural engineering, as well as other topics. Presenting advanced scientific insights, the book introduces and advances new ideas in all areas of fire safety science. As such it is a valuable resource for academic researchers, fire safety engineers, and regulators of fire, construction and safety authorities. Further it provides new ideas for more efficient fire protection.
This book describes principles, industry practices and evolutionary methodologies for advanced safety studies, which are helpful in effectively managing volatile, uncertain, complex, and ambiguous (VUCA) environments within the framework of quantitative risk assessment and management and associated with the safety and resilience of structures and infrastructures with tolerance against various types of extreme conditions and accidents such as fires, explosions, collisions and grounding. It presents advanced computational models for characterizing structural actions and their effects in extreme and accidental conditions, which are highly nonlinear and non-Gaussian in association with multiple physical processes, multiple scales, and multiple criteria. Probabilistic scenario selection practices and applications are presented. Engineering practices for structural crashworthiness analysis in extreme conditions and accidents are described. Multidisciplinary approaches involving advanced computational models and large-scale physical model testing are emphasized. The book will be useful to students at a post-graduate level as well as researchers and practicing engineers.
This book presents the proceedings of the International Conference on Durability of Critical Infrastructure. Monitoring and Testing held in Satov, Czech Republic from 6 to 9 December 2016. It discusses the developments in the theoretical and practical aspects in the fields of Safety, Sustainability and Durability of the Critical Infrastructure. The contributions are dealing with monitoring and testing of structural and composite materials with a new methods for their using for protection and prevention of the selected objects.
This important new manual goes beyond the published NFPA standards on installation of standpipe systems to include the rules in the International Building Code, municipal fire codes, the National Fire Code of Canada, and information on inspection, testing, and maintenance of standpipe systems. Also covered are the interactions between standpipe and sprinkler systems, since these important fire protection systems are so frequently installed together. Illustrated with design examples and practical applications to reinforce the learning experience, this is the go-to reference for engineers, architects, design technicians, building inspectors, fire inspectors, and anyone that inspects, tests or maintains fire protection systems. Fire marshals and plan review authorities that have the responsibility for reviewing and accepting plans and hydraulic calculations for standpipe systems are also an important audience, as are firefighters who actually use standpipe systems. As a member of the committees responsible for some of these documents, Isman also covers the rules of these standards and codes as they are written, but also provides valuable insight as to the intent behind the rules. A noted author and lecturer, Professor Isman was an engineer with the National Fire Sprinkler Association (NFSA), is an elected Fellow of the Society of Fire Protection Engineers (SFPE), and currently Clinical Professor in the Department of Fire Protection Engineering at University of Maryland.
This book comprises selected proceedings of the Fourth International Conference in Ocean Engineering (ICOE2018), focusing on emerging opportunities and challenges in the field of ocean engineering and offshore structures. It includes state-of-the-art content from leading international experts, making it a valuable resource for researchers and practicing engineers alike.
This book comprises selected proceedings of the Fourth International Conference in Ocean Engineering (ICOE2018), focusing on emerging opportunities and challenges in the field of ocean engineering and offshore structures. It includes state-of-the-art content from leading international experts, making it a valuable resource for researchers and practicing engineers alike.
The primary goals of this brief are to invoke alertness and solidarity among the public in earthquake prone areas of India, and to empower the community to prepare themselves to face and manage the aftermath of an earthquake. The work presented here sheds new light on the action plans to be taken by the common public and public agencies, before, during and after earthquakes to safeguard lives of people and minimize loss of assets. This carefully presented book articulates various factors related to earthquake preparedness, and develops guidelines and useful tips for communicating them to relevant stakeholders. The book has been divided into three parts: (i) the first providing background which explains earthquakes in general and seismicity of India (ii) the second explores earthquake preparedness intended for individuals, families and various stakeholders, and (iii) the final section which describes various strategies for communities to prepare themselves for a future earthquake.
The natural disasters are the killer agents which can/can't be predicted even though we have modern technology. Every year, in one place or another, disasters striking which is devastating the area and surroundings, leading to ecological disruption besides huge loss of life and property. India is vulnerable to cyclones, landslides/avalanches, earthquakes, floods, droughts, forest fires, epidemics, etc. The 5700-km long coast of India, with its dense population is vulnerable to cyclones/low depressions, tsunamis, etc. The 2400-km long rugged Himalayan terrain is vulnerable to landslides, avalanches and earthquakes. India is not only vulnerable to natural disasters, it is also experiencing industrial accidents. The Bhopal Gas tragedy is one of the major man-made disasters in the world. The state of Andhra Pradesh has 970-km long coastline with two major rivers, etc. The conference is conducted in Visakhapatnam, is famous for industries and tourism. Recently, several industrial accidents took place, besides major natural disasters like Hud-Hud, etc. Disaster management shall be implemented from the grass root level in vulnerable areas to improve the capacity building, so as to minimize the losses. The capacity building coupled with technology results in reduction of loss of life and property.
This book applies a behavioral point of view to individuals' fire safety in historic buildings. It outlines theoretical and operative issues, based on recent studies and international guidelines. Firstly, critical issues for Building Heritage fire safety are widely discussed, by including the modelling of human factor and man-environment-fire interference in these architectural spaces. A significant part of the book includes a discussion on emergency modeling and simulation. A source code for representing the fire evacuation process (including man-evacuation facilities interactions) is offered to the reader. Methods for effectiveness assessment of risk-reducing solutions are provided and tested in a case-study. Being a structured approach to occupants-related problems during a fire in heritage buildings, it offers an innovative methodology and practical examples that researchers and designers can use as a guide when proposing and testing solutions. Evaluation indexes for effectiveness assessment (also useful for future guidelines or handbooks) are included. Readers are encouraged to understand these indexes within the proposed approach, so as to extend their applications and possibilities of how to introduce human behaviors-based solutions in other fields. Lastly, attention is focused on the proposal and evaluation of low-impact and not-invasive strategies, such as ones based on wayfinding elements. From this point of view, the pros and cons of wayfinding systems are discussed: these are important today, especially for fire-safety designers, because of the ongoing innovations in this field.
The failures of electronic controls, which can cause loss of life and property, are discussed from the perspective of both the design and manufacturing functions and clarified for the responsible forensic team. Many pitfalls of the fast-paced product introduction environment for industrial and consumer products are discussed to help minimize the number of electronic control fires and other menacing events of today. The author clearly links the design, manufacturing and forensic technical communities in the development of electronic control devices, which include a wide array of products, from auto key fobs to furnace electronic control boards. The information included ensures a final product that will not end up in litigation (or at least not be found guilty during litigation), putting into plain words how to determine if a suspect electronic appliance control is the cause of a fire or the result of a fire. Containing invaluable data learned through many years of new product designs, development and production cycles, this brief features illustrated bench experiments conducted by the author. Professionals and researchers working in fire protection, electrical engineering, or building safety will find this brief an essential resource.
This book investigates the feasibility of developing a tool that enables fire departments to estimate the value of their services to a community in terms of environmental and financial impact. This book provides a summary of this effort, which resulted in development of a prototype tool for fire department use. The impact of fire on a community is usually measured in terms of the number of fires, human casualties, and property damage. There are, however, more subtle impacts of fire that are not so easily estimated but contribute to the measure of overall performance of the fire service in protecting a community. While environmental and economic impact assessment methodologies exist as separate systems, they generally require a high level of knowledge that is outside the scope of most fire departments. A relatively simple methodology for estimating the environmental and economic impact of fires helps communities understand the degree to which fire department activities can benefit a community's environmental and economic well-being. The scope and approach for this prototype tool is explained, including risk assessment, cost benefit analysis, life cycle assessment, integration and implementation, and sensitivity and uncertainty analysis. It includes multiple case studies and offers statistical support for future expansion of the tool. Fire service professionals will find this a useful new approach to presenting value in a community, as well as a method for examining their own financial and environmental plans.
This important new manual goes beyond the published NFPA standards on installation of standpipe systems to include the rules in the International Building Code, municipal fire codes, the National Fire Code of Canada, and information on inspection, testing, and maintenance of standpipe systems. Also covered are the interactions between standpipe and sprinkler systems, since these important fire protection systems are so frequently installed together. Illustrated with design examples and practical applications to reinforce the learning experience, this is the go-to reference for engineers, architects, design technicians, building inspectors, fire inspectors, and anyone that inspects, tests or maintains fire protection systems. Fire marshals and plan review authorities that have the responsibility for reviewing and accepting plans and hydraulic calculations for standpipe systems are also an important audience, as are firefighters who actually use standpipe systems. As a member of the committees responsible for some of these documents, Isman also covers the rules of these standards and codes as they are written, but also provides valuable insight as to the intent behind the rules. A noted author and lecturer, Professor Isman was an engineer with the National Fire Sprinkler Association (NFSA), is an elected Fellow of the Society of Fire Protection Engineers (SFPE), and currently Clinical Professor in the Department of Fire Protection Engineering at University of Maryland.
Major events-notably the Broadgate fire in London, New York's World Trade Center collapse, and the Windsor Tower fire in Madrid-as well as the enlightening studies at the Cardington fire research project have given international prominence to performance-based structural fire engineering. As a result, structural fire engineering has increasingly attracted the interest not only of fire and structural engineers but also of researchers and students. And studies in recent years have generated a vast number of findings. Performance-Based Fire Engineering of Structures summarizes the latest knowledge on performance-based approaches to structural fire engineering, enabling readers to critically assess research in the field. Whereas most recent books have been mainly concerned with dissemination of principles encapsulated in established codes of practice such as the Eurocodes, this work addresses in depth: Global structural behaviour and modelling Progressive collapse of structures in fire and the importance of connection robustness The integrity of compartmentation in fire Structural fire engineering under realistic fire conditions and its implications for material properties The limitations of research results and design methods The unexploited potential for advanced fire engineering design This authoritative book draws on the work of internationally active researchers who were core members of the European Network project's COST C26 working group on fire resistance. It helps readers develop a thorough understanding of how to use advanced fire engineering design to improve structural safety and reduce construction costs. |
![]() ![]() You may like...
Strikes and Revolution in Russia, 1917
Diane P. Koenker, William G. Rosenberg
Paperback
R2,114
Discovery Miles 21 140
Formulating Ideas Uninterrupted
A P Oliveira, Angela Lee
Hardcover
|