![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Civil engineering, surveying & building > Building construction & materials > Fire protection & safety
Major events-notably the Broadgate fire in London, New York's World Trade Center collapse, and the Windsor Tower fire in Madrid-as well as the enlightening studies at the Cardington fire research project have given international prominence to performance-based structural fire engineering. As a result, structural fire engineering has increasingly attracted the interest not only of fire and structural engineers but also of researchers and students. And studies in recent years have generated a vast number of findings. Performance-Based Fire Engineering of Structures summarizes the latest knowledge on performance-based approaches to structural fire engineering, enabling readers to critically assess research in the field. Whereas most recent books have been mainly concerned with dissemination of principles encapsulated in established codes of practice such as the Eurocodes, this work addresses in depth: Global structural behaviour and modelling Progressive collapse of structures in fire and the importance of connection robustness The integrity of compartmentation in fire Structural fire engineering under realistic fire conditions and its implications for material properties The limitations of research results and design methods The unexploited potential for advanced fire engineering design This authoritative book draws on the work of internationally active researchers who were core members of the European Network project's COST C26 working group on fire resistance. It helps readers develop a thorough understanding of how to use advanced fire engineering design to improve structural safety and reduce construction costs.
This book presents the proceedings of the International Conference on Durability of Critical Infrastructure. Monitoring and Testing held in Satov, Czech Republic from 6 to 9 December 2016. It discusses the developments in the theoretical and practical aspects in the fields of Safety, Sustainability and Durability of the Critical Infrastructure. The contributions are dealing with monitoring and testing of structural and composite materials with a new methods for their using for protection and prevention of the selected objects.
This book provides a consistent scientific background to engineering calculation methods applicable to analyses of materials reaction-to-fire, as well as fire resistance of structures. Several new and unique formulas and diagrams which facilitate calculations are presented. It focuses on problems involving high temperature conditions and, in particular, defines boundary conditions in a suitable way for calculations. A large portion of the book is devoted to boundary conditions and measurements of thermal exposure by radiation and convection. The concepts and theories of adiabatic surface temperature and measurements of temperature with plate thermometers are thoroughly explained.Also presented is a renewed method for modeling compartment fires, with the resulting simple and accurate prediction tools for both pre- and post-flashover fires. The final chapters deal with temperature calculations in steel, concrete and timber structures exposed to standard time-temperature fire curves. Useful temperature calculation tools are included, and several examples demonstrate how the finite element code TASEF can be used to calculate temperature in various configurations. Temperature Calculation in Fire Safety Engineering is intended for researchers, students, teachers, and consultants in fire safety engineering. It is also suitable for others interested in analyzing and understanding fire, fire dynamics, and temperature development. Review questions and exercises are provided for instructor use.
This SpringerBrief offers careful assessments of the appropriateness and effectiveness of currently available methodologies for fire flow. It explains the water supply requirements for firefighting including rate of flow, the residual pressure required at that flow, and the duration that is necessary to control a major fire in a specific structure. First reviewing existing fire flow calculation methodologies in the U.S. and globally, the authors determine the new information necessary to validate the existing fire flow calculation methodologies. After identifying 19 methods from the U.S., UK, France, Germany, the Netherlands, New England, and Canada, two types of methods are evaluated: those for building planning based on fire and building code requirements, and those for on-scene fire service use. Building planning methods are also examined, including an explanation of the range of building variables that determine fire flow. A survey form for fire departments is provided to help fire departments identify key predictive features based on construction and building parameters. Researchers and professionals in fire engineering will find the recommendations in Evaluation of Fire Flow Methodologies valuable.
The book covers the topic of geopolymers, in particular it highlights the relationship between structural differences as a result of variations during the geopolymer synthesis and its physical and chemical properties. In particular, the book describes the optimization of the thermal properties of geopolymers by adding micro-structural modifiers such as fibres and/or fillers into the geopolymer matrix. The range of fibres and fillers used in geopolymers, their impact on the microstructure and thermal properties is described in great detail. The book content will appeal to researchers, scientists, or engineers who are interested in geopolymer science and technology and its industrial applications.
This SpringerBrief focuses on the use of egress models to assess the optimal strategy for total evacuation in high-rise buildings. It investigates occupant relocation and evacuation strategies involving the exit stairs, elevators, sky bridges and combinations thereof. Chapters review existing information on this topic and describe case study simulations of a multi-component exit strategy. This review provides the architectural design, regulatory and research communities with a thorough understanding of the current and emerging evacuation procedures and possible future options. A model case study simulates seven possible strategies for the total evacuation of two identical twin towers linked with two sky-bridges at different heights. The authors present the layout of the building and the available egress components including both vertical and horizontal egress components, namely stairs, occupant evacuation elevators (OEEs), service elevators, transfer floors and sky-bridges. The evacuation strategies employ a continuous spatial representation evacuation model (Pathfinder) and are cross-validated by a fine network model (STEPS). Assessment of Total Evacuation Systems for Tall Buildings is intended for practitioners as a tool for analyzing evacuation methods and efficient exit strategies. Researchers working in architecture and fire safety will also find the book valuable.
"Drysdale's book is by far the most comprehensive - everyone in the
office has a copy...now including me. It holds just about
everything you need to know about fire science." After 25 years as a bestseller, Dougal Drysdale's classic introduction has been brought up-to-date and expanded to incorporate the latest research and experimental data. Homework problems are included, with solutions, and others are available on the accompanying website at www.wiley.com/go/drysdale. Essential reading for all involved in the field from undergraduate and postgraduate students to practising fire safety engineers and fire prevention officers, "An Introduction to Fire Dynamics" is unique in that it addresses the fundamentals of fire science and fire dynamics, thus providing the scientific background necessary for the development of fire safety engineering as a professional discipline. "An Introduction to Fire Dynamics"Includes experimental data relevant to the understanding of fire behaviour of materials;Features numerical problems with answers illustrating the quantitative applications of the concepts presented;Extensively course-tested at Worcester Polytechnic Institute and the University of Edinburgh, and widely adopted throughout the world;Will appeal to all those working in fire safety engineering and related disciplines.
Environmental concerns and advances in architectural technologies have lead to a greater number of green buildings or buildings with green, eco-friendly elements. However, from a practical standpoint, there is no incident reporting system in the world that tracks data on fire incidents in green buildings. Fire safety objectives are not explicitly considered in most green rating schemes, and green design features have been associated with photovoltaic panels and roof materials, lightweight timber frame buildings, and combustible insulation materials. Fire Safety Challenges of Green Buildings is the result of an extensive global literature review that sought to identify issues related to green building elements or features and ways to ensure those issues are tracked for future improvement. The book identifies actual incidents of fires in green buildings or involving green building elements, points out issues with green building elements that would increase fire risk, clarifies reports and studies that address ways to reduce fire risk in green design elements, and compares research studies that explicitly incorporate fire safety into green building design. The authors also pinpoint gaps and specific research needs associated with understanding and addressing fire risk and hazards with green building design. Using their data, the authors developed a set of matrices relating these green attributes and potential fire hazards. With these comprehensive tools, potential mitigation strategies for addressing the relative increase in fire risk or hazard associated with the green building elements and features have been identified. Fire Safety Challenges of Green Buildings is intended for practitioners as a tool for analyzing building safety issues in green architecture and developing methods for tracking data related to green design elements and their potential hazards. Researchers working in a related field will also find the book valuable.
Fundamentally, fire prevention and control refer to systems and practices that increase a facility's ability to avoid fires, limit the development and spread of fires, and rapidly and effectively control fires. Changing safety codes and regulations along with recent technological advances have rendered the first edition of this popular handbook somewhat out of date and left fire safety professionals without a current, reliable reference devoted to their needs.
The Study of Movement Speeds Down Stairs closely examines forty-three unique case studies on movement patterns down stairwells. These studies include observations made during evacuation drills, others made during normal usage, interviews with people after fire evacuations, recommendations made from compiled studies, and detailed results from laboratory studies. The methodology used in each study for calculating density and movement speed, when known, are also presented, and this book identifies an additional seventeen variables linked to altering movement speeds. The Study of Movement Speeds Down Stairs is intended for researchers as a reference guide for evaluating pedestrian evacuation dynamics down stairwells. Practitioners working in a related field may also find this book invaluable.
Advanced Analysis and Design for Fire Safety of Steel Structures systematically presents the latest findings on behaviours of steel structural components in a fire, such as the catenary actions of restrained steel beams, the design methods for restrained steel columns, and the membrane actions of concrete floor slabs with steel decks. Using a systematic description of structural fire safety engineering principles, the authors illustrate the important difference between behaviours of an isolated structural element and the restrained component in a complete structure under fire conditions. The book will be an essential resource for structural engineers who wish to improve their understanding of steel buildings exposed to fires. It is also an ideal textbook for introductory courses in fire safety for master's degree programs in structural engineering, and is excellent reading material for final-year undergraduate students in civil engineering and fire safety engineering. Furthermore, it successfully bridges the information gap between fire safety engineers, structural engineers and building inspectors, and will be of significant interest to architects, code officials, building designers and fire fighters. Dr. Guoqiang Li is a Professor at the College of Civil Engineering of Tongji University, China; Dr. Peijun Wang is an Associate Professor at the School of Civil Engineering of Shandong University, China.
This volume gathers the latest advances, innovations, and applications in the field of seismic engineering, as presented by leading researchers and engineers at the 1st International Workshop on Energy-Based Seismic Engineering (IWEBSE), held in Madrid, Spain, on May 24-26, 2021. The contributions cover a diverse range of topics, including energy-based EDPs, damage potential of ground motion, structural modeling in energy-based damage assessment of structures, energy dissipation demand on structural components, innovative structures with energy dissipation systems or seismic isolation, as well as seismic design and analysis. Selected by means of a rigorous peer-review process, they will spur novel research directions and foster future multidisciplinary collaborations.
Structural Design for Fire Safety, 2nd edition Andrew H. Buchanan, University of Canterbury, New Zealand Anthony K. Abu, University of Canterbury, New Zealand A practical and informative guide to structural fire engineering This book presents a comprehensive overview of structural fire engineering. An update on the first edition, the book describes new developments in the past ten years, including advanced calculation methods and computer programs. Further additions include: calculation methods for membrane action in floor slabs exposed to fires; a chapter on composite steel-concrete construction; and case studies of structural collapses. The book begins with an introduction to fire safety in buildings, from fire growth and development to the devastating effects of severe fires on large building structures. Methods of calculating fire severity and fire resistance are then described in detail, together with both simple and advanced methods for assessing and designing for structural fire safety in buildings constructed from structural steel, reinforced concrete, or structural timber. Structural Design for Fire Safety, 2nd edition bridges the information gap between fire safety engineers, structural engineers and building officials, and it will be useful for many others including architects, code writers, building designers, and firefighters. Key features: Updated references to current research, as well as new end-of-chapter questions and worked examples. Authors experienced in teaching, researching, and applying structural fire engineering in real buildings. A focus on basic principles rather than specific building code requirements, for an international audience. An essential guide for structural engineers who wish to improve their understanding of buildings exposed to severe fires and an ideal textbook for introductory or advanced courses in structural fire engineering.
This book includes examinations of the role of full-scale buildings in the development of structural design methods and recommendations on improved construction practice and safety of building occupants in the event of fire and explosion.
Designing structures to withstand the effects of fire is challenging, and requires a series of complex design decisions. This third edition of Fire Safety Engineering Design of Structures provides practising fire safety engineers with the tools to design structures to withstand fires. This text details standard industry design decisions, and offers expert design advice, with relevant historical data. It includes extensive data on materials' behaviour and modeling -- concrete, steel, composite steel-concrete, timber, masonry, and aluminium. While weighted to the fire sections of the Eurocodes, this book also includes historical data to allow older structures to be assessed. It extensively covers fire damage investigation, and includes as far back as possible, the background to code methods to enable the engineer to better understand why certain procedures are adopted. What's new in the Third Edition? An overview in the first chapter explains the types of design decisions required for optimum fire performance of a structure, and demonstrates the effect of temperature rise on structural performance of structural elements. It extends the sections on less common engineering materials. The section on computer modelling now includes material on coupled heat and mass transfer, enabling a better understanding of the phenomenon of spalling in concrete. It includes a series of worked examples, and provides an extensive reference section. Readers require a working knowledge of structural mechanics and methods of structural design at ambient conditions, and are helped by some understanding of thermodynamics of heat transfer. This book serves as a resource for engineers working in the field of fire safety, consultants who regularly carry out full fire safety design for structure, and researchers seeking background information. Dr John Purkiss is a chartered civil and structural engineer/consultant and former lecturer in structural engineering at Aston University, UK. Dr Long-Yuan Li is Professor of Structural Engineering at Plymouth University, UK, and a Fellow of the Institution of Structural Engineers.
This book covers fire and extinguishing theory and reliability theory and how to validate any survey within the field of engineering. It's based on a year's study of historical literature, using critical review and document analysis. It covers how data is collected, analyzed, and presented. It discusses reliability theory, calculation, and uncertainty analysis, and after validating proposes a new methodology and approach using general scientific value and examples. Features Includes an in-depth study on relevant sprinkler reliability studies based for the first time on critical review and document analysis Presents a scientific validating analysis of studies based on how a survey should be conducted Critiques the fact that reliability of a sprinkler system as its ability to function as designed, has never been subject to surveys Suggestions for new survey methodology that can be used for the field of engineering, including all active and passive fire protection measures Discusses extinguishing theory, general design of extinguishing systems, different systems and the reliability of them all "Reliability Data on Fire Sprinkler Systems" will be of interest to Reliability Engineers, Systems, Architecture and Engineers, Design, Maintenance, Mechanical and, Civil Engineers, as well as those working in the field of fire protection and building and fire codes.
"Evacuation from Fires, Volume II" in this important new series was developed because of the fundamental importance of removing occupants from harm's way during building fires and the need to demonstrate new analytical techniques and tools for the design and evaluation of exit requirements during fire emergencies. The corollary issue of elevator transport for evacuation and fire fighter use during fire emergencies is also discussed in this volume.
Features papers directed to fire protection in various environments other than building structures including fuel transporting vehicles, spacecraft, a sports arena, an offshore oil rig and propane fueling bus facilities.
This book provides chemists with technical insight on pyrotechnics and explosives. It emphasizes basic chemical principles and practical, hands-on knowledge in the preparation of energetic materials. It examines the interactions between and adaptations of pyrotechnics to changing technology in areas such as obscuration science and low-signature flame emission. The updated third edition discusses chemical and pyrotechnic principles, components of high-energy materials, elements of ignition, propagation, and sensitivity. It offers heat compositions, including ignition mixes, delays, thermites, and propellants and investigates the production of smoke and sound as well as light and color.
This book addresses smoke management in enclosures and provides a platform for understanding the principles of smoke propagation and spread, heat release rate, and the effect of sprinklers on suppression. Considering how sprinkler systems have become a vital part of firefighting systems in enclosures, the book evaluates the effect of sprinkler activation on the behavior of fire-induced smoke and the interaction of water particles with the smoke layer. It studies two base case models where the sprinklers' effect on the fire curve was considered. This base case was assessed with two smoke extraction systems, namely, a ducted system and an impulse ventilation system. By focusing on key elements, such as visibility, ceiling height, and fire curve, the results of the study will be of interest to mechanical engineers, HVAC professionals, and fire safety professionals and investigators. Features Includes case models and scenarios to evaluate real examples from different applications Studies the effect of sprinkler activation on the behavior of fire-induced smoke Explores various factors, such as ceiling height, sprinkler operating pressure, and fire curve Discusses the interaction of water particles with the smoke layer Utilizes Pyrosim software for CFD modeling
The world has spent the majority of 2020 enduring an unpreceded crisis caused by the COVID-19 pandemic. The impact of this crisis has been enormous, and the situation has yet to be resolved. It is still difficult to anticipate when the pandemic will end and how our lives will have changed after the crisis. Higher educational institutions (HEIs) have also had to undergo tremendous transformation, in particular, changing a conventional educational, teaching, and learning system to a digital and online mode and cancelling or postponing important events such as graduation and entrance ceremonies and entrance examinations. In addition, a number of HEIs have been facing financial constraints due to reduced enrolment, particularly from overseas. Students have missed opportunities to meet their family and friends, causing profound psychosocial impact and stress for all concerned. Simultaneously, however, the situation has given HEIs a good opportunity to consider their disaster preparedness, response, and recovery capacity on campus. Some surveys have highlighted a lack of preparedness for pandemic and other hazardous risks beyond natural hazards. Safety issues are a top priority at HEIs because they bring together a number of students, faculty, and staff. This book covers the experiences and lessons learned from HEIs in preparedness, response, and recovery during the COVID-19 pandemic to prepare for such calamities beyond natural disasters in the future. The book consists of 15 chapters divided into three major sections. They highlight the importance of HEIs' governance issues in disaster risk management, examine the challenges that HEIs have faced during the pandemic and the implementation of new teaching and learning methodologies, and provide innovative responses and preparedness by HEIs based on science and technology, respectively.
A collection of papers that address such issues as model limits and reliability, emerging expert systems and integrated gas and solid phase combustion simulation models.
Besides its obvious destructive potential, military R&D also serves to protect human lives, equipment and facilities against the effects of weapons. Concepts have therefore been developed that improve safety of stationary and mobile facilities against pressure waves, thermal radiation and fire. Effective, fast fire extinguishing equipment has been designed for tank compartments and motors. Closed buildings are demolished and landmines are removed with gas and dust explosions. Stringent safety requirements have been developed for the production of ammunition and explosives. Military and related industries have accumulated a vast knowledge and sophisticated experience that are very valuable in a variety of civil applications. The knowledge is based on theoretical and experimental research work, the origin of which sometimes dates back many centuries. It has often been classified and therefore has remained unknown to the civilian population, until now. |
![]() ![]() You may like...
War and Peace in the Global Village
Marshall McLuhan, Quentin Fiore
Paperback
|