![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Energy technology & engineering > Fossil fuel technologies > Gas technology
Oil and Gas Chemistry Management Series brings an all-inclusive suite of tools to cover all the sectors of oil and gas chemicals from drilling, completion to production, processing, storage, and transportation. The third reference in the series, Recovery Improvement, delivers the critical chemical basics while also covering the latest research developments and practical solutions. Organized by the type of enhanced recovery approaches, this volume facilitates engineers to fully understand underlying theories, potential challenges, practical problems, and keys for successful deployment. In addition to the chemical, gas, and thermal methods, this reference volume also includes low-salinity (smart) water, microorganism- and nanofluid-based recovery enhancement, and chemical solutions for conformance control and water shutoff in near wellbore and deep in the reservoir. Supported by a list of contributing experts from both academia and industry, this book provides a necessary reference to bridge petroleum chemistry operations from theory into more cost-efficient and sustainable practical applications.
Practical Wellbore Hydraulics and Hole Cleaning presents a single resource with explanations, equations and descriptions that are important for wellbore hydraulics, including hole cleaning. Involving many moving factors and complex issues, this book provides a systematic and practical summary of solutions, thus helping engineers understand calculations, case studies and guidelines not found anywhere else. Topics such as the impact of temperature and pressure of fluid properties are covered, as are vertical and deviated-from-vertical hole cleaning differences. The importance of bit hydraulics optimization, drilling fluid challenges, pressure drop calculations, downhole properties, and pumps round out the information presented. Packed with example calculations and handy appendices, this book gives drilling engineers the tools they need for effective bit hydraulics and hole cleaning operation design.
Compression Machinery for Oil and Gas is the go-to source for all oil and gas compressors across the industry spectrum. Covering multiple topics from start to finish, this reference gives a complete guide to technology developments and their applications and implementation, including research trends. Including information on relevant standards and developments in subsea and downhole compression, this book aids engineers with a handy, single resource that will help them stay up-to-date on the compressors needed for today's oil and gas applications.
Natural gas continues to be the fuel of choice for power generation
and feedstock for a range of petrochemical industries. This trend
is driven by environmental, economic and supply considerations with
a balance clearly tilting in favor of natural gas as both fuel and
feedstock. Despite the recent global economic uncertainty, the oil
and gas industry is expected to continue its growth globally,
especially in emerging economies. The expansion in LNG capacity
beyond 2011 and 2012 coupled with recently launched and on-stream
GTL plants poses real technological and environmental challenges.
These important developments coupled with a global concern on green
house gas emissions provide a fresh impetus to engage in new and
more focused research activities aimed at mitigating or resolving
the challenges facing the industry.
Advances in Gas Processing: Proceedings of the 2nd Annual Gas Processing Symposium 11-1 4 January, 2010, Doha, Qatar, reviews the state of knowledge in gas processing. The contributions are organized around five main themes: (i) environmental sustainability; (ii) natural gas processing technologies; (iii) energy efficiency in operations; (iv) design and safety; and (v) operational excellence. The papers on environmental sustainability cover topics such as the biogasification of waste monoethanolamine; the role of LNG in a carbon constrained world; and sustainable water management. The papers on natural gas processing technologies include the removal of acid gases from natural gas streams via membrane technology and selective control of Fischer-Tropsch synthesis hydrocarbons product distribution. The papers on energy efficiency in operations cover lifted turbulent jet flame in a cross-flow; novel hybrid biomass and coal processes; and the adoption of plug-in hybrid electric vehicles (PHEVs). The papers on design and safety include studies on the optimal design and operation of a GTL process and efficient design, operating, and control strategies for LNG plants. The papers on operational excellence deal with topics such as chemicals in gas processing; the monitoring and optimization of hydrocarbon separation equipment; and the inhibition of gas hydrate formation.
Liquid loading can reduce production and shorten the life-cycle of
a well costing a company millions in revenue. A handy guide on the
latest techniques, equipment, and chemicals used in de-watering gas
wells, Gas Well Deliquification, 2nd ed. continues to be the
engineer's choice for recognizing and minimizing the effects of
liquid loading. The second edition serves as a guide discussing the
most frequently used methods and tools used to diagnose liquid
loading problems and reduce the detrimental effects of liquid
loading on gas production.
The Hydrogen Energy Transition addresses the key issues and actions
that need to be taken to achieve a changeover to hydrogen power as
it relates to vehicles and transportation, and explores whether
such a transition is likely, or even possible. Government agencies
and leaders in industry recognize the need to utilize hydrogen as
an energy source in order to provide cleaner, more efficient, and
more reliable energy for the world's economies. This book analyzes
this need and presents the most up-to-date government, industry,
and academic information analyzing the use of hydrogen energy as an
alternative fuel.
Liquefied Natural Gas (LNG) is the only viable way to extract and transport natural gas from areas not serviceable by a pipeline, but it also poses safety risks. This book examines the safety concerns regarding LNG, and examines the debate between its advocates and its opponents. The text considers risks on the extraction, transportation, and maintenance of LNG; includes discussion of case studies and LNG-related accidents over the past half-century; and summerizes the findings of the Governmental Accountability Office's (GAO) survey of nineteen LNG experts from across North America and Europe.
Corrosion in Amine Treating Units, Second Edition presents a fully updated resource with a broadened focus that includes corrosion in not only refining operations, but also in oil and gas production. New sections have been added on inhibition, corrosion modeling and metallic coatings. More detailed descriptions of the degradation mechanisms and Integrity Operating Windows (IOW) are now included, as is more in-depth information on guidelines for what sections and locations are most vulnerable to corrosion and how to control corrosion in amine units e.g., using corrosion Loop descriptions and providing indicative integrity operating windows for operation to achieve a suitable life expectance.
Primarily this book describes the thermodynamics of gas turbine
cycles. The search for high gas turbine efficiency has produced
many variations on the simple "open circuit" plant, involving the
use of heat exchangers, reheating and intercooling, water and steam
injection, cogeneration and combined cycle plants. These are
described fully in the text. A review of recent proposals for a number of novel gas turbine
cycles is also included. In the past few years work has been
directed towards developing gas turbines which produce less carbon
dioxide, or plants from which the CO2 can be disposed of; the
implications of a carbon tax on electricity pricing are
considered. In presenting this wide survey of gas turbine cycles for power generation the author calls on both his academic experience (at Cambridge and Liverpool Universities, the Gas Turbine Laboratory at MIT and Penn State University) and his industrial work (primarily with Rolls Royce, plc.) The book will be essential reading for final year and masters students in mechanical engineering, and for practising engineers.
Gaseous photomultipliers are defined as gas-filled devices capable of recording single ultraviolet (UV) and visible photons with high position resolution. Used in a variety of research areas, these detectors can be paired with computers to treat and store imaging information of UV-light. Position-Sensitive Gaseous Photomultipliers: Research and Applications explores the advancement of gaseous detectors as applied for single photon detection. Emphasizing emerging perspectives and new ways to apply gaseous detectors across research fields, this research-based publication is an essential reference source for engineers, physicists, graduate-level students, and researchers.
Arc welding is one of the key processes in industrial
manufacturing, with welders using two types of processes - gas
metal arc welding (GMAW) and gas tungsten arc welding (GTAW). This
new book provides a survey-oriented account of the modeling,
sensing, and automatic control of the GMAW process. Providing an overview of a variety of topics, this book looks at
the classification of various welding processes; the modeling
aspects of GMAW; physics of welding; metal transfer
characteristics; weld pool geometry; process voltages and
variables; power supplies; sensing (sensors for arc length, weld
penetration control, weld pool geometry, using optical and
intelligent sensors); control techniques of PI, PID, multivariable
control, adaptive control, and intelligent control. Finally, the
book illustrates a case study presented by the authors and their
students at Idaho State University, in collaboration with
researchers at the Idaho National Engineering and Environment
Laboratory.
Until now the topic of gas dynamics has been included as a section in comprehensive textbooks on physical chemistry, or discussed at too high a level for undergraduate or graduate students. This book, based on courses given by the author in several countries, aims to fill this gap. To make the subject more accessible to students, there is a very strong emphasis on current applications of the theory. Part I introduces the kinetic theory of gases with relevance to molecular energies and intermolecular forces. Part II focuses on how these theories are used to explain real techniques and phenomena involving gases, allowing students to answer questions such as: 'How does a Laser work?' and 'What is a shock wave?' By stressing the practical implications, the book explains the theory of gas dynamics in a highly readable and comprehensible manner.
In recent years, interest in the technology of gas cleaning at high temperatures has grown, driven in part by environmental legislation but also by demands for increases in process efficiency and intensity - notably for power generation and waste incineration. Some techniques for high temperature gas cleaning have now reached practical exploitation, and industrial applications are described by some of the contributors to this volume. This book should be of interest to all in the process industries and in the associated research community who are concerned with collecting particulates and gaseous components at temperatures above 200 degrees centigrade. Many of the major industrial trials of hot gas cleaning techniques since 1986, in both North America and Europe, are included. In particular, authors from both academic and industrial sectors consider: developments in processes and devices to remove particles from hot gas streams; measurement and analysis of particulate and gaseous components; combined processes for the removal of vapours and acid gases using "dry scrubbing" and related techniques; and applications in the process industries and in advanced power generation. This book should be of interest to chemical and process engineers in the industrial and academic sectors.
Coalbed gas has been considered a hazard since the early 19th century when the first mine gas explosions occurred in the United States in 1810 and France in 1845. In eastern Australia methane-related mine disasters occurred late in the 19th century with hundreds of lives lost in New South Wales, and as recently as 1995 in Queensland's Bowen Basin. Ventilation and gas drainage technologies are now in practice. However, coalbed methane recently is becoming more recognized as a potential source of energy; rather than emitting this gas to the atmosphere during drainage of gassy mines it can be captured and utilized. Both economic and environmental concerns have sparked this impetus to capture coalbed methane. The number of methane utilization projects has increased in the United States in recent years as a result, to a large extent, of development in technology in methane recovery from coal seams. Between 1994 and 1997, the number of mines in Alabama, Colorado, Ohio, Pennsylvania, Virginia, and West Virginia recovering and utilizing methane increased from 1 0 to 17. The Environmental Protection Agency estimates that close to 49 billion cubic feet (Bet) of methane was recovered in 1996, meaning that this amount was not released into the atmosphere. It is estimated that in the same year total emissions of methane equaled 45. 7 Bcf. Other coal mines are being investigated at present, many ofwhich appear to be promising for the development of cost-effective gas recovery.
This book had its genesis in a symposium on gas hydrates presented at the 2003 Spring National Meeting of the American Institute of Chemical Engineers. The symposium consisted of twenty papers presented in four sessions over two days. Additional guest authors were invited to provide continuity and cover topics not addressed during the symposium. Gas hydrates are a unique class of chemical compounds where molecules of one compound (the guest material) are enclosed, without bonding chemically, within an open solid lattice composed of another compound (the host material). These types of configurations are known as clathrates. The guest molecules, u- ally gases, are of an appropriate size such that they fit within the cage formed by the host material. Commonexamples of gas hydrates are carbon dioxide/water and methane/water clathrates. At standard pressure and temperature, methane hydrate contains by volume 180 times as much methane as hydrate. The United States Geological Survey (USGS) has estimated that there is more organic carbon c- tained as methane hydrate than all other forms of fossil fuels combined. In fact, methane hydrates could provide a clean source of energy for several centuries. Clathrate compounds were first discovered in the early 1800s when Humphrey Davy and Michael Faraday were experimenting with chlorine-water mixtures.
Starting at the dawn of science, History of Industrial Gases traces the development of gas theory from its Aristotelian roots to its modern achievements as a global industry. Dr. Almqvist explores how environmental protection, geographical areas, and the drive for higher purity and efficiency affected development in the nineteenth and twentieth centuries, and how they will influence the future of this rapidly expanding industry. The roles of major contributing companies are also discussed to provide an informative and thought-provoking treatise valuable to anyone who studies or works in this fascinating field.
Petroleum engineering now has its own true classic handbook that
reflects the profession's status as a mature major engineering
discipline. The result of a fifteen-year effort, this handbook covers the
gamut of oil and gas engineering topics to provide a reliable
source of engineering and reference information for analyzing and
solving problems. It also reflects the growing role of natural gas
in industrial development by integrating natural gas topics
throughout both volumes.
This volume contains selected contributions to the second Hydrogen Power, Theoretical and Engineering Solutions, International Symposium (HYPOTHESIS II), held in Grimstad, Norway, from 18 to 22 August 1997. The scientific programme included 10 oral sessions and a poster session. Widely based national committees, supported by an International Scientific Advisory Board and the International Coordinators, made every effort to design and bring together a programme of great excellence. The more than one hundred papers submitted represent the efforts of research groups from all over the World. The international character of HYPOTHESIS II has been augmented by contributions coming from seven countries outside Europe. The contributions reflect the progress that has been achieved in hydrogen technology aimed primarily at hydrogen as the ultimate energy vector. This research have already yielded mature technologies for mass production in many areas. These and future results will be of increased interest and importance as global and local environmental issues move higher up the political agenda. In order to facilitate new contacts between scientists and strengthen existing ones, the symposium incorporated an extensive social program managed by the Conference Administrator, Ms. Ann Y stad.
The impetus for this book is twofold. First, in response to the well documented oil shocks of the 1970s there arose a resurgence of research activity in the synthetic fuels area. This book attempts to capture some of the leading edge advances which have been made over the past decade in the area of the chemistry of coal conversion. The second driving force behind this book is to jog people's memories about the fundamental truths of the energy industry, i. e. , there IS a finite amount of liquid hydrocarbons on and under the earth's surface, most of the easy to find, produce, and use liquid hydrocarbons have been exploited, and the real need continues to be for liquid hydrocarbons for use as trans portation fuels. The uncertainty is not if synthetic liquids will be needed, but rat her when they will be needed. The inability to answer that question accurately caused many of the financial and research disruptions following the double shocks of the 1970s. Since future projections can only be based upon the historical record, they cannot anticipate major disruptions such as, e. g. , discovery of huge easily producible oils fields, or, on the other side, global or regional economic disruptions such as warfare. With this level of uncertainty, then, the second impetus is to point out how much research remains to be done at a time when fiscal support for fossil fuels research in the Uni ted States is rapidly spiraling downward.
In recent years, interest in the technology of gas cleaning has grown, driven partly by environmental legislation, but also by demands for increases in process efficiency and intensity - notable for power generation and waste incineration. This book, which leads on from our successful Gas Cleaning at High Temperatures, describes the present state of the art and its industrial applications.
In contrast to traditional combustion, gasification technologies offer the potential for converting coal and low or negative-value feedstocks, such as petroleum coke and various waste materials into usable energy sources or chemicals. With a growing number of companies operating and marketing systems based on gasification concepts worldwide, this book combines the latest information and real-world experience in developing gasification technologies. Gasification Technologies: A Primer for Engineers and Scientists discusses gasification techniques and the benefits of each technology, including gas clean-up technologies and those used in hybrid systems and fuel cells. It also accounts for the primary products that are recovered and explains how these products are purified and can be used as fuel or for applications in petrochemical processes. The book describes the conditions in which optimal value intermediate products can be recovered, focusing on key factors such as oxygen or air blown reactor, operating temperature, internal and external heating, and reactor design. The authors also establish how gasification can help meet renewable energy targets, address concerns about global warming, and contribute to a better carbon management or achieving Kyoto Protocol commitments. Gasification Technologies provide a multidimensional and well-rounded examination of current technology, research, applications, and development challenges for the commercialization of this increasingly popular technology.
The problem of storing hydrogen safely and effectively is one of the major technological barriers currently preventing the widespread adoption of hydrogen as an energy carrier and the subsequent transition to a so-called hydrogen economy. Practical issues with the storage of hydrogen in both gas and liquid form appear to make reversible solid state hydrogen storage the most promising potential solution. "Hydrogen Storage Materials" addresses the characterisation of the hydrogen storage properties of the materials that are currently being considered for this purpose. The background to the topic is introduced, along with the various types of materials that are currently under investigation, including nanostructured interstitial and complex hydrides, and porous materials, such as metal-organic frameworks and microporous organic polymers. The main features of "Hydrogen Storage Materials" include: an overview of the different types of hydrogen storage materials and the properties that are of interest for their practical use;descriptions of the gas sorption measurement methods used to determine these properties, and the complementary techniques that can be used to help corroborate hydrogen uptake data; andextensive coverage of the practical considerations for accurate hydrogen sorption measurement that drive both instrument design and the development of experimental methodology. "Hydrogen Storage Materials" provides an up-to-date overview of the topic for experienced researchers, while including enough introductory material to serve as a useful, practical introduction for newcomers to the field.
In the future, our energy systems will need to be renewable and sustainable, efficient and cost-effective, convenient and safe. Hydrogen has been proposed as the perfect fuel for this future energy system. The availability of a reliable and cost-effective supply, safe and efficient storage, and convenient end use of hydrogen will be essential for a transition to a Hydrogen Economy. Research is being conducted throughout the world for the development of safe, cost-effective hydrogen production, storage, and end-use technologies that support and foster this transition. This book is a collection of important research and analysis papers on hydrogen production, storage, and end-use technologies that were presented at the American Chemical Society National Meeting in New Orleans, Louisiana, USA, in August 1999.
This book is concerned with the prediction of thermodynamic and transport properties of gases and liquids. The prediction of such properties is essential for the solution of many problems encountered in chemical and process engineering as well as in other areas of science and technology. The book aims to present the best of those modern methods which are capable of practical application. It begins with basic scientific principles and formal results which are subsequently developed into practical methods of prediction. Numerous examples, supported by a suite of computer programmes, illustrate applications of the methods. The book is aimed primarily at the student market (for both undergraduate and taught postgraduate courses) but it will also be useful for those engaged in research and for chemical and process engineering professionals. |
![]() ![]() You may like...
Nanomaterials for Solid State Hydrogen…
Robert A. Varin, Tomasz Czujko, …
Hardcover
R4,391
Discovery Miles 43 910
Thermophysical Properties Of Fluids: An…
Marc J. Assael, J.P. Martin Trusler, …
Hardcover
R2,059
Discovery Miles 20 590
Pipeline Rules of Thumb Handbook - A…
Mark J Kaiser, E.W. McAllister
Paperback
|