![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Energy technology & engineering > Fossil fuel technologies > Gas technology
Risk Assessment and Management for Ships and Offshore Structures helps engineers accurately analyze results and apply engineering principles to a vast range of oil and gas structures. Bridging theoretical-depth and practical application, this reference gives specific applications for risk assessment and integrity management for different ships and offshore structures, covering aspects of offshore production and drilling systems from the sea floor to the surface. Divided into different sections, and starting with a discussion of risk management background, the book then covers risk assessment for specific installations such as BOPs, marine production systems, subsea systems, deepwater production risers and pipelines. This book provides offshore petroleum engineers with both the theoretical principles and practical application skills needed to face today's offshore challenges and structures.
As the cleanest source of fossil energy with the most advantageous
CO2 footprint, natural gas continues to increase its share in the
global energy market. This book provides state-of-the-art
contributions in the area of gas processing. Special emphasis is
given to Liquified Natural Gas (LNG); the book also covers the
following gas processing applications in parallel sessions:
Thermal Methods, Volume Two, the latest release in the Enhanced Oil Recovery series, helps engineers focus on the latest developments in this fast-growing area. In the book, different techniques are described in addition to the latest technologies in data mining and hybrid processes. Supported field case studies are included to illustrate a bridge between research and practical applications, making it useful for both academics and practicing engineers. Structured to start with thermal concepts and steam flooding, the book's editors then advance to more complex content, guiding engineers into areas such as hybrid thermal methods and edgier technologies that bridge solar and nuclear energy. Supported by a full spectrum of contributors, this book gives petroleum engineers and researchers the latest research developments and field applications to drive innovation for the future of energy.
Challenges and Recent Advances in Sustainable Oil and Gas Recovery and Transportation delivers a critical tool for today’s petroleum and reservoir engineers to learn the latest research in EOR and solutions toward more SDG-supported practices. Packed with methods and case studies, the reference starts with the latest advances such as EOR with polymers and EOR with CCS. Advances in shale recovery and methane production are also covered before layering on sustainability methods on critical topics such as oilfield produced water. Supported by a diverse group of contributors, this book gives engineers a go-to source for the future of oil and gas. The oil and gas industry are utilizing enhanced oil recovery (EOR) methods frequently, but the industry is also tasked with making more sustainable decisions in their future operations.
Sustainable In-Situ Heavy Oil and Bitumen Recovery: Techniques, Case Studies, and Environmental Considerations delivers a critical reference for today's energy engineers who want to gain an accurate understanding of anticipated GHG emissions in heavy oil recovery. Structured to break down every method with introductions, case studies, technical limitations and summaries, this reference gives engineers a look at the latest hybrid approaches needed to tackle heavy oil recoveries while calculating carbon footprints. Starting from basic definitions and rounding out with future challenges, this book will help energy engineers collectively evolve heavy oil recovery with sustainability applications in mind.
Petroleum engineers search through endless sources to understand oil and gas chemicals, find problems, and discover solutions while operations are becoming more unconventional and driving towards more sustainable practices. The Oil and Gas Chemistry Management Series brings an all-inclusive suite of tools to cover all the sectors of oil and gas chemicals from drilling to production, processing, storage, and transportation. The second reference in the series, Flow Assurance, delivers the critical chemical oilfield basics while also covering latest research developments and practical solutions. Organized by the type of problems and mitigation methods, this reference allows the engineer to fully understand how to effectively control chemistry issues, make sound decisions, and mitigate challenges ahead. Basics include root cause, model prediction and laboratory simulation of the major chemistry related challenges during oil and gas productions, while more advanced discussions cover the chemical and non-chemical mitigation strategies for more efficient, safe and sustainable operations. Supported by a list of contributing experts from both academia and industry, Flow Assurance brings a necessary reference to bridge petroleum chemistry operations from theory into safer and cost-effective practical applications.
Oil and Gas Chemistry Management Series brings an all-inclusive suite of tools to cover all the sectors of oil and gas chemicals from drilling, completion to production, processing, storage, and transportation. The third reference in the series, Recovery Improvement, delivers the critical chemical basics while also covering the latest research developments and practical solutions. Organized by the type of enhanced recovery approaches, this volume facilitates engineers to fully understand underlying theories, potential challenges, practical problems, and keys for successful deployment. In addition to the chemical, gas, and thermal methods, this reference volume also includes low-salinity (smart) water, microorganism- and nanofluid-based recovery enhancement, and chemical solutions for conformance control and water shutoff in near wellbore and deep in the reservoir. Supported by a list of contributing experts from both academia and industry, this book provides a necessary reference to bridge petroleum chemistry operations from theory into more cost-efficient and sustainable practical applications.
Petroleum engineers search through endless sources to understand oil and gas chemicals, identify root cause of the problems, and discover solutions while operations are becoming more unconventional and driving toward more sustainable practice. Oil and Gas Chemistry Management Series brings an all-inclusive suite of tools to cover all the sectors of oil and gas chemistry-related issues and chemical solutions from drilling and completion, to production, surface processing, and storage. The fourth reference in the series, Surface Process, Transportation, and Storage delivers the critical basics while also covering latest research developments and practical solutions. Organized by the type of challenges, this volume facilitates engineers to fully understand underlying theories, practical solutions, and keys for successful applications. Basics include produced fluids treating, foam control, pipeline drag reduction, and crude oil and natural gas storage, while more advanced topics cover CO2 recovery, shipment, storage, and utilization. Supported by a list of contributing experts from both academia and industry, this volume brings a necessary reference to bridge petroleum chemistry operations from theory into more cost-effective and sustainable practical applications.
Flow assurance solids deposition is one of the main challenges in oil and gas production operations with millions of dollars spent annually on their mitigation. Essentials of Flow Assurance Solids in Oil and Gas Operations works as an all-inclusive reference for engineers and researchers, covering all the different types of solids that are commonly encountered in oil and gas fields. Structured to flow through real-world operations, the reference branches through each solid deposit problem where the root causes are as well as modeling, monitoring, characterization, and management strategies, all comprehensively reviewed in the light of contemporary research breakthroughs. Backed by several field case studies, Essentials of Flow Assurance Solids in Oil and Gas Operations gives petroleum and reservoir engineers a resource to correlate between the theoretical fundamentals and field practical applications allowing for sustainable and optimal operations.
The Enhanced Oil Recovery Series delivers a multivolume approach that addresses the latest research on various types of EOR. The second volume in the series, Gas Injection Methods, helps engineers focus on the latest developments in one of the fastest growing areas. Different techniques are described in addition to the latest technology such as data mining and unconventional reservoirs. Supported field case studies are included to show a bridge between research and practical application, making it useful for both academics and practicing engineers. Structured to start with an introduction on various gas types and different gas injection methods, screening criteria for choosing gas injection method, and environmental issues during gas injection methods, the editors then advance on to more complex content, guiding the engineer into newer topics involving CO2 such as injection in tight oil reservoirs, shale oil reservoirs, carbonated water, data mining, and formation damage. Supported by a full spectrum of contributors, this book gives petroleum engineers and researchers the latest research developments and field applications to drive innovation for the future.
Geomechanics of Sand Production and Control delivers a convenient resource for both academia and professionals to gain understanding and results surrounding sand production. Packed with rock mechanic fundamentals and field case studies, this reference offers theoretical knowledge, field and laboratory data, and operational methodologies. Gaining knowledge on better sand control production improves environmental impact, preventing corrosion of pipes, damage to surface production facilities, and disposal of produced sands, among other considerations. Sections are supported by field case studies, lab tests and modeling studies to explain the most environmentally supportive wellbore stability step-by-step methods. Authored by a very experienced professor, this reference helps engineers learn how to solve sand problems in various types of energy wells. Production engineers in oil and gas utilize sand production and sand control equipment in many completion methods, with a growing interest to expand these methods in wells for CO2 sequestration and geothermal areas, but knowledge on these methods is fragmented and lacks a bridge to support energy transition. This book provides the coverage needed to address this advancing field.
Natural gas and liquefied natural gas (LNG) continue to grow as a part of the sustainable energy mix. While oil and gas companies look to lower emissions, one key refinery component that contributes up to 60% of emissions are valves, mainly due to poor design, sealing, and testing. Cryogenic Valves for Liquefied Natural Gas Plants delivers a much-needed reference that focuses on the design, testing, maintenance, material selection, and standards needed to stay environmentally compliant at natural gas refineries. Covering technical definitions, case studies, and Q&A, the reference includes all ranges of natural gas compounds, including LPG, CNG, NGL, and PNG. Key design considerations are included that are specific for cryogenic services, including a case study on cryogenic butterfly valves. The material selection process can be more complex for cryogenic services, so the author goes into more detail about materials that adhere to cryogenic temperature resistance. Most importantly, testing of valves is covered in depth, including shell test, closure or seat test, and thermal shock tests, along with tactics on how to prevent dangerous cryogenic leaks, which are very harmful to the environment. The book is a vital resource for today's natural gas engineers.
Oil and gas assets are under constant pressure and engineers and managers need integrity management training and strategies to ensure their operations are safe. Gaining practical guidance is not trained ahead of time and learned on the job. Asset Integrity Management of Offshore and Onshore Structures delivers a critical training tool for engineers to prepare and mitigate safety risk. Starting with a transitional introductory chapter, the reference dives into integrity management approaches including codes and standards. Inspection, assessment, and repair methods are covered for offshore, FPSO, onshore and pipelines. Suggested proactive approaches and modeling risk-based inspection are also included. Supported with case studies, detailed discussions, and practical applications, Asset Integrity Management of Offshore and Onshore Structures gives oil and gas managers a reference to extend asset life, reduce costs, and minimalize impact to personnel and environment.
Confined Fluid Phase Behavior and CO2 Sequestration in Shale Reservoirs delivers the calculation components to understand pore structure and absorption capacity involving unconventional reservoirs. Packed with experimental procedures, step-by-step instructions, and published data, the reference explains measurements for capillary pressure models, absorption behavior in double nano-pore systems, and the modeling of interfacial tension in C02/CH4/brine systems. Rounding out with conclusions and additional literature, this reference gives petroleum engineers and researchers the knowledge to maximize productivity in shale reservoirs.
Chemical Methods, a new release in the Enhanced Oil Recovery series, helps engineers focus on the latest developments in one fast-growing area. Different techniques are described in addition to the latest technologies in data mining and hybrid processes. Beginning with an introduction to chemical concepts and polymer flooding, the book then focuses on more complex content, guiding readers into newer topics involving smart water injection and ionic liquids for EOR. Supported field case studies illustrate a bridge between research and practical application, thus making the book useful for academics and practicing engineers. This series delivers a multi-volume approach that addresses the latest research on various types of EOR. Supported by a full spectrum of contributors, this book gives petroleum engineers and researchers the latest developments and field applications to drive innovation for the future of energy.
Corrosion engineers today spend enormous amounts of time and money searching multiple detailed sources and variable industry-specific standards to locate known remedies to corrosion equipment problems. Corrosion Atlas Series is the first centralized collection of case studies containing challenges paired directly with solutions together in one location. The second release of content in the series, Corrosion Atlas Case Studies: 2021 Edition, gives engineers expedient daily corrosion solutions for common industrial equipment, no matter the industry. Providing a purely operational level view, this reference is designed as concise case studies categorized by material and includes content surrounding the phenomenon, equipment appearance supported by a color image, time of service, conditions where the corrosion occurred, cause, and suggested remedies within each case study. Additional reference listings for deeper understanding beyond the practical elements are also included. Rounding out with an introductory foundational layer of corrosion principles critical to all engineers, Corrosion Atlas Case Studies: 2021 Edition delivers the daily tool required for engineers today to solve their equipment's corrosion problems.
Sustainable Natural Gas Reservoir and Production Engineering, the latest release in The Fundamentals and Sustainable Advances in Natural Gas Science and Engineering series, delivers many of the scientific fundamentals needed in the natural gas industry, including improving gas recovery, simulation processes for fracturing methods, and methods for optimizing production strategies. Advanced research covered includes machine learning applications, gas fracturing mechanics aimed at reducing environmental impact, and enhanced oil recovery technologies aimed at capturing carbon dioxide. Supported by corporate and academic contributors along with two well-distinguished editors, this book provides today's natural gas engineers the fundamentals and advances in a convenient resource
Universal Well Control gives today's drilling and production engineers a modern guide to effectively and responsibly manage rig operations. In a post-Macondo industry, well control continues to require higher drilling costs, a waste of natural resources, and the possibility of a loss of human life when kicks and blowouts occur. The book delivers updated photos, practice examples and methods that are critical to modern well control information, ensuring engineers and personnel stay safe, environmentally responsible and effective. Complete with all phases of well control, the book covers kick detection, kick control, loss of control and blowout containment and killing. A quick tips section is included, along with templated. step-by-step methods to replicate for non-routine shut-in methods. Bonus equipment animations are included, along with a high number of visuals. Specialized methods are covered, including dual gradient drilling and managed pressure drilling.
Fluid Chemistry, Drilling and Completion, the latest release in the Oil and Gas Chemistry Management series that covers all sectors of oil and gas chemicals (from drilling to production, processing, storage and transportation), delivers critical chemical oilfield basics while also covering the latest research developments and practical solutions. Organized by type of chemical, the book allows engineers to fully understand how to effectively control chemistry issues, make sound decisions, and mitigate challenges. Sections cover downhole sampling, crude oil characterization, such as fingerprinting properties, data interpretation, chemicals specific to fluid loss control, and matrix stimulation chemicals. Supported by a list of contributing experts from both academia and industry, the book provides a necessary reference that bridges petroleum chemistry operations from theory, to safer, cost-effective applications.
Corrosion in Amine Treating Units, Second Edition presents a fully updated resource with a broadened focus that includes corrosion in not only refining operations, but also in oil and gas production. New sections have been added on inhibition, corrosion modeling and metallic coatings. More detailed descriptions of the degradation mechanisms and Integrity Operating Windows (IOW) are now included, as is more in-depth information on guidelines for what sections and locations are most vulnerable to corrosion and how to control corrosion in amine units e.g., using corrosion Loop descriptions and providing indicative integrity operating windows for operation to achieve a suitable life expectance.
Sustainable Oil and Gas Development Series: Reservoir Development delivers research materials and emerging technologies that conform sustainability in today's reservoirs. Starting with a status of technologies available, the reference describes sustainability as it applies to fracturing fluids, particularly within unconventional reservoirs. Basement reservoirs are discussed along with non-energy applications of fluids. Sustainability considerations for reserve predication are covered followed by risk analysis and scaling guidelines for further field development. Rounding out with conclusions and remaining challenges, Sustainable Oil and Gas Development Series: Reservoir Development gives today and future petroleum engineers a focused and balanced path to strengthen sustainability practices.
Applied Gaseous Fluid Drilling Engineering: Design and Field Case Studies provides an introduction on the benefits of using gaseous fluid drilling engineering. In addition, the book describes the multi-phase systems needed, along with discussions on stability control. Safety and economic considerations are also included, as well as key components of surface equipment needed and how to properly select equipment depending on the type of fluid system. Rounding out with proven case studies that demonstrate good practices and lessons from failures, this book delivers a practical tool for understanding the guidelines and mitigations needed to utilize this valuable process and technology.
Contamination Control in the Natural Gas Industry delivers the separation fundamentals and technology applications utilized by natural gas producers and processors. This reference covers principles and practices for better design and operation of a wide range of media, filters and systems to remove contaminants from liquids and gases, enabling gas industry professionals to fulfill diverse fluid purification requirements. Packed to cover practical technologies, diagnostics and troubleshooting methods, this book provides gas engineers and technologists with a critical first-ever reference geared to contamination control.
Drilling and production wells are becoming more digitalized as oil and gas companies continue to implement machine learning and big data solutions to save money on projects while reducing energy and emissions. Up to now there has not been one cohesive resource that bridges the gap between theory and application, showing how to go from computer modeling to practical use. Methods for Petroleum Well Optimization: Automation and Data Solutions gives today's engineers and researchers real-time data solutions specific to drilling and production assets. Structured for training, this reference covers key concepts and detailed approaches from mathematical to real-time data solutions through technological advances. Topics include digital well planning and construction, moving teams into Onshore Collaboration Centers, operations with the best machine learning (ML) and metaheuristic algorithms, complex trajectories for wellbore stability, real-time predictive analytics by data mining, optimum decision-making, and case-based reasoning. Supported by practical case studies, and with references including links to open-source code and fit-for-use MATLAB, R, Julia, Python and other standard programming languages, Methods for Petroleum Well Optimization delivers a critical training guide for researchers and oil and gas engineers to take scientifically based approaches to solving real field problems.
Sustainable Geoscience for Natural Gas SubSurface Systems delivers many of the scientific fundamentals needed in the natural gas industry, including coal-seam gas reservoir characterization and fracture analysis modeling for shale and tight gas reservoirs. Advanced research includes machine learning applications for well log and facies analysis, 3D gas property geological modeling, and X-ray CT scanning to reduce environmental hazards. Supported by corporate and academic contributors, along with two well-distinguished editors, the book gives today's natural gas engineers both fundamentals and advances in a convenient resource, with a zero-carbon future in mind. |
You may like...
Asphaltene Deposition Control by…
Ali Ghamartale, Shokufe Afzali, …
Paperback
R3,581
Discovery Miles 35 810
Assisted History Matching for…
Sutthaporn Tripoppoom, Wei Yu, …
Paperback
R3,386
Discovery Miles 33 860
Risk Management in the Oil and Gas…
Gerardo Portela Da Ponte Jr
Paperback
R2,917
Discovery Miles 29 170
Oceanic Methane Hydrates - Fundamentals…
Lin Chen, Sukru Merey
Paperback
R3,259
Discovery Miles 32 590
|