Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Energy technology & engineering > Fossil fuel technologies > Gas technology
Formulas and Calculations for Petroleum Engineering unlocks the capability for any petroleum engineering individual, experienced or not, to solve problems and locate quick answers, eliminating non-productive time spent searching for that right calculation. Enhanced with lab data experiments, practice examples, and a complimentary online software toolbox, the book presents the most convenient and practical reference for all oil and gas phases of a given project. Covering the full spectrum, this reference gives single-point reference to all critical modules, including drilling, production, reservoir engineering, well testing, well logging, enhanced oil recovery, well completion, fracturing, fluid flow, and even petroleum economics.
Hydraulic Fracturing in Unconventional Reservoirs: Theories, Operations, and Economic Analysis, Second Edition, presents the latest operations and applications in all facets of fracturing. Enhanced to include today's newest technologies, such as machine learning and the monitoring of field performance using pressure and rate transient analysis, this reference gives engineers the full spectrum of information needed to run unconventional field developments. Covering key aspects, including fracture clean-up, expanded material on refracturing, and a discussion on economic analysis in unconventional reservoirs, this book keeps today's petroleum engineers updated on the critical aspects of unconventional activity.
Turnaround Management for the Oil, Gas, and Process Industries: A Project Management Approach helps readers understand the phases of development in preparation for a turnaround, with each relevant phase easily identified. Specific to the process industry, especially oil and gas, petrochemical and power plants, this reference simplifies the entire lifecycle of a turnaround and provides specific examples of both successful and unsuccessful turnaround projects. By identifying the most significant performance indicators and strategies to ensure that targets are met, this book will help plant managers keep plants safe, efficient and running successfully.
Industrial Process Plant Construction Estimating and Man-Hour Analysis focuses on industrial process plants and enables the estimator to apply statistical applications, estimate data tables, and estimate sheets to use methods for collecting, organizing, summarizing, presenting, and analyzing historical man-hour data. The book begins with an introduction devoted to labor, productivity measurement, collection of historical data, verification of data, estimating methods, and factors affecting construction labor productivity and impacts of data. It goes on to explore construction statistics and mathematical spreadsheets, followed by detailed scopes of work ranging from coal-fired power plants to oil refineries and solar plants, among others. Man-hour schedules based on historical data collected from past installations in industrial process plants are also included as well as a detailed glossary, Excel and mathematical formulas, area and volume formulas, metric/standard conversions, and boiler man-hour tables. Industrial Process Plant Construction Estimating and Man-Hour Analysis aids industrial project managers, estimators, and engineers with the level of detail and practical utility for today's industrial operations and is an ideal resource for those involved in engineering, technology, or construction estimation.
The US Gulf of Mexico is one of the largest and most prolific offshore hydrocarbon basins in the world with thousands of structures installed in the region and tens of thousands of wells drilled. Over the past decade, a significant number of structures in shallow water have been decommissioned, as operators can no longer "kick the decommissioning can" down the road. This has opened up new markets and additional regulatory oversight with far-reaching implications. This book describes future decommissioning trends and issues and provides guidance for operator budgeting, regulatory oversight, and service sector companies interested in participating in the field. Decommissioning Forecasting and Operating Cost Estimation is the first of its kind textbook to develop models to forecast platform decommissioning in the Gulf of Mexico and to better understand the dynamics of offshore production cost. The book bridges the gap between modeling and technical knowledge to provide insight into the sector. Topics are presented in five parts covering fundamentals, structure inventories and well trends, decommissioning modeling, critical infrastructure issues, and operating cost estimation. Factor models and activity-based cost models in operating cost estimation conclude the discussion. Decommissioning Forecasting and Operating Cost Estimation helps oil and gas professionals navigate through this complex and challenging field providing an invaluable resource for academics, researchers, and professionals. The book will also serve government regulators, energy and environmental engineers, offshore managers, financial analyst, and others interested in this fascinating and dynamic industry.
Heavy Oil Recovery and Upgrading covers properties, factors, methods and all current and upcoming processes, giving engineers, new and experienced, the full spectrum of recovery choices, including SAGD, horizontal well technology, and hybrid approaches. Moving on to the upgrading and refining of the product, the book also includes information on in situ upgrading, refining options, and hydrogen production. Rounding out with environmental effects, management methods on refinery waste, and the possible future configurations within the refinery, this book provides engineers with a single source to make decisions and manage the full range of challenges.
Transport in Shale Reservoirs fills the need for a necessary, integrative approach on shale reservoirs. It delivers both the fundamental theories of transport in shale reservoirs and the most recent advancements in the recovery of shale oil and gas in one convenient reference. Shale reservoirs have distinctive features dissimilar to those of conventional reservoirs, thus an accurate evaluation on the behavior of shale gas reservoirs requires an integrated understanding on their characteristics and the transport of reservoir and fluids.
Gas Well Deliquification, Third Edition, expands upon previous experiences and applies today's more applicable options and technology. Updated to include more information on automation, nodal analysis, and horizontal gas well operations, this new edition provides engineers with key information in one central location. Multiple contributors from today's operators offer their own learned experiences, critical equipment, and rules of thumb for practicality. Covering the entire lifecycle of the well, this book will be an ideal reference for engineers who need to know the right solutions regarding a well's decline curve in their work to continuously optimize assets.
Reliability and Maintainability of In-Service Pipelines helps engineers understand the best structural analysis methods and more accurately predict the life of their pipeline assets. Expanded to cover real case studies from oil and gas, sewer and water pipes, this reference also explains inline inspection and how the practice influences reliability analysis, along with various reliability models beyond the well-known Monte Carlo method. Encompassing both numerical and analytical methods in structural reliability analysis, this book gives engineers a stronger point of reference covering both pipeline maintenance and monitoring techniques in a single resource.
Gas Wettability of Reservoir Rock Surfaces with Porous Media compiles critical information on this complex topic, thus helping engineers more successfully face technical field challenges in oil and gas recovery. Combining both theoretical and practical knowledge, this concise reference bridges basic concepts with factors affecting gas wettability, also covering polymer-type gas wetting reversal agents in technical detail and discussing gas wettability's influence on capillary force, oil-water distribution, and gas wettability's application in petroleum engineering operations from both domestic and international projects. This book delivers the critical concepts, methods, mechanisms and practical technology needed for today's complex oil and gas assets.
Gas hydrates in their natural environment and for potential industrial applications (Volume 2).
Intelligent Digital Oil and Gas Fields: Concepts, Collaboration, and Right-time Decisions delivers to the reader a roadmap through the fast-paced changes in the digital oil field landscape of technology in the form of new sensors, well mechanics such as downhole valves, data analytics and models for dealing with a barrage of data, and changes in the way professionals collaborate on decisions. The book introduces the new age of digital oil and gas technology and process components and provides a backdrop to the value and experience industry has achieved from these in the last few years. The book then takes the reader on a journey first at a well level through instrumentation and measurement for real-time data acquisition, and then provides practical information on analytics on the real-time data. Artificial intelligence techniques provide insights from the data. The road then travels to the "integrated asset" by detailing how companies utilize Integrated Asset Models to manage assets (reservoirs) within DOF context. From model to practice, new ways to operate smart wells enable optimizing the asset. Intelligent Digital Oil and Gas Fields is packed with examples and lessons learned from various case studies and provides extensive references for further reading and a final chapter on the "next generation digital oil field," e.g., cloud computing, big data analytics and advances in nanotechnology. This book is a reference that can help managers, engineers, operations, and IT experts understand specifics on how to filter data to create useful information, address analytics, and link workflows across the production value chain enabling teams to make better decisions with a higher degree of certainty and reduced risk.
Gas hydrates, or clathrate hydrates, are crystalline solids resembling ice, in which small (guest) molecules, typically gases, are trapped inside cavities formed by hydrogen-bonded water (host) molecules. They form and remain stable under low temperatures often well below ambient conditions and high pressures ranging from a few bar to hundreds of bar, depending on the guest molecule. Their presence is ubiquitous on Earth, in deep-marine sediments and in permafrost regions, as well as in outer space, on planets or comets. In addition to water, they can be synthesized with organic species as host molecules, resulting in milder stability conditions: these are referred to as semi-clathrate hydrates. Clathrate and semi-clathrate hydrates are being considered for applications as diverse as gas storage and separation, cold storage and transport and water treatment. This book is the first of two edited volumes, with chapters on the experimental and modeling tools used for characterizing and predicting the unique molecular, thermodynamic and kinetic properties of gas hydrates (Volume 1) and on gas hydrates in their natural environment and for potential industrial applications (Volume 2).
Performance Management for the Oil, Gas, and Process Industries: A Systems Approach is a practical guide on the business cycle and techniques to undertake step, episodic, and breakthrough improvement in performance to optimize operating costs. Like many industries, the oil, gas, and process industries are coming under increasing pressure to cut costs due to ongoing construction of larger, more integrated units, as well as the application of increasingly stringent environmental policies. Focusing on the 'value adder' or 'revenue generator' core system and the company direction statement, this book describes a systems approach which assures significant sustainable improvements in the business and operational performance specific to the oil, gas, and process industries. The book will enable the reader to: utilize best practice principles of good governance for long term performance enhancement; identify the most significant performance indicators for overall business improvement; apply strategies to ensure that targets are met in agreed upon time frames.
Fundamentals and Applications of Supercritical Carbon Dioxide (SCO2) Based Power Cycles aims to provide engineers and researchers with an authoritative overview of research and technology in this area. Part One introduces the technology and reviews the properties of SCO2 relevant to power cycles. Other sections of the book address components for SCO2 power cycles, such as turbomachinery expanders, compressors, recuperators, and design challenges, such as the need for high-temperature materials. Chapters on key applications, including waste heat, nuclear power, fossil energy, geothermal and concentrated solar power are also included. The final section addresses major international research programs. Readers will learn about the attractive features of SC02 power cycles, which include a lower capital cost potential than the traditional cycle, and the compounding performance benefits from a more efficient thermodynamic cycle on balance of plant requirements, fuel use, and emissions.
Advanced Reservoir and Production Engineering for Coal Bed Methane presents the reader with design systems that will maximize production from worldwide coal bed methane reservoirs. Authored by an expert in the field with more than 40 years of' experience, the author starts with much needed introductory basics on gas content and diffusion of gas in coal, crucial for anyone in the mining and natural gas industries. Going a step further, chapters on hydrofracking, horizontal drilling technology, and production strategies address the challenges of dewatering, low production rates, and high development costs. This book systematically addresses all three zones of production levels, shallow coal, medium depth coal, and deep coal with coverage on gas extraction and production from a depth of 500 feet to upwards of 10,000 feet, strategies which cannot be found in any other reference book. In addition, valuable content on deep coal seams with content on enhanced recovery, a discussion on CO2 flooding, infra-red heating and even in-situ combustion of degassed coal, giving engineers a greater understanding on how today's shale activities can aid in enhancing production of coal bed for future natural gas production.
Fundamentals of Gas Lift Engineering: Well Design and Troubleshooting discusses the important topic of oil and gas reservoirs as they continue to naturally deplete, decline, and mature, and how more oil and gas companies are trying to divert their investments in artificial lift methods to help prolong their assets. While not much physically has changed since the invention of the King Valve in the 1940s, new developments in analytical procedures, computational tools and software, and many related technologies have completely changed the way production engineers and well operators face the daily design and troubleshooting tasks and challenges of gas lift, which can now be carried out faster, and in a more accurate and productive way, assuming the person is properly trained. This book fulfills this training need with updates on the latest gas lift designs, troubleshooting techniques, and real-world field case studies that can be applied to all levels of situations, including offshore. Making operational and troubleshooting techniques central to the discussion, the book empowers the engineer, new and experienced, to analyze the challenge involved and make educated adjustments and conclusions in the most economical and practical way. Packed with information on computer utilization, inflow and outflow performance analysis, and worked calculation examples made for training, the book brings fresh air and innovation to a long-standing essential component in a well's lifecycle.
Carbon dioxide sequestration is a technology that is being explored to curb the anthropogenic emission of CO2 into the atmosphere. Carbon dioxide has been implicated in the global climate change and reducing them is a potential solution. The injection of carbon dioxide for enhanced oil recovery (EOR) has the duel benefit of sequestering the CO2 and extending the life of some older fields. Sequestering CO2 and EOR have many shared elements that make them comparable. This volume presents some of the latest information on these processes covering physical properties, operations, design, reservoir engineering, and geochemistry for AGI and the related technologies.
Compendium of Hydrogen Energy: Hydrogen Energy Conversion, Volume Three is the third part of a four volume series and focuses on the methods of converting stored hydrogen into useful energy. The other three volumes focus on hydrogen production and purification; hydrogen storage and transmission; and hydrogen use, safety, and the hydrogen economy, respectively. Many experts believe that, in time, the hydrogen economy will replace the fossil fuel economy as the primary source of energy. Once hydrogen has been produced and stored, it can then be converted via fuel cells or internal combustion engines into useful energy. This volume highlights how different fuel cells and hydrogen-fueled combustion engines and turbines work. The first part of the volume investigates various types of hydrogen fuel cells, including solid oxide, molten carbonate, and proton exchange membrane. The second part looks at hydrogen combustion energy, and the final section explores the use of metal hydrides in hydrogen energy conversion.
Natural gas continues to be the fuel of choice for power generation and feedstock for a range of petrochemical industries. This trend is driven by environmental, economic and supply considerations with a balance clearly tilting in favor of natural gas as both fuel and feedstock. Despite the recent global economic uncertainty, the oil and gas industry is expected to continue its growth globally, especially in emerging economies. The expansion in LNG capacity coupled with recently launched and on-stream GTL plants poses real technological and environmental challenges. These important developments coupled with a global concern on green house gas emissions provide a fresh impetus to engage in new and more focused research activities aimed at mitigating or resolving the challenges facing the industry. Academic researchers and plant engineers in the gas processing industry will benefit from the state of the art papers published in this collection that cover natural gas utilization, sustainability and excellence in gas processing.
With the oil and gas industry facing new challenges-deeper offshore installations, more unconventional oil and gas transporting through pipelines, and refinery equipment processing these opportunity feedstocks--new corrosion challenges are appearing, and the oil and gas industry's infrastructure is only as good as the quality of protection provided and maintained. Essentials of Coating, Painting, and Linings for the Oil, Gas, and Petrochemical Industries is the first guide of its kind to directly deliver the necessary information to prevent and control corrosion for the components on the offshore rig, pipelines underground and petrochemical equipment. Written as a companion to Cathodic Corrosion Protection Systems, this must-have training tool supplies the oil and gas engineer, inspector and manager with the full picture of corrosion prevention methods specifically catered for oil and gas services. Packed with real world case studies, critical qualifications, inspection criteria, suggested procedure tests, and application methods, Essentials of Coating, Painting, and Linings for the Oil, Gas and Petrochemical Industries is a required straightforward reference for any oil and gas engineer and manager.
As deepwater wells are drilled to greater depths, pipeline
engineers and designers are confronted with new problems such as
water depth, weather conditions, ocean currents, equipment
reliability, and well accessibility. "Subsea Pipeline Design,
Analysis and Installation" is based on the authors' 30 years of
experience in offshore. The authors provide rigorous coverage of
the entire spectrum of subjects in the discipline, from pipe
installation and routing selection and planning to design,
construction, and installation of pipelines in some of the harshest
underwater environments around the world. All-inclusive, this
must-have handbook covers the latest breakthroughs in subjects such
as corrosion prevention, pipeline inspection, and welding, while
offering an easy-to-understand guide to new design codes currently
followed in the United States, United Kingdom, Norway, and other
countries.
The fields covered by the hydrogen energy topic have grown
rapidly, and now it has become clearly multidisciplinary. In
addition to production, hydrogen purification and especially
storage are key challenges that could limit the use of hydrogen
fuel. In this book, the purification of hydrogen with membrane
technology and its storage in "solid" form using new hydrides and
carbon materials are addressed. Other novelties of this volume
include the power conditioning of water electrolyzers, the
integration in the electric grid of renewable hydrogen systems and
the future role of microreactors and micro-process engineering in
hydrogen technology as well as the potential of computational fluid
dynamics to hydrogen equipment design and the assessment of safety
issues. Finally, and being aware that transportation will likely
constitute the first commercial application of hydrogen fuel, two
chapters are devoted to the recent advances in hydrogen fuel cells
and hydrogen-fueled internal combustion engines for transport
vehicles. Hydrogen from water and biomass considered Holistic approach to the topic of renewable hydrogen production Power conditioning of water electrolyzers and integration of renewable hydrogen energy systems considered Subjects not included in previous books on hydrogen energy Micro process technology considered Subject not included in previous books on hydrogen energy Applications of CFD considered Subject not included in previous books on hydrogen energy Fundamental aspects will not be discussed in detail consciously as they are suitably addressed in previous books Emphasis on technological advancements Chapters written by recognized experts Up-to date approach to the subjects and relevant bibliographic references
This is the sixth volume in a series of books on natural gas engineering, focusing carbon dioxide (CO2) capture and acid gas injection. This volume includes information for both upstream and downstream operations, including chapters on well modeling, carbon capture, chemical and thermodynamic models, and much more. Written by some of the most well-known and respected chemical and process engineers working with natural gas today, the chapters in this important volume represent the most cutting-edge and state-of-the-art processes and operations being used in the field. Not available anywhere else, this volume is a must-have for any chemical engineer, chemist, or process engineer working with natural gas. There are updates of new technologies in other related areas of natural gas, in addition to the CO2 capture and acid gas injection, including testing, reservoir simulations, and natural gas hydrate formations. Advances in Natural Gas Engineering is an ongoing series of books meant to form the basis for the working library of any engineer working in natural gas today. Every volume is a must-have for any engineer or library.
Coal and Coalbed Gas: Future Directions and Opportunities, Second Edition introduces the latest in coal geology research and the engineering of gas extraction. Importantly, the second edition examines how, over the last 10 years, research has both changed focus and where it is conducted. This shift essentially depicts "a tale of two worlds"—one half (Western Europe, North America) moving away from coal and coalbed gas research and production towards cleaner energy resources, and the other half (Asia–Pacific region, Eastern Europe, South America) increasing both research and usage of coal. These changes are marked by a precipitous fall in coalbed gas production in North America; however, at the same time there has been a significant rise in coal and coalbed gas production in Australia, China, and India. The driver for higher production and its associated research is a quest for affordable energy and economic security that a large resource base brings to any country like Australia’s first large-scale coalbed gas to liquid natural gas projects supplying the demand for cleaner burning LNG to the Asian-Pacific region. Since the last edition of this book, global climate change policies have more forcibly emphasized the impact of methane from coal mines and placed these emissions equal to, or even more harmful than, CO2 emissions from fossil fuels in general. Governmental policies have prioritized capture, use, and storage of CO2, burning coal in new highly efficient low emission power plants, and gas pre-drainage of coal mines. The Organization for Economic Cooperation and Development (OECD) countries and China are also introducing new research into alternative, non-fuel uses for coal, such as carbon fibers, nanocarbons, graphene, soil amendments, and as an unconventional ore for critical elements. New to this edition: Each chapter is substantially changed from the 1st edition including expanded and new literature citations and reviews, important new data and information, new features and materials, as well as re-organized and re-designed themes. Importantly, three new chapters cover global coal endowment and gas potential, groundwater systems related to coalbed gas production and biogenic gas generation as well as the changing landscape of coal and coalbed gas influenced by global climate change and net-zero carbon greenhouse gas emissions. FOREWORD When I reviewed the first edition of this book, my initial thought was, "Do we need another book on coal geology?" and then I read it and realised, "Yes, we need this book" and my students downloaded copies as soon as it was available. So now we come to 2023, and a lot has happened in the past decade. For a different reason we might ask if we still need this book, or even coal geoscientists and engineers, as the world aims for rapid decarbonisation of the energy sector and a reduction of coal as a feedstock for industrial resources, like steel manufacture. Natural gas is earmarked as a transition fuel to enable the shift to renewables. In some basins, the source of that gas is directly from coalbed gas production or from conventional reservoirs that were charged by coal and terrestrial organic source rocks. Although the transition is escalating, there are projections that coal will remain part of our future, even after 2050, and can also provide alternative non-fuel resources (e.g., critical elements and carbon-based nanomaterials). Between now and then, we’d best ensure that we extract and utilise coal and coalbed gas as efficiently and safely as possible, that we mitigate any environmental and social impact of the process, and that we improve our certainty of predicting the behaviour of the material and material impacts. To do this we need to understand coal as a material and the inherent variability of its quality and behaviour as a source rock and host of coalbed gas. One can change the technologies but not the geological ground conditions or coal character of the targeted resource. The authors have taken on this ambitious endeavour during their careers and have attempted to capture their knowledge gained from first-hand experience in countries around the world and comprehensive review of published material, within this book. At least three generations of knowledge are drawn upon here. Tim Moore was a student of both Romeo Flores and his supervisor John Ferm, who was the "Warrior of Gentleness" when it came to coal research, teaching, and supervision. This book also reflects the broad and multidisciplinary aspects of coal geology and coal science and provides the tenets for one to understand different disciplines and how they interact to form an integrated view of the resource—technically, economically, and politically. Each chapter takes the reader through different concepts, first setting the scene by examining the status of coal and coalbed gas in a carbon-conscious world, then looking at the science behind coal as a source of gas and as a reservoir- in its own right. Further reading leads to learning about geological settings and the processes through time that led to present-day endowments around the globe and this theme continues throughout the book with detailed examples from different countries. Personally, I like the emphasis on the depositional environments that lead to peat accumulation and preservation—it’s all about the ingredients—which leads nicely into the world of coal macerals and minerals, and why they matter. Coalification and its role in changing the chemistry and material properties of coal is covered from a reservoir perspective, as is the role of biogenic processes. These have produced some of the enormous gas resources we exploit today and could also provide a future circular economy for neo-biogenic gas. The role of groundwater in this past and potentially future endeavour is presented, along with possible adverse effects where there is unexpected communication with regional and local aquifers and surface assets that detract from environmental and social licence. In addition to describing the geology and engineering technologies required to explore for, access, and utilise these resources, the book also provides insights into geostatistical and economic modelling for reserves estimation and challenges as reservoirs become more geologically and politically complex for extraction and alternatively, for injection and carbon sequestration. The final chapters revisit and integrate concepts presented in the book in order to examine global gas production and the geographic shifts in production and research that have occurred over the past decade(s). The also show how government and the market play a role, and project future trends. The authors provide discussion points for the outlook of coal as a fuel feedstock in a carbon-constrained world and the ongoing search for options and alternative non-fuel uses of coal while highlighting the important role that coal and coalbed gas still play during the transition period and beyond. There is much to learn from this book, which is based on decades of observing and interpreting patterns and trends in coal and coal-bearing basins. There is a growing trend towards using machine learning and artificial intelligence to find patterns in data and provide solutions. I’d suggest that domain intelligence, such as that provided in this book, is critical to supervising this process and is required for understanding and validating the outputs upon which many decisions are made and will continue to be made in the future. So yes, we need this book and I invite you to read, learn, and form your own ideas. If you find any gaps—write about them. Joan S. Esterle Emeritus Professor Vale Chair of Coal Geosciences The University of Queensland, AustraliaMay 2023 |
You may like...
Propulsion and Power - An Exploration of…
Joachim Kurzke, Ian Halliwell
Hardcover
R6,319
Discovery Miles 63 190
Handbook of Gas Sensor Materials…
Ghenadii Korotcenkov
Hardcover
Advances in the Study of Gas Hydrates
Charles E. Taylor, Jonathan T Kwan
Hardcover
R2,817
Discovery Miles 28 170
Control of Operation Modes of Gas…
Viktor I. Rabchuk, Sergey M. Senderov, …
Hardcover
R2,789
Discovery Miles 27 890
Proceedings of the 2nd Annual Gas…
Farid Benyahia, Fadwa Eljack
Hardcover
R8,064
Discovery Miles 80 640
Proceedings of the 3rd International Gas…
Abdelwahab Aroussi, Farid Benyahia
Hardcover
R7,869
Discovery Miles 78 690
Economics of Unconventional Shale Gas…
William E. Hefley, Yongsheng Wang
Hardcover
R3,359
Discovery Miles 33 590
|