![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Energy technology & engineering > Fossil fuel technologies > Gas technology
Almost every modern manufacturing process relies on industrial
gases, and sales of such gases are expected to rise by around 45%
over the next five years.
This is the fourth volume in a series of books focusing on natural gas engineering, focusing on two of the most important issues facing the industry today: disposal and enhanced recovery of natural gas. This volume includes information for both upstream and downstream operations, including chapters on shale, geological issues, chemical and thermodynamic models, and much more. Written by some of the most well-known and respected chemical and process engineers working with natural gas today, the chapters in this important volume represent the most cutting-edge and state-of-the-art processes and operations being used in the field. Not available anywhere else, this volume is a must-have for any chemical engineer, chemist, or process engineer working with natural gas. There are updates of new technologies in other related areas of natural gas, in addition to disposal and enhanced recovery, including sour gas, acid gas injection, and natural gas hydrate formations. "Advances in Natural Gas Engineering" is an ongoing series of books meant to form the basis for the working library of any engineer working in natural gas today. Every volume is a must-have for any engineer or library.
IoT for Smart Operations in the Oil and Gas Industry elaborates on how the synergy between state-of-the-art computing platforms, such as Internet of Things (IOT), cloud computing, artificial intelligence, and, in particular, modern machine learning methods, can be harnessed to serve the purpose of a more efficient oil and gas industry. The reference explores the operations performed in each sector of the industry and then introduces the computing platforms and smart technologies that can enhance the operation, lower costs, and lower carbon footprint. Safety and security content is included, in particular, cybersecurity and potential threats to smart oil and gas solutions, focusing on adversarial effects of smart solutions and problems related to the interoperability of human-machine intelligence in the context of the oil and gas industry. Detailed case studies are included throughout to learn and research for further applications. Covering the latest topics and solutions, IoT for Smart Operations in the Oil and Gas Industry delivers a much-needed reference for the engineers and managers to understand modern computing paradigms for Industry 4.0 and the oil and gas industry.
Confined Fluid Phase Behavior and CO2 Sequestration in Shale Reservoirs delivers the calculation components to understand pore structure and absorption capacity involving unconventional reservoirs. Packed with experimental procedures, step-by-step instructions, and published data, the reference explains measurements for capillary pressure models, absorption behavior in double nano-pore systems, and the modeling of interfacial tension in C02/CH4/brine systems. Rounding out with conclusions and additional literature, this reference gives petroleum engineers and researchers the knowledge to maximize productivity in shale reservoirs.
A Practical Guide to Piping and Valves for the Oil and Gas Industry covers how to select, test and maintain the right oil and gas valve. Each chapter focuses on a specific type of valve with a built-in structured table on valve selection. Covering both onshore and offshore projects, the book also gives an introduction to the most common types of corrosion in the oil and gas industry, including CO2, H2S, pitting, crevice, and more. A model to evaluate CO2 corrosion rate on carbon steel piping is introduced, along with discussions on bulk piping components, including fittings, gaskets, piping and flanges. Rounding out with chapters devoted to valve preservation to protect against harmful environments and factory acceptance testing, this book gives engineers and managers a much-needed tool to better understand today's valve technology.
Nanotechnology for CO2 Utilization in Oilfield Applications delivers a critical reference for petroleum and reservoir engineers to learn the latest advancements of combining the use of CO2 and nanofluids to lower carbon footprint. Starting with the existing chemical and physical methods employed for synthesizing nanofluids, the reference moves into the scalability and fabrication techniques given for all the various nanofluids currently used in oilfield applications. This is followed by various, relevant characterization techniques. Advancing on, the reference covers nanofluids used in drilling, cementing, and EOR fluids, including their challenges and implementation problems associated with the use of nanofluids. Finally, the authors discuss the combined application of CO2 and nanofluids, listing challenges and benefits of CO2, such as carbonation capacity of nanofluids via rheological analysis for better CO2 utilization. Supported by visual world maps on CCS sites and case studies across the industry, this book gives today's engineers a much-needed tool to lower emissions.
Cleaner and more versatile than other hydrocarbons, natural gas has never had a brighter future. The new edition of Fundamentals of Natural Gas thoroughly explains the massive evolution of natural gas and LNG, from technology advances and vast new reserves. As forecasts of worldwide consumption increase dramatically, this "prince of hydrocarbons" is the natural choice for electric power, heating, and as an industry feedstock. Features of the Second Edition: Growth of unconventional shale gas technology and production Rise of LNG export projects from the United States International adoption of gas-on-gas pricing Impact of LNG mega-projects and the adjusting economics of these ventures
Risk Assessment and Management for Ships and Offshore Structures helps engineers accurately analyze results and apply engineering principles to a vast range of oil and gas structures. Bridging theoretical-depth and practical application, this reference gives specific applications for risk assessment and integrity management for different ships and offshore structures, covering aspects of offshore production and drilling systems from the sea floor to the surface. Divided into different sections, and starting with a discussion of risk management background, the book then covers risk assessment for specific installations such as BOPs, marine production systems, subsea systems, deepwater production risers and pipelines. This book provides offshore petroleum engineers with both the theoretical principles and practical application skills needed to face today's offshore challenges and structures.
Oil and Gas Exploration: Methods and Application presents a summary of new results related to oil and gas prospecting that are useful for theoreticians and practical professionals. The study of oil and gas complexes and intrusions occurring in sedimentary basins is crucial for identifying the location of oil and gas fields and for making accurate predictions on oil findings. Volume highlights include: * Advanced geophysical techniques for achieving hydrocarbon exploration efficiency from beneath the Earth * Discussion of theoretical and practical approaches in solving problems related to exploring and mining new oil and gas deposits * New geological concepts for predicting potential hydrocarbon targets * Novel methods of control of the outworking of these deposits using different geophysical methods, significant for optimization of mining hydrocarbon and carbonate deposits * Estimation of the degree of outworking of oil and gas deposits, to facilitate the use of space-time monitoring of different kinds of fields * Analysis of exploration data by an efficient processing system, based on strong methods proven mathematically Oil and Gas Exploration: Methods and Application is a valuable resource for exploration geophysicists, petroleum engineers, geoengineers, petrologists, mining engineers, and economic geologists, who will gain insights into exploring new methods involved in finding natural resources from our Earth.
Oil and Gas Chemistry Management Series brings an all-inclusive suite of tools to cover all the sectors of oil and gas chemicals from drilling, completion to production, processing, storage, and transportation. The third reference in the series, Recovery Improvement, delivers the critical chemical basics while also covering the latest research developments and practical solutions. Organized by the type of enhanced recovery approaches, this volume facilitates engineers to fully understand underlying theories, potential challenges, practical problems, and keys for successful deployment. In addition to the chemical, gas, and thermal methods, this reference volume also includes low-salinity (smart) water, microorganism- and nanofluid-based recovery enhancement, and chemical solutions for conformance control and water shutoff in near wellbore and deep in the reservoir. Supported by a list of contributing experts from both academia and industry, this book provides a necessary reference to bridge petroleum chemistry operations from theory into more cost-efficient and sustainable practical applications.
Geomechanics of Sand Production and Control delivers a convenient resource for both academia and professionals to gain understanding and results surrounding sand production. Packed with rock mechanic fundamentals and field case studies, this reference offers theoretical knowledge, field and laboratory data, and operational methodologies. Gaining knowledge on better sand control production improves environmental impact, preventing corrosion of pipes, damage to surface production facilities, and disposal of produced sands, among other considerations. Sections are supported by field case studies, lab tests and modeling studies to explain the most environmentally supportive wellbore stability step-by-step methods. Authored by a very experienced professor, this reference helps engineers learn how to solve sand problems in various types of energy wells. Production engineers in oil and gas utilize sand production and sand control equipment in many completion methods, with a growing interest to expand these methods in wells for CO2 sequestration and geothermal areas, but knowledge on these methods is fragmented and lacks a bridge to support energy transition. This book provides the coverage needed to address this advancing field.
Petroleum engineers search through endless sources to understand oil and gas chemicals, find problems, and discover solutions while operations are becoming more unconventional and driving towards more sustainable practices. The Oil and Gas Chemistry Management Series brings an all-inclusive suite of tools to cover all the sectors of oil and gas chemicals from drilling to production, processing, storage, and transportation. The second reference in the series, Flow Assurance, delivers the critical chemical oilfield basics while also covering latest research developments and practical solutions. Organized by the type of problems and mitigation methods, this reference allows the engineer to fully understand how to effectively control chemistry issues, make sound decisions, and mitigate challenges ahead. Basics include root cause, model prediction and laboratory simulation of the major chemistry related challenges during oil and gas productions, while more advanced discussions cover the chemical and non-chemical mitigation strategies for more efficient, safe and sustainable operations. Supported by a list of contributing experts from both academia and industry, Flow Assurance brings a necessary reference to bridge petroleum chemistry operations from theory into safer and cost-effective practical applications.
Fundamentals of Horizontal Wellbore Cleanout delivers the latest methods regarding effective sand cleanout tools in horizontal wellbores. Providing the most relevant information, including sand bed formation, sand settling velocity, friction and hydraulics, this book covers the most effective tools and emerging technologies. Sections discuss the settling characteristics of sand and the effects of particle shape and size on drag coefficients, along with models for drag coefficients using experimental data. Numerical studies on sand transport efficiency as well as prediction models of sand concentration and an evaluation of friction between pipe and sand bed are also included. Illustrative case studies include cleanout with varying nozzle assemblies leading to optimum design on operation procedures, bottomhole assembly, and other lessons learned from known field experience. Rounding out with future research on cost-saving strategies including CO2 used as a washing fluid in water-sensitive formations, Fundamentals of Horizontal Wellbore Cleanout gives today's petroleum and drilling engineers alternative methods to hole cleaning in today's horizontal wells.
Gas Lift Systems Design and Optimization: A Modern Modeling Approach captures how to optimize gas lifted fields using various modeling tools and communications technologies. This book presents a holistic design that assures a comprehensive system methodology. To help achieve the goals of production optimization, this text examines certain vital concepts such as - fluid properties and inflow capacities, gas lift design options, gas lift supply and production gathering facilities as well as operation of processing equipment. Furthermore, various field management strategies are demonstrated in this solid approach, which will enable engineers to apply and achieve many key performance indicators in field operations. A technical book that covers all aspects of production optimization of gas lift systems, it details efficient and practical ways of designing and managing gas lifted network systems from a field perspective. Gas lift system optimization methods described herein establish that superior economic benefits can be achieved if each component of the whole network is reviewed and optimized, instead of optimizing the well performance alone. Additionally, the book highlights the use of artificial intelligence, machine learning, and data science technologies that are available today to take asset optimization to greater heights and extend its benefits. The author brings to the table his 30+ years of leading-edge insight and practical know-how, which will equip the reader with the wisdom to embark on field gas lift system optimization using modern, pragmatic, applied, and proven methods.
Unconventional Shale Gas Development: Lessons Learned gives engineers the latest research developments and practical applications in today's operations. Comprised of both academic and corporate contributors, a balanced critical review on technologies utilized are covered. Environmental topics are presented, including produced water management and sustainable operations in gas systems. Machine learning applications, well integrity and economic challenges are also covered to get the engineer up-to-speed. With its critical elements, case studies, history plot visuals and flow charts, the book delivers a critical reference to get today's petroleum engineers updated on the latest research and applications surrounding shale gas systems.
Corrosion engineers today spend enormous amounts of time and money searching multiple detailed sources and variable industry-specific standards to locate known remedies to corrosion equipment problems. Corrosion Atlas Series is the first centralized collection of case studies containing challenges paired directly with solutions together in one location. The second release of content in the series, Corrosion Atlas Case Studies: 2021 Edition, gives engineers expedient daily corrosion solutions for common industrial equipment, no matter the industry. Providing a purely operational level view, this reference is designed as concise case studies categorized by material and includes content surrounding the phenomenon, equipment appearance supported by a color image, time of service, conditions where the corrosion occurred, cause, and suggested remedies within each case study. Additional reference listings for deeper understanding beyond the practical elements are also included. Rounding out with an introductory foundational layer of corrosion principles critical to all engineers, Corrosion Atlas Case Studies: 2021 Edition delivers the daily tool required for engineers today to solve their equipment's corrosion problems.
Sustainable Oil and Gas Development Series: Reservoir Development delivers research materials and emerging technologies that conform sustainability in today's reservoirs. Starting with a status of technologies available, the reference describes sustainability as it applies to fracturing fluids, particularly within unconventional reservoirs. Basement reservoirs are discussed along with non-energy applications of fluids. Sustainability considerations for reserve predication are covered followed by risk analysis and scaling guidelines for further field development. Rounding out with conclusions and remaining challenges, Sustainable Oil and Gas Development Series: Reservoir Development gives today and future petroleum engineers a focused and balanced path to strengthen sustainability practices.
Chemical Methods, a new release in the Enhanced Oil Recovery series, helps engineers focus on the latest developments in one fast-growing area. Different techniques are described in addition to the latest technologies in data mining and hybrid processes. Beginning with an introduction to chemical concepts and polymer flooding, the book then focuses on more complex content, guiding readers into newer topics involving smart water injection and ionic liquids for EOR. Supported field case studies illustrate a bridge between research and practical application, thus making the book useful for academics and practicing engineers. This series delivers a multi-volume approach that addresses the latest research on various types of EOR. Supported by a full spectrum of contributors, this book gives petroleum engineers and researchers the latest developments and field applications to drive innovation for the future of energy.
Contamination Control in the Natural Gas Industry delivers the separation fundamentals and technology applications utilized by natural gas producers and processors. This reference covers principles and practices for better design and operation of a wide range of media, filters and systems to remove contaminants from liquids and gases, enabling gas industry professionals to fulfill diverse fluid purification requirements. Packed to cover practical technologies, diagnostics and troubleshooting methods, this book provides gas engineers and technologists with a critical first-ever reference geared to contamination control.
Sustainable Geoscience for Natural Gas SubSurface Systems delivers many of the scientific fundamentals needed in the natural gas industry, including coal-seam gas reservoir characterization and fracture analysis modeling for shale and tight gas reservoirs. Advanced research includes machine learning applications for well log and facies analysis, 3D gas property geological modeling, and X-ray CT scanning to reduce environmental hazards. Supported by corporate and academic contributors, along with two well-distinguished editors, the book gives today's natural gas engineers both fundamentals and advances in a convenient resource, with a zero-carbon future in mind.
Universal Well Control gives today's drilling and production engineers a modern guide to effectively and responsibly manage rig operations. In a post-Macondo industry, well control continues to require higher drilling costs, a waste of natural resources, and the possibility of a loss of human life when kicks and blowouts occur. The book delivers updated photos, practice examples and methods that are critical to modern well control information, ensuring engineers and personnel stay safe, environmentally responsible and effective. Complete with all phases of well control, the book covers kick detection, kick control, loss of control and blowout containment and killing. A quick tips section is included, along with templated. step-by-step methods to replicate for non-routine shut-in methods. Bonus equipment animations are included, along with a high number of visuals. Specialized methods are covered, including dual gradient drilling and managed pressure drilling.
Sustainable Natural Gas Reservoir and Production Engineering, the latest release in The Fundamentals and Sustainable Advances in Natural Gas Science and Engineering series, delivers many of the scientific fundamentals needed in the natural gas industry, including improving gas recovery, simulation processes for fracturing methods, and methods for optimizing production strategies. Advanced research covered includes machine learning applications, gas fracturing mechanics aimed at reducing environmental impact, and enhanced oil recovery technologies aimed at capturing carbon dioxide. Supported by corporate and academic contributors along with two well-distinguished editors, this book provides today's natural gas engineers the fundamentals and advances in a convenient resource
Fluid Chemistry, Drilling and Completion, the latest release in the Oil and Gas Chemistry Management series that covers all sectors of oil and gas chemicals (from drilling to production, processing, storage and transportation), delivers critical chemical oilfield basics while also covering the latest research developments and practical solutions. Organized by type of chemical, the book allows engineers to fully understand how to effectively control chemistry issues, make sound decisions, and mitigate challenges. Sections cover downhole sampling, crude oil characterization, such as fingerprinting properties, data interpretation, chemicals specific to fluid loss control, and matrix stimulation chemicals. Supported by a list of contributing experts from both academia and industry, the book provides a necessary reference that bridges petroleum chemistry operations from theory, to safer, cost-effective applications.
Applied Gaseous Fluid Drilling Engineering: Design and Field Case Studies provides an introduction on the benefits of using gaseous fluid drilling engineering. In addition, the book describes the multi-phase systems needed, along with discussions on stability control. Safety and economic considerations are also included, as well as key components of surface equipment needed and how to properly select equipment depending on the type of fluid system. Rounding out with proven case studies that demonstrate good practices and lessons from failures, this book delivers a practical tool for understanding the guidelines and mitigations needed to utilize this valuable process and technology. |
![]() ![]() You may like...
|