![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Energy technology & engineering > Fossil fuel technologies > Gas technology
With the oil and gas industry facing new challenges-deeper offshore installations, more unconventional oil and gas transporting through pipelines, and refinery equipment processing these opportunity feedstocks--new corrosion challenges are appearing, and the oil and gas industry's infrastructure is only as good as the quality of protection provided and maintained. Essentials of Coating, Painting, and Linings for the Oil, Gas, and Petrochemical Industries is the first guide of its kind to directly deliver the necessary information to prevent and control corrosion for the components on the offshore rig, pipelines underground and petrochemical equipment. Written as a companion to Cathodic Corrosion Protection Systems, this must-have training tool supplies the oil and gas engineer, inspector and manager with the full picture of corrosion prevention methods specifically catered for oil and gas services. Packed with real world case studies, critical qualifications, inspection criteria, suggested procedure tests, and application methods, Essentials of Coating, Painting, and Linings for the Oil, Gas and Petrochemical Industries is a required straightforward reference for any oil and gas engineer and manager.
As deepwater wells are drilled to greater depths, pipeline
engineers and designers are confronted with new problems such as
water depth, weather conditions, ocean currents, equipment
reliability, and well accessibility. "Subsea Pipeline Design,
Analysis and Installation" is based on the authors' 30 years of
experience in offshore. The authors provide rigorous coverage of
the entire spectrum of subjects in the discipline, from pipe
installation and routing selection and planning to design,
construction, and installation of pipelines in some of the harshest
underwater environments around the world. All-inclusive, this
must-have handbook covers the latest breakthroughs in subjects such
as corrosion prevention, pipeline inspection, and welding, while
offering an easy-to-understand guide to new design codes currently
followed in the United States, United Kingdom, Norway, and other
countries.
This comprehensive professional reference has been fully revised and updated for the second edition. It is both a training tool and text covering all aspects of pipeline pumping and compression system design, configuration, and operation, in addition to the dynamic behavior of all the elements in each system. The authors provide practical solutions for achieving reliable operation of these systems. This book will serve as a useful guide for the design of liquid and gas pipeline transmissions, as well as a guide to various installation options. For practicing engineers in the pipeline and oil & gas industry, specifically those in involved with the design and operation of pumping and compression systems.
Presented in easy-to-use, step-by-step order, "Pipeline Rules of Thumb Handbook" is a quick reference for day-to-day pipeline operations. For more than 35 years, the "Pipeline Rules of Thumb Handbook" has served as the "go-to" reference for solving even the most day-to-day vexing pipeline workflow problems. Now in its 8th edition, this handbook continues to set the standard by which all other piping books are judged. Along with over 30% new or updated material regarding codes, construction processes, and equipment, this book continues to offer hundreds of "how-to" methods and handy formulas for pipeline construction, design, and engineering and features a multitude of calculations to assist in problem solving, directly applying the rules and equations for specific design and operating conditions to illustrate correct application, all in one convenient reference. For the first time in this new edition, we are taking the content and data off the page and adding a new dimension of practical value for you with online interactive features to accompany some of the handiest and most useful material from the book: Interactive tables that takes data from the book and turns them into a sortable spreadsheet format that gives you the ability to perform your own basic filtering functions, show/hide columns of just the data that is important to you, and download the table into an Excel spreadsheet for additional use A graph digitizer which pulls a graph from the book and gives you the power to plot your own lines on the existing graph, see all the relative x/y coordinates of the graph, and name and color code your lines for clarityA converter calculator performing basic conversions from the book such as metric conversions, time, temperature, length, power and more. Please feel free to visit the site: http:
//booksite.elsevier.com/9780123876935/index.php, and we hope you
will find our features as another useful and efficient tool for you
in your day-to-day activity.
This volume contains peer-reviewed manuscripts describing the
scientific and technological advances presented at the 6th Natural
Gas Conversion Sumposium held in Alaska in June 2001. This
symposium continues the tradition of excellence and the status as
the premier technical meeting in this area established by previous
meetings.
This book documents CCPS's Aerosol Research Program to develop a model to predict liquid rainout from release of a pressurized, liquefied gas--and, hence the residual amount of material in a vapor cloud, which may be greater than the amount calculated from an enthalpy chart. RELEASE predicts the rate of fluid discharge, the depressurization, flashing and formation of liquid drops, the entrainment of drops into the vapor cloud, the subsequent spreading of the jet, and rate of liquid rainout to a pool on the ground. Designed in a modular fashion to permit adjustment and corrections as new data become available, its multi-layered approach contains sub-models that include the complexities of many variables, including the effect of liquid superheat, rate of bubble growth, criterion for bubble formation, and heat transfer from the liquid to the growing vapor bubble. To validate RELEASE, CCPS conducted small- and large-scale experiments using superheated water, heated liquefied chlorine, methylamine, and cyclohexane that produced valuable data in an area where data are scarce. This book gives complete access, in text and on CD-ROM, to the model and the test data, giving users an informed ability to apply the model to their own work.
Natural Gas Hydrates, Fourth Edition, provides a critical reference for engineers who are new to the field. Covering the fundamental properties, thermodynamics and behavior of hydrates in multiphase systems, this reference explains the basics before advancing to more practical applications, the latest developments and models. Updated sections include a new hydrate toolbox, updated correlations and computer methods. Rounding out with new case study examples, this new edition gives engineers an important tool to continue to control and mitigate hydrates in a safe and effective manner.
This title includes a number of Open Access chapters. The number of tight oil and shale gas wells continues to rise primarily in the US, but also worldwide. The US has vast reserves of oil and natural gas, which now are commercially reachable as a result of advances in horizontal drilling and hydraulic fracturing technologies. But as hydraulic fracturing is increasingly used, concerns have been raised about potential stress on surface water and groundwater supplies from the withdrawal of water used in the process. Equally important is the growing volume of wastewater generated from hydraulically fractured oil and gas wells, requiring recycling, treatment, and disposal. Wastewater and Shale Formation Development: Risks, Mitigation, and Regulation examines four major issues, taking a scientific look from different perspectives at water use in shale gas development, potential environmental effects of wastewater from fracking, how to mitigate potential risks associated with wastewater from shale development, and regulatory approaches to the wastewater management problem With chapters from researchers in the field, this compendium volume sheds light on the important issues and challenges surrounding natural gas extraction using hydraulic fracturing and may be of interest to researchers and public policymakers alike.
Handbook of Fire and Explosion Protection Engineering Principles for the Oil, Gas, Chemical, and Related Facilities, Fourth Edition, discusses high-level risk analysis and advanced technical considerations, such as process control, emergency shut-downs, and evaluation procedures. As more engineers and managers are adopting risk-based approaches to minimize risk, maximize profits, and keep operations running smoothly, this reference encompasses all the critical equipment and standards necessary for the process industries, including oil and gas. Updated with new information covering fire and explosion resistant systems, drainage systems, and human factors, this book delivers the equipment standards needed to protect today's petrochemical assets and facilities.
Microorganisms are ubiquitously present in petroleum reservoirs and the facilities that produce them. Pipelines, vessels, and other equipment used in upstream oil and gas operations provide a vast and predominantly anoxic environment for microorganisms to thrive. The biggest technical challenge resulting from microbial activity in these engineered environments is the impact on materials integrity. Oilfield microorganisms can affect materials integrity profoundly through a multitude of elusive (bio)chemical mechanisms, collectively referred to as microbiologically influenced corrosion (MIC). MIC is estimated to account for 20 to 30% of all corrosion-related costs in the oil and gas industry. This book is intended as a comprehensive reference for integrity engineers, production chemists, oilfield microbiologists, and scientists working in the field of petroleum microbiology or corrosion. Exhaustively researched by leaders from both industry and academia, this book discusses the latest technological and scientific advances as well as relevant case studies to convey to readers an understanding of MIC and its effective management.
The expansion of unconventional petroleum resources in the recent decade and the rapid development of computational technology have provided the opportunity to develop and apply 3D numerical modeling technology to simulate the hydraulic fracturing of shale and tight sand formations. This book presents 3D numerical modeling technologies for hydraulic fracturing developed in recent years, and introduces solutions to various 3D geomechanical problems related to hydraulic fracturing. In the solution processes of the case studies included in the book, fully coupled multi-physics modeling has been adopted, along with innovative computational techniques, such as submodeling. In practice, hydraulic fracturing is an essential project component in shale gas/oil development and tight sand oil, and provides an essential measure in the process of drilling cuttings reinjection (CRI). It is also an essential measure for widened mud weight window (MWW) when drilling through naturally fractured formations; the process of hydraulic plugging is a typical application of hydraulic fracturing. 3D modeling and numerical analysis of hydraulic fracturing is essential for the successful development of tight oil/gas formations: it provides accurate solutions for optimized stage intervals in a multistage fracking job. It also provides optimized well-spacing for the design of zipper-frac wells. Numerical estimation of casing integrity under stimulation injection in the hydraulic fracturing process is one of major concerns in the successful development of unconventional resources. This topic is also investigated numerically in this book. Numerical solutions to several other typical geomechanics problems related to hydraulic fracturing, such as fluid migration caused by fault reactivation and seismic activities, are also presented. This book can be used as a reference textbook to petroleum, geotechnical and geothermal engineers, to senior undergraduate, graduate and postgraduate students, and to geologists, hydrogeologists, geophysicists and applied mathematicians working in this field. This book is also a synthetic compendium of both the fundamentals and some of the most advanced aspects of hydraulic fracturing technology.
Shale oil and gas have altered the energy landscape, possibly permanently. They burst upon the fossil energy scene with a suddenness that initially defied prediction. Even the political balance of the world has changed. But, with the methods employed, the vast majority of the oil and gas remains in the ground. At the same time, serious environmental impact issues have been raised. A new volume in the Emerging Issues in Analytical Chemistry series, Sustainable Shale Oil and Gas: Analytical Chemistry, Geochemistry, and Biochemistry Methods was written on the premise that analytical methods to inform these areas were wanting. While not attempting to be comprehensive, it describes important analytical methods, some still in development. These methods are underpinned primarily by chemistry, but geochemistry and even biochemistry play significant roles. The book has a solutions flavor; problems are posed together with approaches to ameliorate them.
Sustainable Hydrogen Production provides readers with an introduction to the processes and technologies used in major hydrogen production methods. This book serves as a unique source for information on advanced hydrogen generation systems and applications (including integrated systems, hybrid systems, and multigeneration systems with hydrogen production). Advanced and clean technologies are linked to environmental impact issues, and methods for sustainable development are thoroughly discussed. With Earth's fast-growing populations, we face the challenge of rapidly rising energy needs. To balance these we must explore more sustainable methods of energy production. Hydrogen is one key sustainable method because of its versatility. It is a constituent of a large palette of essential materials, chemicals, and fuels. It is a source of power and a source of heat. Because of this versatility, the demand for hydrogen is sure to increase as we aim to explore more sustainable methods of energy. Furthermore, Sustainable Hydrogen Production provides methodologies, models, and analysis techniques to help achieve better use of resources, efficiency, cost-effectiveness, and sustainability. The book is intellectually rich and interesting as well as practical. The fundamental methods of hydrogen production are categorized based on type of energy source: electrical, thermal, photonic, and biochemical. Where appropriate, historical context is introduced. Thermodynamic concepts, illustrative examples, and case studies are used to solve concrete power engineering problems.
Rethinking Bhopal: A Definitive Guide to Investigating, Preventing, and Learning from Industrial Disasters is the go-to source for anyone seeking to learn how to improve process safety management (PSM) through applying fundamental asset reliability and incident investigation concepts. The seeds that unified PSM on a global scale were planted in Bhopal, India on December 3, 1984. Since then, considerable progress has been made to protect both workers and communities from catastrophic industrial failures. Industry acknowledges its responsibility to create value with accrued operating experience and that using information received from previous failures is a direct way to prevent future incidents. With this principle in mind, Bloch evaluates modern references related to the Bhopal Disaster, using recognized industrial asset reliability and incident investigation concepts. The practice of objective incident investigation offers a compelling insight into specific decisions and actions that resulted in history's worst industrial disaster. Recording a fully transparent sequence of events promotes a personal sense of accountability for anyone involved in the manufacturing industry. Lessons learned can be immediately implemented by those with direct PSM, management, engineering, and operating responsibilities. Case histories demonstrate how patterns observed in the timeline leading up to the Bhopal Disaster can be detected in modern incidents and by recognizing these patterns in present-day processes avoids counterproductive operating decisions and unprecedented destruction. This text is instrumental in helping existing organizations re-evaluate their own exposures and risks, and would be a valuable read for any member of a process safety management team. Rethinking Bhopal: A Definitive Guide to Investigating, Preventing, and Learning from Industrial Disasters provides an expansion of knowledge and understanding for the novice in PSM while also providing depth and application considerations to challenge more experienced industry professionals. Note: All royalties from this book go to the Process Safety Heritage Trust Scholarship at Lamar University in Beaumont, Texas, USA.
Every oil and gas refinery or petrochemical plant requires sufficient utilities support in order to maintain a successful operation. A comprehensive utilities complex must exist to distribute feedstocks, discharge waste streams, and remains an integrated part of the refinery's infrastructure. Essentials of Oil and Gas Utilities explains these support systems and provides essential information on their essential requirements and process design. This guide includes water treatment plants, condensate recovery plants, high pressure steam boilers, induced draft cooling towers, instrumentation/plant air compressors, and units for a refinery fuel gas and oil systems. In addition, the book offers recommendations for equipment and flow line protection against temperature fluctuations and the proper preparation and storage of strong and dilute caustic solutions. Essentials of Oil and Gas Utilities is a go-to resource for engineers and refinery personnel who must consider utility system design parameters and associated processes for the successful operations of their plants.
Air and Gas Drilling Manual, Fourth Edition: Applications for Oil, Gas and Geothermal Fluid Recovery Wells, and Specialized Construction Boreholes, and the History and Advent of the Directional DTH delivers the fundamentals and current methods needed for engineers and managers engaged in drilling operations. Packed with updates, this reference discusses the engineering modelling and planning aspects of underbalanced drilling, the impacts of technological advances in high angle and horizontal drilling, and the importance of new production from shale. in addition, an in-depth discussion is included on well control model planning considerations for completions, along with detailed calculation examples using Mathcad. This book will update the petroleum and drilling engineer with a much-needed reference to stay on top of drilling methods and new applications in today's operations.
Advanced Biomass Gasification: New Concepts for Efficiency Increase and Product Flexibility provides a thorough overview on new concepts in biomass gasification and consolidated information on advances for process integration and combination, which could otherwise only be gained by reading a high number of journal publications. Heidenreich, Muller and Foscolo, highly respected experts in this field, start their exploration with the compact UNIQUE reactor, gasification and pyrolysis, gasification and combustion, and catalysts and membranes. The authors then examine biomass pre-treatment processes, taking into account the energy balance of the overall conversion process, and look into oxygen-steam gasification and solutions for air separation, including new options for integration of O2-membranes into the gasifier. Several polygeneration strategies are covered, including combined heat and power (CHP) production with synthetic natural gas (SNG), biofuels and hydrogen, and new cutting-edge concepts, such as plasma gasification, supercritical water gasification, and catalytic gasification, which allows for insights on the future technological outlook of the area. This book is then a valuable resource for industry and academia-based researchers, as well as graduate students in the energy and chemical sectors with interest in biomass gasification, especially in areas of power engineering, bioenergy, chemical engineering, and catalysis.
This is a revised and updated set of guidelines applicable to stainless steels, nickel alloys and titanium alloys covering: SSC/SCC test procedures; reference environments for SSC and SCC testing; guidance on autoclave testing of CRAs; and, procedures for testing CRAs exposed to sulphur and H2S.
The practical new handbook will feature contributions from leading authorities in the field, including Guy Dayvault of Energy Deal Solutions, Jessica Davies and Rebecca Perkins of Allen & Overy and Michael Darowski of Hogan Lovells. Chapters cover key issues such as the regulation of hydraulic fracturing, including water use and disposal, natural gas pricing trends and operator issues, and coal seam gas and coal bed methane. Together, the contributions afford crucial insight into one of the youngest and fastest-moving areas of the natural gas industry. |
![]() ![]() You may like...
|