Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Energy technology & engineering > Fossil fuel technologies > Gas technology
The demand for energy consumption is increasing rapidly. To avoid the impending energy crunch, more producers are switching from oil to natural gas. While natural gas engineering is well documented through many sources, the computer applications that provide a crucial role in engineering design and analysis are not well published, and emerging technologies, such as shale gas drilling, are generating more advanced applications for engineers to utilize on the job. To keep producers updated, Boyun Guo and Ali Ghalambor have enhanced their best-selling manual, Natural Gas Engineering Handbook, to continue to provide upcoming and practicing engineers the full scope of natural gas engineering with a computer-assisted approach.
Natural gas and liquefied natural gas (LNG) continue to grow as a part of the sustainable energy mix. While oil and gas companies look to lower emissions, one key refinery component that contributes up to 60% of emissions are valves, mainly due to poor design, sealing, and testing. Cryogenic Valves for Liquefied Natural Gas Plants delivers a much-needed reference that focuses on the design, testing, maintenance, material selection, and standards needed to stay environmentally compliant at natural gas refineries. Covering technical definitions, case studies, and Q&A, the reference includes all ranges of natural gas compounds, including LPG, CNG, NGL, and PNG. Key design considerations are included that are specific for cryogenic services, including a case study on cryogenic butterfly valves. The material selection process can be more complex for cryogenic services, so the author goes into more detail about materials that adhere to cryogenic temperature resistance. Most importantly, testing of valves is covered in depth, including shell test, closure or seat test, and thermal shock tests, along with tactics on how to prevent dangerous cryogenic leaks, which are very harmful to the environment. The book is a vital resource for today's natural gas engineers.
Oil and gas assets are under constant pressure and engineers and managers need integrity management training and strategies to ensure their operations are safe. Gaining practical guidance is not trained ahead of time and learned on the job. Asset Integrity Management of Offshore and Onshore Structures delivers a critical training tool for engineers to prepare and mitigate safety risk. Starting with a transitional introductory chapter, the reference dives into integrity management approaches including codes and standards. Inspection, assessment, and repair methods are covered for offshore, FPSO, onshore and pipelines. Suggested proactive approaches and modeling risk-based inspection are also included. Supported with case studies, detailed discussions, and practical applications, Asset Integrity Management of Offshore and Onshore Structures gives oil and gas managers a reference to extend asset life, reduce costs, and minimalize impact to personnel and environment.
Gasification is one of the most important advancements that has ever occurred in energy production. Using this technology, for example, coal can be gasified into a product that has roughly half the carbon footprint of coal. On a large scale, gasification could be considered a revolutionary development, not only prolonging the life of carbon-based fuels, but making them "greener" and cleaner. As long as much of the world still depends on fossil fuels, gasification will be an environmentally friendlier choice for energy production. But gasification is not just used for fossil fuels. Waste products that would normally be dumped into landfills or otherwise disposed of can be converted into energy through the process of gasification. The same is true of biofeedstocks and other types of feedstocks, thus making another argument for the widespread use of gasification. The Handbook of Gasification Technology covers all aspects of the gasification, in a "one-stop shop," from the basic science of gasification and why it is needed to the energy sources, processes, chemicals, materials, and machinery used in the technology. Whether a veteran engineer or scientist using it as a reference or a professor using it as a textbook, this outstanding new volume is a must-have for any library.
Compendium of Hydrogen Energy: Hydrogen Production and Purification, the first text in a four-volume series, focuses on the production of hydrogen. As many experts believe that the hydrogen economy will eventually replace the fossil fuel economy as our primary source of energy, the text provides a timely discussion on this interesting topic. The text details the methods of hydrogen production using fossil fuels, also exploring sustainable extraction methods of hydrogen production from water and hydrogen purification processes.
This book chiefly describes the theories and technologies for natural gas hydrate management in deepwater gas wells. It systematically explores the mechanisms of hydrate formation, migration, deposition and blockage in multiphase flow in gas-dominated systems; constructs a multiphase flow model of multi-component systems for wells that takes into account hydrate phase transition; reveals the influence of hydrate phase transition on multiphase flows, and puts forward a creative hydrate blockage management method based on hydrate blockage free window (HBFW), which enormously improves the hydrate prevention effect in deepwater wells. The book combines essential theories and industrial technology practice to facilitate a deeper understanding of approaches to and technologies for hydrate management in deepwater wells, and provides guidance on operation design. Accordingly, it represents a valuable reference guide for both researchers and graduate students working in oil and gas engineering, offshore oil and gas engineering, oil and gas storage and transportation engineering, as well as technical staff in the fields of deepwater oil and gas drilling, development, and flow assurance.
Finite Element Programming in Non-linear Geomechanics and Transient Flow delivers a textbook reference for both students and practitioners alike, with provided codes to understand and modify. Starting with the fundamentals, the reference covers the basics of finite element methods, including coupling geomechanics and transient fluid flow. The next phase moves from theory into practical application from programs Flow3D and Geo3D, utilizing source codes to solve real field challenges. Stability of perforations during oil and gas production, sand production problems, rock failure, casing collapse, and reservoir compaction problems are just some examples. Next, the reference elevates to hands-on experience, sharing source codes with additional problems engineers can work on independently. This gives students and engineers a starting point to modify their own code in a fraction of the time.
This is the candid and often colourful account of the personal experiences of a resource analyst; experiences that led to major contributions in the modelling and forecasting of petroleum discovery rates and of potential oil and gas supply. The author's approach is largely nontechnical. He relates the difficulties encountered in integrating geoscience, economics, and statistics, and stresses the value of critically examining data before formulating theories or building formal models.
Offshore Projects and Engineering Management delivers a critical training tool for engineers on how to prepare cost estimates and understand the most recent management methods. Specific to the oil and gas offshore industry, the reference dives into project economics, interface management and contracts. Methods for analyzing risk, activity calculations and risk response strategies are covered for offshore, FPSO and pipelines. Supported with case studies, detailed discussions, and practical applications, this comprehensive book gives oil and gas managers a management toolbox to extend asset life, reduce costs and minimalize impact to personnel and environment. Oil and gas assets are under constant pressure and engineers and managers need engineering management training and strategies to ensure their operations are safe and cost effective. This book helps manage the ramp up to the management of offshore structures.
Risk Management in the Oil and Gas Industry: Offshore and Onshore Concepts and Case Studies delivers the concepts, strategies and good practices of offshore and onshore safety engineering that are applicable to petroleum engineering and immediately surrounding industries. Guided by the strategic risk management line, this reference organizes steps in order of importance and priority that should be given to the themes in the practical exercise of risk management activities, from the conceptual and design phase to operational and crisis management situations. Each chapter is packed with practical case studies, lessons learned, exercises, and review questions. The reference also touches on the newest techniques, including liquefied natural gas (cryogenics) operations and computer simulations that contemplate the influence of human behavior. Critical for both the new and experienced engineer, this book gives the best didactic tool to perform operations safely and effectively.
Prevention of Actuator Emissions in the Oil and Gas Industry delivers a critical reference for oil and gas engineers and managers to get up-to-speed on all the factors in actuator fugitive emissions. Packed with a selection process, the benefits of switching to an electric system, and the technology around open and closed loop hydraulic systems helps today's engineer understand all their options. Rounding with a detailed explanation around High Integrity Pressure Protection Systems (HIPPS), this book gives provides the knowledge necessary to lower emissions on today's equipment.
Prevention of Valve Fugitive Emissions in the Oil and Gas Industry delivers a critical reference for oil and gas engineers and managers to get up-to-speed on all factors surrounding valve fugitive emissions. New technology is included on monitoring, with special attention given to valve seals which are typically the biggest emitting factor on the valve. Proper testing requirements to mitigate future leaks are also covered. Rounding out with international standards, laws and specifications to apply to projects around the world, this book gives today's engineers updated knowledge on how to lower emissions on today's equipment.
Machine Learning Guide for Oil and Gas Using Python: A Step-by-Step Breakdown with Data, Algorithms, Codes, and Applications delivers a critical training and resource tool to help engineers understand machine learning theory and practice, specifically referencing use cases in oil and gas. The reference moves from explaining how Python works to step-by-step examples of utilization in various oil and gas scenarios, such as well testing, shale reservoirs and production optimization. Petroleum engineers are quickly applying machine learning techniques to their data challenges, but there is a lack of references beyond the math or heavy theory of machine learning. Machine Learning Guide for Oil and Gas Using Python details the open-source tool Python by explaining how it works at an introductory level then bridging into how to apply the algorithms into different oil and gas scenarios. While similar resources are often too mathematical, this book balances theory with applications, including use cases that help solve different oil and gas data challenges.
Machine Learning and Data Science in the Oil and Gas Industry explains how machine learning can be specifically tailored to oil and gas use cases. Petroleum engineers will learn when to use machine learning, how it is already used in oil and gas operations, and how to manage the data stream moving forward. Practical in its approach, the book explains all aspects of a data science or machine learning project, including the managerial parts of it that are so often the cause for failure. Several real-life case studies round out the book with topics such as predictive maintenance, soft sensing, and forecasting. Viewed as a guide book, this manual will lead a practitioner through the journey of a data science project in the oil and gas industry circumventing the pitfalls and articulating the business value.
Well Integrity for Workovers and Recompletions delivers the concise steps and processes necessary to ensure that production wells minimize failure. After understanding the introductory background on well integrity and establishing the best baseline, the reference advances into various failure modes that can be expected. Rounding out with an explanation and tools concerning economic considerations, such as how to increase reserve potential and rate of return, the book gives oil and gas engineers and managers a vital solution to keeping their assets safe and effective for the long-term gain.
Sustainable Materials for Transitional and Alternative Energy, a new release in the Advanced Materials and Sensors for the Oil and Gas Industry series, comprises a list of processes across the energy industry coupled with the latest research involving advanced nanomaterials. Topics include green-based nanomaterials towards carbon capture, the importance of coal gasification in terms of fossil fuels and advanced materials utilized for fuel cells. Supplied from contributing experts in both academic and corporate backgrounds, the reference contains a precise balance on the developments, applications, advantages and challenges remaining. The book addresses real solutions as energy companies continue to deliver energy needs while lowering emissions. The oil and gas industry are shifting and implementing innovative ways to produce energy in an environmentally friendly way. One approach involves solutions developed using advanced materials and nanotechnology. Nanomaterials are delivering new alternatives for engineers making this a timely product for today's market.
Sustainable Materials for Oil and Gas Applications, a new release in the Advanced Materials and Sensors for the Oil and Gas Industry series, comprises a list of processes across the upstream and downstream sectors of the industry and the latest research on advanced nanomaterials. Topics include enhanced oil recovery mechanisms of nanofluids, health and safety features related to nanoparticle handling, and advanced materials for produced water treatments. Supplied from contributing experts in both academic and corporate backgrounds, the reference contains developments, applications, advantages and challenges. Located in one convenient resource, the book addresses real solutions as oil and gas companies try to lower emissions. As the oil and gas industry are shifting and implementing innovative ways to produce oil and gas in an environmentally friendly way, this resource is an ideal complement to their work.
Methane hydrates are still a complicated target for today's oil and gas offshore engineers, particularly the lack of reliable real field test data or obtaining the most recent technology available on the feasibility and challenges surrounding the extraction of methane hydrates. Oceanic Methane Hydrates delivers the solid foundation as well as today's advances and challenges that remain. Starting with the fundamental knowledge on gas hydrates, the authors define the origin, estimations, and known exploration and production methods. Historical and current oil and gas fields and roadmaps containing methane hydrates around the world are also covered to help lay the foundation for the early career engineer. Lab experiments and advancements in numerical reservoir simulations transition the engineer from research to practice with real field-core sampling techniques covered, points on how to choose producible methane hydrate reservoirs, and the importance of emerging technologies. Actual comparable onshore tests from around the world are included to help the engineer gain clarity on field expectations. Rounding out the reference are emerging technologies in all facets of the business including well completion and monitoring, economics aspects to consider, and environmental challenges, particularly methods to reduce the costs of methane hydrate exploration and production techniques. Rounding out a look at future trends, Oceanic Methane Hydrates covers both the basics and advances needed for today's engineers to gain the required knowledge needed to tackle this challenging and exciting future energy source.
Many of the world's climate scientists believe that the build-up of heat-trapping CO2 in the atmosphere will lead to global warming unless we burn less fossil fuels. At the same time, energy must be supplied in increasing amounts for the developing world to continue its growth. This work discusses the feasibility of increasingly efficient energy use and the potential for supplying energy from sources that do not introduce CO2. The book analyzes the prospects for Earth-based renewables: solar, wind, biomass, hydroelectricity, geothermal and ocean energy. It then discusses nuclear fission and fusion, and the relatively new idea of harvesting solar energy on satellites or lunar bases. It will be essential reading for all those interested in energy issues.
Selection of the optimal recovery method is significantly influenced by economic issues in today's oil and gas markets. Consequently, the development of cost-effective technologies, which bring maximum oil recovery, is the main interest in today's petroleum research communities. Theory and Practice in Microbial Enhanced Oil Recovery provides the fundamentals, latest research and creditable field applications. Microbial Enhanced Oil Recovery (MEOR) is potentially a low-priced and eco-friendly technique in which different microorganisms and their metabolic products are implemented to recover the remaining oil in the reservoir. Despite drastic advantages of MEOR technology, it is still not fully supported in the industry due to lack of knowledge on microbial activities and their complexity of the process. While some selected strategies have demonstrated the feasibility to be used on a mass scale through both lab and field trials, more research remains to implement MEOR into more oil industry practices. This reference delivers comprehensive descriptions on the fundamentals including basic theories on geomicrobiology, experiments and modeling, as well as current tested field applications. Theory and Practice in Microbial Enhanced Oil Recovery gives engineers and researchers the tool needed to stay up to date on this evolving and more sustainable technology.
The development of a new class of nanocomposite membranes has served as one of the most prominent strategies to address the intrinsic limitations of conventionally used polymeric and inorganic membranes. Nanocomposite membranes consist of nanosized inorganic nanomaterials that are incorporated into the structure of continuous polymer matrices. Owing to the exceptional properties exhibited by the nanomaterials, the resultant nanocomposite membranes demonstrate higher selectivity and permeability that surpass the Robeson upper boundary limit. Nanocomposite Membranes for Gas Separation provides a comprehensive review of the advances made in the development and application of gas separation nanocomposite membranes. In particular, the book covers the focuses on the fabrication, modification, characterization and applications of nanocomposite membranes for gas separation. It is an important reference source both for materials scientists, environmental engineers and chemical engineers who are looking to understand how nanocomposite membranes are being used to create better techniques for gas separation.
The semiconductor industry is moving toward gas-phase reagents, increasing the relative importance of gas purity. Anyone who deals in the manufacturing of these devices needs to understand the technology available for modern gas analysis. Most specialty gas vendors have some re in place for quality assurance, but these usually are very simplistic and outdated methods. No book was available that gave guidance on providing accurate, reproducible data on specialty gas products. This is the first book that provides an introduction to current analytical methods and equipment for the analysis of high- purity gases used in the semiconductor industry and related fields.
With the increasing development of brownfield and landfill sites, ground gas is a common problem encountered by engineers and scientists and this book not only raises awareness of the phenomenon but also provides practical solutions to the difficulties experienced. This vital new handbook provides practical guidance to engineers, regulators and designers about assessing ground gas risk and the design of appropriate protection measures. It includes a great deal of information that has never before been available in one volume and draws on the collective experience of the authors. The book discusses the assessment of ground gas for Part II A sites and also includes information on the assessment of vapours. Detailed information on gas generation and the analysis of gas flows in the ground are included, including the design of gas protection systems. There are many worked examples throughout the book that help to explain the concepts and calculations that are described. It explains how to use the most recent assessment methods published by CIRCA, NHBC and BSI and highlights the differences between the various methods.The final sections cover the design and installation of gas protection systems to buildings and in ground barriers. Most importantly, it includes advice and recommendations about the validation and testing of protection systems as they are installed. Readership: This handbook will be of immense value to professionals and advanced students within geotechnical engineering, geo-environmental engineering, ground engineering and environmental health, including engineers and applied scientists in these disciplines. Researchers, regulators and design offices will also find this book to be of great use.
The Offshore Pipeline Construction Industry: Activity Modeling and Cost Estimation in the United States Gulf of Mexico presents the latest technical concepts and economic calculations, helping engineers make better business decisions. The book covers flow assurance, development strategies on pipeline requirements and the construction service side with a global perspective. In addition, it focuses on one of the most underdeveloped, promising assets - the Gulf of Mexico. Pipeline construction and decommissioning estimation methods are examined with reliable data presented. A final section covers trends for oil, gas, bulk oil, bulk gas, service and umbilical pipelines for installation and decommissioning using correlation models. This book delivers a much-needed tool for the pipeline engineer to better understand the economical choices and alternatives to designing, constructing, and operating today's offshore pipelines.
Primer on Enhanced Oil Recovery gives the oil and gas market the introductory information it needs to cover the physical and chemical properties of hydrocarbon reservoir fluids and rock, drilling operations, rock-fluid interactions, recovery methods, and the economy of enhanced oil recovery projects. Beginning with introductory materials on basic physics and oil-rock interaction, the book then progresses into well-known types of EOR, such as gas injection and microbial EOR. Other sections cover hybrid EOR, smart water/low salinity and solar EOR. Worldwide case study examples give engineers the go-to starting point they need to understand the fundamentals of EOR techniques and data. |
You may like...
Gas Cleaning at High Temperatures - 2nd…
R. Clift, J.P.K. Seville
Hardcover
R2,477
Discovery Miles 24 770
Treatment of Biogas for Feeding High…
Maria Turco, Angelo Ausiello, …
Hardcover
R1,803
Discovery Miles 18 030
Advances in the Study of Gas Hydrates
Charles E. Taylor, Jonathan T Kwan
Hardcover
R2,817
Discovery Miles 28 170
Propulsion and Power - An Exploration of…
Joachim Kurzke, Ian Halliwell
Hardcover
R6,319
Discovery Miles 63 190
Proceedings of the 2nd Annual Gas…
Farid Benyahia, Fadwa Eljack
Hardcover
R8,064
Discovery Miles 80 640
Economics of Unconventional Shale Gas…
William E. Hefley, Yongsheng Wang
Hardcover
R3,359
Discovery Miles 33 590
The Hydrogen Energy Transition - Cutting…
Daniel Sperling, James S Cannon
Hardcover
R1,833
Discovery Miles 18 330
Control of Operation Modes of Gas…
Viktor I. Rabchuk, Sergey M. Senderov, …
Hardcover
R2,789
Discovery Miles 27 890
|