![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Energy technology & engineering > Fossil fuel technologies > Gas technology
Wastes generated in a community can be a valuable energy and material resource. However, past and current waste disposal and treatment practices consume energy and have led this resource to become a serious environmental burden. Fortunately, being a resource as well as a burden has generated some extremely creative and economically attractive waste-to-energy systems to utilize wastes while mitigating their environmental impact. It is hoped that this book will promote an appreciation of the environmental problems, energy demand and resources, the economics and risks involved that are essential to define the role of these systems in the future. The problems of urban air pollution, acid rain, global greenhouse effect and surface and groundwater degradation all can be tied directly or indirectly to how we produce and utilize energy and dispose of wastes. All communities have wastes, be they wastewater, municipal solid wastes, industrial or agricultural wastes, and the community must deal with them. It is possible to consolidate many of these wastes to gain real benefits in terms of the environment, economics, energy supply and conservation and materials recovery. This text summarizes s
The expansion of unconventional petroleum resources in the recent decade and the rapid development of computational technology have provided the opportunity to develop and apply 3D numerical modeling technology to simulate the hydraulic fracturing of shale and tight sand formations. This book presents 3D numerical modeling technologies for hydraulic fracturing developed in recent years, and introduces solutions to various 3D geomechanical problems related to hydraulic fracturing. In the solution processes of the case studies included in the book, fully coupled multi-physics modeling has been adopted, along with innovative computational techniques, such as submodeling. In practice, hydraulic fracturing is an essential project component in shale gas/oil development and tight sand oil, and provides an essential measure in the process of drilling cuttings reinjection (CRI). It is also an essential measure for widened mud weight window (MWW) when drilling through naturally fractured formations; the process of hydraulic plugging is a typical application of hydraulic fracturing. 3D modeling and numerical analysis of hydraulic fracturing is essential for the successful development of tight oil/gas formations: it provides accurate solutions for optimized stage intervals in a multistage fracking job. It also provides optimized well-spacing for the design of zipper-frac wells. Numerical estimation of casing integrity under stimulation injection in the hydraulic fracturing process is one of major concerns in the successful development of unconventional resources. This topic is also investigated numerically in this book. Numerical solutions to several other typical geomechanics problems related to hydraulic fracturing, such as fluid migration caused by fault reactivation and seismic activities, are also presented. This book can be used as a reference textbook to petroleum, geotechnical and geothermal engineers, to senior undergraduate, graduate and postgraduate students, and to geologists, hydrogeologists, geophysicists and applied mathematicians working in this field. This book is also a synthetic compendium of both the fundamentals and some of the most advanced aspects of hydraulic fracturing technology.
With shale gas continuing to have a dominant impact on North American natural gas markets, unconventional natural gas now appears to be causing change in the global supply mix. The extent of this change requires the examination of a unique set of challenges that extend far beyond North America. Complex environmental, social and technical issues must be navigated for the development of safe and sustainable hydraulic fracturing practices to unlock the full potential of this unconventional resource, and the second edition of this guide examines the issues around hydraulic fracturing in a practical and user-friendly manner. This fully revised edition features contributions from leading authorities in the field. Chapters cover key issues such as: the regulation of hydraulic fracturing in the US, and the UK; worldwide natural gas pricing trends; joint ventures; gas sale agreements; unconventional gas in Australia; and the causes of action and potential outcomes in shale gas disputes. Together, the contributions give a crucial insight into one of the fastest-moving areas of the natural gas industry. 'Shale Gas' is an essential reference tool for natural gas producers, lawyers (both in private practice and in-house), energy industry advisers and end users worldwide, providing a practical and timely overview of the shale gas industry.
Technical gases are used in almost every field of industry, science and medicine and also as a means of control by government authorities and institutions and are regarded as indispensable means of assistance. In this complete handbook of purified gases the physical foundations of purified gases and mixtures as well as their manufacturing, purification, analysis, storage, handling and transport are presented in a comprehensive way. This important reference work is accompanied with a large number of Data Sheets dedicated to the most important purified gases.
Written by a team of pioneering scientists from around the world, Low Temperature Plasma Technology: Methods and Applications brings together recent technological advances and research in the rapidly growing field of low temperature plasmas. The book provides a comprehensive overview of related phenomena such as plasma bullets, plasma penetration into biofilms, discharge-mode transition of atmospheric pressure plasmas, and self-organization of microdischarges. It describes relevant technology and diagnostics, including nanosecond pulsed discharge, cavity ringdown spectroscopy, and laser-induced fluorescence measurement, and explores the increasing research on atmospheric pressure nonequilibrium plasma jets. The authors also discuss how low temperature plasmas are used in the synthesis of nanomaterials, environmental applications, the treatment of biomaterials, and plasma medicine. This book provides a balanced and thorough treatment of the core principles, novel technology and diagnostics, and state-of-the-art applications of low temperature plasmas. It is accessible to scientists and graduate students in low-pressure plasma physics, nanotechnology, plasma medicine, and materials science. The book is also suitable as an advanced reference for senior undergraduate students.
A comprehensive reference for engineers and researchers, Gas Turbine Heat Transfer and Cooling Technology, Second Edition has been completely revised and updated to reflect advances in the field made during the past ten years. The second edition retains the format that made the first edition so popular and adds new information mainly based on selected published papers in the open literature. See What s New in the Second Edition:
The book discusses the need for turbine cooling, gas turbine heat-transfer problems, and cooling methodology and covers turbine rotor and stator heat-transfer issues, including endwall and blade tip regions under engine conditions, as well as under simulated engine conditions. It then examines turbine rotor and stator blade film cooling and discusses the unsteady high free-stream turbulence effect on simulated cascade airfoils. From here, the book explores impingement cooling, rib-turbulent cooling, pin-fin cooling, and compound and new cooling techniques. It also highlights the effect of rotation on rotor coolant passage heat transfer. Coverage of experimental methods includes heat-transfer and mass-transfer techniques, liquid crystal thermography, optical techniques, as well as flow and thermal measurement techniques. The book concludes with discussions of governing equations and turbulence models and their applications for predicting turbine blade heat transfer and film cooling, and turbine blade internal cooling."
This book presents selected contributions to the NATO Advanced Research Workshop "Carbon Nanomaterials in Clean Energy Hydrogen Systems" held in June 2010. These original papers reflect recent progress in response to the modern-day requirements in chemistry of carbon nanomaterials and metal-hydrogen systems. Successor to the 2008 proceedings, this second volume focuses on research and application studies of materials capable of interacting actively with hydrogen, also addressing questions of hydrogen accumulation and storage. As a whole, it provides a review of the most relevant areas of hydrogen materials interactions and carbon nanomaterials science, making it invaluable for all researchers, physicists, chemists, post-graduates and young scientists interested in the structure, properties and applications of different nanocarbon materials.
Converting old landfills to energy producing sites, while capturing emitted greenhouse gases, has faced numerous technical, financial and social challenges and developments lately. Also, the re-mining of landfills to recover useful land in dense urban areas and proper landfill closure has been a subject of discussion and investigation. Designed as an overview text for landfill management from cradle to grave, this volume s content stretches from the fundamentals to the rather indepth details. By putting down their joint international experience, the authors have intended to both guide and inspire the user for his or her landfill project. Introducing the fundamental concepts of landfill gas management and its needs and importance in the present world energy scenario, this accessible reference volume presents key landfill gas management techniques at regional, national and global levels. In detail, it gives an account of the recent technologies available for landfill gas treatment and its utilization. It summarizes landfill gas prediction models developed in various parts of the world and details their adequacy in various field conditions. Covering both landfill remediation aspects and economic considerations while selecting a landfill gas to energy utilization project, the reader gets familiar with the practical aspects of converting a landfill site. Also, the challenges faced by municipalities and landfill operators in recovering landfill gas as an energy source are described, and solutions are suggested for solving them effectively. These include practical execution problems, governmental issues, and developing policies to encourage investment. The volume also includes various case studies of landfill gas-to-energy utilization projects from around the world, which can be reviewed and customized for the reader s own application with the help of extensive reference section. Intended as an overview text for advanced students and researchers in the relevant engineering and technology fields (Environmental, Civil, Geotechnical, Chemical, Mechanical and Electrical), this book will also be particularly helpful to practitioners such as municipal managers, landfill operators, designers, solid waste management engineers, urban planners, professional consultants, scientists, non-governmental organizations and entrepreneurs.
The accelerated growth of the world population creates an increase of energy needs. This requires new paths for oil supply to its users, which can be potential hazardous sources for individuals and the environment. Risk Analysis for Prevention of Hazardous Situations in Petroleum and Natural Gas Engineering explains the potential hazards of petroleum engineering activities, emphasizing risk assessments in drilling, completion, and production, and the gathering, transportation, and storage of hydrocarbons. Designed to aid in decision-making processes for environmental protection, this book is a useful guide for engineers, technicians, and other professionals in the petroleum industry interested in risk analysis for preventing hazardous situations.
This book assesses the impact of energy transitions on the future of natural gas in the EU energy mix. As we approach 2050, the requirement to sharply decrease CO2 and other GHG emissions means that the role of gas infrastructure in the EU and beyond will change drastically. But what does such change mean? To address this question the author critically analyses the EU's evolving natural gas market policy and law. Clearly structured throughout, the book explores the following questions: How can we maximise the potential of gas infrastructure to reduce carbon emissions? What are the lessons learned from decision making experience in the natural gas sector? Is the EU moving towards or away from a climate neutral gas sector? How will green and low carbon gas technologies be supported? And, are proposals to drive a growing share of hydrogen, biomethane, and synthetic methane to the system just an excuse to prolong fossil fuel operations? The book explores whether the EU will continue to subsidy natural gas projects or decarbonise the gas grid before 2050, and at what cost. Recommendations are proposed for a new regulatory and policy framework for development and operation of hydrogen pipelines, injection of biomethane into the existing gas grid and for pipelines carrying CO2. Filling an important gap in the literature, this book aims to develop an understanding of and clarify the complex range of legislation involved within a single analytical framework. Although the focus is mainly on the future of gas in the EU, the findings and recommendations are relevant for a much wider geography. This book will be an invaluable reference to policy makers and practitioners as well as researchers and students across the social sciences interested in the future of energy.
PVT properties are necessary for reservoir/well performance forecast and optimization. In absence of PVT laboratory measurements, finding the right correlation to estimate accurate PVT properties could be challenging. PVT Property Correlations: Selection and Estimation discusses techniques to properly calculate PVT properties from limited information. This book covers how to prepare PVT properties for dry gases, wet gases, gas condensates, volatile oils, black oils, and low gas-oil ration oils. It also explains the use of artificial neural network models in generating PVT properties. It presents numerous examples to explain step-by-step procedures in using techniques designed to deliver the most accurate PVT properties from correlations. Complimentary to this book is PVT correlation calculator software. Many of the techniques discussed in this book are available with the software. This book shows the importance of PVT data, provides practical tools to calculate PVT properties, and helps engineers select PVT correlations so they can model, optimize, and forecast their assets.
This book covers the design, analysis, and optimization of the cleanest, most efficient fossil fuel-fired electric power generation technology at present and in the foreseeable future. The book contains a wealth of first principles-based calculation methods comprising key formulae, charts, rules of thumb, and other tools developed by the author over the course of 25+ years spent in the power generation industry. It is focused exclusively on actual power plant systems and actual field and/or rating data providing a comprehensive picture of the gas turbine combined cycle technology from performance and cost perspectives. Material presented in this book is applicable for research and development studies in academia and government/industry laboratories, as well as practical, day-to-day problems encountered in the industry (including OEMs, consulting engineers and plant operators).
This book is a practical guide to sound engineering practice for engineers from industry and commerce responsible for the selection, installation, designing and maintenance of efficient and safe gas fired heating equipment. Starting from the basic principles of combustion, gas and dual fuel burners, this book describes the whole range of non-domestic gas fired equipment encountered in industrial and commercial premises. Gas controls and air-gas ration equipment are considered which is particularly relevant to those responsible for designing, servicing, maintaining and updating gas fired plant for safety and efficience. Individual chapters focus on gas supply, electrical power generation including combined heat and power and all aspects of instrumentation and measurment. Safety is a theme running throughout the book and all relevant references are made to the British Gas Standards and Codes of Practice.
Volume 1 deals with the origins of process gases and describes recovery, properties and composition. It covers as well the shale gas, the production from hydrocarbon rich deep shale formations, being one of the most quickly expanding trends in onshore domestic gas exploration. Vol. 2: Composition and Processing of Gas Streams. Vol. 3: Uses of Gas and Effects.
Economic and environmental requirements for advanced power generating systems demand the removal of corrosive and other sulfurous compounds from hot coal gas. After a brief account of the world energy resources and an overview of clean coal technologies, a review of regenerable metal oxide sorbents for cleaning the hot gas is provided. Zinc oxide, copper oxide, calcium oxide, manganese oxide based as well as supported and mixed metal oxide sorbents are treated. Performance analysis of these sorbents, effects of various parameters on the desulfurization efficiency, kinetics of sulfidation and regeneration reactions, sulfiding and regeneration mechanisms are discussed. Two chapters present recent results in the direct production of elemental sulfur from regeneration or SO2-rich gases.
Natural Gas Hydrates, Fourth Edition, provides a critical reference for engineers who are new to the field. Covering the fundamental properties, thermodynamics and behavior of hydrates in multiphase systems, this reference explains the basics before advancing to more practical applications, the latest developments and models. Updated sections include a new hydrate toolbox, updated correlations and computer methods. Rounding out with new case study examples, this new edition gives engineers an important tool to continue to control and mitigate hydrates in a safe and effective manner.
The project CLEAN (CO2 Large-Scale Enhanced Gas Recovery in the Altmark Natural Gas Field) provides site specific knowledge for a potential future pilot project. This contributed volume gives an overview and final results of the entire project which is finalized to the end of 2012.
The International Conference on the State of the Art on Biogas Technology, Transfer and Diffusion was held in Cairo, Egypt, from 17 to 24 November 1984. The Conference was organized by the Egyptian Academy of Scientific Research and Technology (ASR T), the Egyptian National Research Centre (NRC), the Bioenergy Systems and Technology project (BST) of the US Agency for International Development (US/AID) Office of Energy, and the National Academy of Sciences (NAS). A number of international organizations and agencies co-sponsored the Conference. More than 100 participants from 40 countries attended. The purpose of the Conference was to assess the viability of biogas technology (BGT) and propose future courses of action for exploiting BGT prospects to the fullest extent. The Conference emphasized a balanced coverage of technical, environ mental, social, economic and organizational aspects relevant to biogas systems design, operation and diffusion. It was organized to incorporate experiences that are pertinent, for the most part, to developing countries. In addition to the wide spectrum of presentations and country programs, structured and non-structured discussions among the participants were strongly encouraged in thematic sessions at round-table discussions, and through personal contacts during poster sessions and field trips. It was clear from the enthusiastic response of most participants that the Conference, in large measure, succeeded in fulfilling its mission. Although draft papers were distributed to all participants, it was felt that the results obtained were worthy of organized and refined documentation. And this is precisely what this book intends to do.
Advanced Nanomaterials for Inexpensive Gas Microsensors: Synthesis, Integration and Applications presents full coverage in the area of gas sensing nanomaterials, from materials, transducers and applications, to the latest results and future direction. Experts present work on metal oxides, carbon-based and hybrid materials, fabrication and application. The book brings together three major themes, including synthesis, functionalization and the characterization of advanced nanomaterials, all emphasizing synthesis techniques that ease the integration of nanomaterials in transducers. Chapters encompass a wide spectrum of sensing technologies, including advanced nanomaterials (metal oxides, carbon materials and graphene) and organic molecular materials and atomic layers (MoS2). The book's authors examine the coupling of sensitive nanomaterials to different types of transducer elements and their applications, including direct growth and additive fabrication techniques as a way to obtain inexpensive gas microsensors, principal transduction schemes, and advanced operating methods.
Providing a comprehensive analysis of CO2 compression, transportation processes and safety issues for post combustion CO2 capture applications for a 900 MW pulverized hard coal-fired power plant, this book assesses techniques for boosting the pressure of CO2 to pipeline pressure values with a minimal amount of energy. Four different types of compressors are examined in detail: a conventional multistage centrifugal compressor, integrally geared centrifugal compressor, supersonic shock wave compressor, and pump machines. The study demonstrates that the total compression power is closely related to the thermodynamic process and is not determined by compressor efficiency alone. Another problem addressed is that of CO2 pipeline transport from the compressor outlet site to a disposal site under heat transfer conditions. The book also features an analysis of simulations and models that are used to determine the maximum safe pipeline distance to subsequent booster stations as a function of inlet pressure, ambient temperature, thickness of the thermal insulation and ground-level heat flux conditions. This book focuses on compression as well as transportation processes with particular emphasis on the safety risks related to the transport of CO2. The most important problem in terms of environmental protection is ensuring precise and reliable hazard identification. As hazards can only be managed effectively if they are properly identified, problems involving the discharge and atmospheric dispersion of CO2 are also discussed.
I remember that the idea of this book emerged ?rst in Toulouse, during the Third Conference on Energy Markets - 3 years ago now. Anna Cret` ? gave a talk on a model dealing with seasonal gas storage in the USA, and Christian Von Hirschausen was her discussant. Both of them were devoting their efforts to understand the natural gas market in Europe and the relevant liberalization process. I found their interest in storage rather original, so I encouraged Anna to collect the most original cont- butions on this topic. Back in Milan with this idea in mind, she organized a working group at IEFE- Bocconi University, where she works. Then, during the following year, she - changed ideas and organized several meetings with the book's contributors. She regularly invited the most important Italian gas sector representatives to these me- ings, to make sure that the economic models were well suited to tackle the issues at stake in the European gas industry.
As the annual production of carbon Dioxide (CO2) reaches 30 billion tones, the growing issue of the greenhouse effect has triggered the development of technologies for CO2 sequestration, storage and use as a reactant. Collecting together the reports of the Congress at University of Rome (Campus Bio-medico) held 16th April 2012, CO2: A Valuable Source of Carbon presents and discusses promising technologies for the industrial exploitation of CO2. Divided into two parts, the current technology is evaluated and summarized before European and national projects are presented. The focus on CO2 recovery, particularly in value-added production, proposes applicable methods to develop sustainable practices and even to mitigate greenhouse gas emission from large-scale fossil fuels usage. Including current data and real-world examples, CO2: A valuable source of carbon provides students, engineers, researchers and industry professional with up-to-date material and potential areas for development and research.
The problem of storing hydrogen safely and effectively is one of the major technological barriers currently preventing the widespread adoption of hydrogen as an energy carrier and the subsequent transition to a so-called hydrogen economy. Practical issues with the storage of hydrogen in both gas and liquid form appear to make reversible solid state hydrogen storage the most promising potential solution. Hydrogen Storage Materials addresses the characterisation of the hydrogen storage properties of the materials that are currently being considered for this purpose. The background to the topic is introduced, along with the various types of materials that are currently under investigation, including nanostructured interstitial and complex hydrides, and porous materials, such as metal-organic frameworks and microporous organic polymers. The main features of Hydrogen Storage Materials include: an overview of the different types of hydrogen storage materials and the properties that are of interest for their practical use; descriptions of the gas sorption measurement methods used to determine these properties, and the complementary techniques that can be used to help corroborate hydrogen uptake data; and extensive coverage of the practical considerations for accurate hydrogen sorption measurement that drive both instrument design and the development of experimental methodology. Hydrogen Storage Materials provides an up-to-date overview of the topic for experienced researchers, while including enough introductory material to serve as a useful, practical introduction for newcomers to the field.
In industry, miscommunication can cause frustration, create downtime, and even trigger equipment failure. By providing a common ground for more effective discourse, the Dictionary of Oil, Gas, and Petrochemical Processing can help eliminate costly miscommunication. An essential resource for oil, gas, and petrochemical industry professionals, engineers, academic staff, and science and engineering students, the dictionary defines over 5,000 technical and commercial terms encompassing exploration, production, processing, refining, pipelining, finance, management, and safety. From basic engineering principles to the latest drilling technology, the text covers the fundamentals and their real-world applications. Alphabetically arranged for quick reference, it contains easy-to-understand descriptions and figures, as well as oil and gas SI units and metric equivalents. Industry newcomers and personnel with no technical background especially benefit from the book's practical language that clearly demonstrates the concepts behind the definitions.
A discussion of models for the behaviour of gas bearings, particularly of the aspects affecting the stability of the system. The text begins with a discussion of the mathematical models, identifying the stiffness and damping coefficients, and describing the behaviour of the models in unstable regions. It then turns to apply these results to bearings: static characteristics and stability of various rotor systems and an extensive discussion of air rings. |
You may like...
Recent Progress On Topics Of Ramanujan…
Helmut Maier, Laszlo Toth, …
Hardcover
R1,670
Discovery Miles 16 700
A Primer for Mathematics Competitions
Alexander Zawaira, Gavin Hitchcock
Hardcover
R2,089
Discovery Miles 20 890
Handbook of Research on Technological…
Joao M. F. Rodrigues, Celia M. Q. Ramos, …
Hardcover
R7,344
Discovery Miles 73 440
Learning and Teaching Number Theory…
Stephen R. Campbell, Rina Zazkis
Hardcover
R2,566
Discovery Miles 25 660
Theory Of Spinors: An Introduction
Moshe Carmeli, Shimon Malin
Hardcover
R1,539
Discovery Miles 15 390
From Fourier Analysis and Number Theory…
Hershel M. Farkas, Robert C. Gunning, …
Hardcover
R4,994
Discovery Miles 49 940
The Architecture of Scientific Software…
Ronald F. Boisvert, Ping Tak Peter Tang
Hardcover
R5,346
Discovery Miles 53 460
Sampling Theory in Fourier and Signal…
J.R. Higgins, R.L. Stens
Hardcover
R6,169
Discovery Miles 61 690
|