![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Energy technology & engineering > Fossil fuel technologies > Gas technology
Gas Mixtures provides practical suggestions and calculations for
producing multicomponent test gas atmospheres. General topics
addressed include sorbent evaluation, methods development,
dosimeter testing, instrument calibration, atmospheric simulation,
and gas analysis. Learn the tricks of the trade for producing gas
mixtures over a wide range of concentrations using even the most
difficult-to-handle materials.
Wastes generated in a community can be a valuable energy and material resource. However, past and current waste disposal and treatment practices consume energy and have led this resource to become a serious environmental burden. Fortunately, being a resource as well as a burden has generated some extremely creative and economically attractive waste-to-energy systems to utilize wastes while mitigating their environmental impact. It is hoped that this book will promote an appreciation of the environmental problems, energy demand and resources, the economics and risks involved that are essential to define the role of these systems in the future. The problems of urban air pollution, acid rain, global greenhouse effect and surface and groundwater degradation all can be tied directly or indirectly to how we produce and utilize energy and dispose of wastes. All communities have wastes, be they wastewater, municipal solid wastes, industrial or agricultural wastes, and the community must deal with them. It is possible to consolidate many of these wastes to gain real benefits in terms of the environment, economics, energy supply and conservation and materials recovery. This text summarizes s
Unconventional Reservoir Rate-Transient Analysis provides petroleum engineers and geoscientists with the first comprehensive review of rate-transient analysis (RTA) methods as applied to unconventional reservoirs. Volume One-Fundamentals, Analysis Methods, and Workflow is comprised of five chapters which address key concepts and analysis methods used in RTA. This volume overviews the fundamentals of RTA, as applied to low-permeability oil and gas reservoirs exhibiting simple reservoir and fluid characteristics. Volume Two-Application to Complex Reservoirs, Exploration and Development is comprised of four chapters that demonstrate how RTA can be applied to coalbed methane reservoirs, shale gas reservoirs, and low-permeability/shale reservoirs exhibiting complex behavior such as multiphase flow. Use of RTA to assist exploration and development programs in unconventional reservoirs is also demonstrated. This book will serve as a critical guide for students, academics, and industry professionals interested in applying RTA methods to unconventional reservoirs.
The expansion of unconventional petroleum resources in the recent decade and the rapid development of computational technology have provided the opportunity to develop and apply 3D numerical modeling technology to simulate the hydraulic fracturing of shale and tight sand formations. This book presents 3D numerical modeling technologies for hydraulic fracturing developed in recent years, and introduces solutions to various 3D geomechanical problems related to hydraulic fracturing. In the solution processes of the case studies included in the book, fully coupled multi-physics modeling has been adopted, along with innovative computational techniques, such as submodeling. In practice, hydraulic fracturing is an essential project component in shale gas/oil development and tight sand oil, and provides an essential measure in the process of drilling cuttings reinjection (CRI). It is also an essential measure for widened mud weight window (MWW) when drilling through naturally fractured formations; the process of hydraulic plugging is a typical application of hydraulic fracturing. 3D modeling and numerical analysis of hydraulic fracturing is essential for the successful development of tight oil/gas formations: it provides accurate solutions for optimized stage intervals in a multistage fracking job. It also provides optimized well-spacing for the design of zipper-frac wells. Numerical estimation of casing integrity under stimulation injection in the hydraulic fracturing process is one of major concerns in the successful development of unconventional resources. This topic is also investigated numerically in this book. Numerical solutions to several other typical geomechanics problems related to hydraulic fracturing, such as fluid migration caused by fault reactivation and seismic activities, are also presented. This book can be used as a reference textbook to petroleum, geotechnical and geothermal engineers, to senior undergraduate, graduate and postgraduate students, and to geologists, hydrogeologists, geophysicists and applied mathematicians working in this field. This book is also a synthetic compendium of both the fundamentals and some of the most advanced aspects of hydraulic fracturing technology.
Written by a team of pioneering scientists from around the world, Low Temperature Plasma Technology: Methods and Applications brings together recent technological advances and research in the rapidly growing field of low temperature plasmas. The book provides a comprehensive overview of related phenomena such as plasma bullets, plasma penetration into biofilms, discharge-mode transition of atmospheric pressure plasmas, and self-organization of microdischarges. It describes relevant technology and diagnostics, including nanosecond pulsed discharge, cavity ringdown spectroscopy, and laser-induced fluorescence measurement, and explores the increasing research on atmospheric pressure nonequilibrium plasma jets. The authors also discuss how low temperature plasmas are used in the synthesis of nanomaterials, environmental applications, the treatment of biomaterials, and plasma medicine. This book provides a balanced and thorough treatment of the core principles, novel technology and diagnostics, and state-of-the-art applications of low temperature plasmas. It is accessible to scientists and graduate students in low-pressure plasma physics, nanotechnology, plasma medicine, and materials science. The book is also suitable as an advanced reference for senior undergraduate students.
A comprehensive reference for engineers and researchers, Gas Turbine Heat Transfer and Cooling Technology, Second Edition has been completely revised and updated to reflect advances in the field made during the past ten years. The second edition retains the format that made the first edition so popular and adds new information mainly based on selected published papers in the open literature. See What s New in the Second Edition:
The book discusses the need for turbine cooling, gas turbine heat-transfer problems, and cooling methodology and covers turbine rotor and stator heat-transfer issues, including endwall and blade tip regions under engine conditions, as well as under simulated engine conditions. It then examines turbine rotor and stator blade film cooling and discusses the unsteady high free-stream turbulence effect on simulated cascade airfoils. From here, the book explores impingement cooling, rib-turbulent cooling, pin-fin cooling, and compound and new cooling techniques. It also highlights the effect of rotation on rotor coolant passage heat transfer. Coverage of experimental methods includes heat-transfer and mass-transfer techniques, liquid crystal thermography, optical techniques, as well as flow and thermal measurement techniques. The book concludes with discussions of governing equations and turbulence models and their applications for predicting turbine blade heat transfer and film cooling, and turbine blade internal cooling."
This book presents selected contributions to the NATO Advanced Research Workshop "Carbon Nanomaterials in Clean Energy Hydrogen Systems" held in June 2010. These original papers reflect recent progress in response to the modern-day requirements in chemistry of carbon nanomaterials and metal-hydrogen systems. Successor to the 2008 proceedings, this second volume focuses on research and application studies of materials capable of interacting actively with hydrogen, also addressing questions of hydrogen accumulation and storage. As a whole, it provides a review of the most relevant areas of hydrogen materials interactions and carbon nanomaterials science, making it invaluable for all researchers, physicists, chemists, post-graduates and young scientists interested in the structure, properties and applications of different nanocarbon materials.
Converting old landfills to energy producing sites, while capturing emitted greenhouse gases, has faced numerous technical, financial and social challenges and developments lately. Also, the re-mining of landfills to recover useful land in dense urban areas and proper landfill closure has been a subject of discussion and investigation. Designed as an overview text for landfill management from cradle to grave, this volume s content stretches from the fundamentals to the rather indepth details. By putting down their joint international experience, the authors have intended to both guide and inspire the user for his or her landfill project. Introducing the fundamental concepts of landfill gas management and its needs and importance in the present world energy scenario, this accessible reference volume presents key landfill gas management techniques at regional, national and global levels. In detail, it gives an account of the recent technologies available for landfill gas treatment and its utilization. It summarizes landfill gas prediction models developed in various parts of the world and details their adequacy in various field conditions. Covering both landfill remediation aspects and economic considerations while selecting a landfill gas to energy utilization project, the reader gets familiar with the practical aspects of converting a landfill site. Also, the challenges faced by municipalities and landfill operators in recovering landfill gas as an energy source are described, and solutions are suggested for solving them effectively. These include practical execution problems, governmental issues, and developing policies to encourage investment. The volume also includes various case studies of landfill gas-to-energy utilization projects from around the world, which can be reviewed and customized for the reader s own application with the help of extensive reference section. Intended as an overview text for advanced students and researchers in the relevant engineering and technology fields (Environmental, Civil, Geotechnical, Chemical, Mechanical and Electrical), this book will also be particularly helpful to practitioners such as municipal managers, landfill operators, designers, solid waste management engineers, urban planners, professional consultants, scientists, non-governmental organizations and entrepreneurs.
This book covers the design, analysis, and optimization of the cleanest, most efficient fossil fuel-fired electric power generation technology at present and in the foreseeable future. The book contains a wealth of first principles-based calculation methods comprising key formulae, charts, rules of thumb, and other tools developed by the author over the course of 25+ years spent in the power generation industry. It is focused exclusively on actual power plant systems and actual field and/or rating data providing a comprehensive picture of the gas turbine combined cycle technology from performance and cost perspectives. Material presented in this book is applicable for research and development studies in academia and government/industry laboratories, as well as practical, day-to-day problems encountered in the industry (including OEMs, consulting engineers and plant operators).
The accelerated growth of the world population creates an increase of energy needs. This requires new paths for oil supply to its users, which can be potential hazardous sources for individuals and the environment. Risk Analysis for Prevention of Hazardous Situations in Petroleum and Natural Gas Engineering explains the potential hazards of petroleum engineering activities, emphasizing risk assessments in drilling, completion, and production, and the gathering, transportation, and storage of hydrocarbons. Designed to aid in decision-making processes for environmental protection, this book is a useful guide for engineers, technicians, and other professionals in the petroleum industry interested in risk analysis for preventing hazardous situations.
Handbook of Fire and Explosion Protection Engineering Principles for the Oil, Gas, Chemical, and Related Facilities, Fourth Edition, discusses high-level risk analysis and advanced technical considerations, such as process control, emergency shut-downs, and evaluation procedures. As more engineers and managers are adopting risk-based approaches to minimize risk, maximize profits, and keep operations running smoothly, this reference encompasses all the critical equipment and standards necessary for the process industries, including oil and gas. Updated with new information covering fire and explosion resistant systems, drainage systems, and human factors, this book delivers the equipment standards needed to protect today's petrochemical assets and facilities.
PVT properties are necessary for reservoir/well performance forecast and optimization. In absence of PVT laboratory measurements, finding the right correlation to estimate accurate PVT properties could be challenging. PVT Property Correlations: Selection and Estimation discusses techniques to properly calculate PVT properties from limited information. This book covers how to prepare PVT properties for dry gases, wet gases, gas condensates, volatile oils, black oils, and low gas-oil ration oils. It also explains the use of artificial neural network models in generating PVT properties. It presents numerous examples to explain step-by-step procedures in using techniques designed to deliver the most accurate PVT properties from correlations. Complimentary to this book is PVT correlation calculator software. Many of the techniques discussed in this book are available with the software. This book shows the importance of PVT data, provides practical tools to calculate PVT properties, and helps engineers select PVT correlations so they can model, optimize, and forecast their assets.
This book is focused on the management of gas consumers, especially in cases of gas supply disruptions. It addresses natural gas consumers from numerous different fields, including those in the industrial sector, the electric power industry, and public utilities. It highlights various ways gas supply can be affected and demonstrates the approaches that can help recovery from reduced, stopped, and restored gas deliveries. The algorithms involved in transitioning gas consumers from normal to emergency operation, and the algorithm for recovering normal operation after an emergency in the gas supply system is terminated are explored thoroughly. By clearly explaining several approaches, this book will enable specialists to more effectively manage gas-consuming enterprises in emergency situations associated with gas supply disruption
Shale oil and gas have altered the energy landscape, possibly permanently. They burst upon the fossil energy scene with a suddenness that initially defied prediction. Even the political balance of the world has changed. But, with the methods employed, the vast majority of the oil and gas remains in the ground. At the same time, serious environmental impact issues have been raised. A new volume in the Emerging Issues in Analytical Chemistry series, Sustainable Shale Oil and Gas: Analytical Chemistry, Geochemistry, and Biochemistry Methods was written on the premise that analytical methods to inform these areas were wanting. While not attempting to be comprehensive, it describes important analytical methods, some still in development. These methods are underpinned primarily by chemistry, but geochemistry and even biochemistry play significant roles. The book has a solutions flavor; problems are posed together with approaches to ameliorate them.
Oil and Gas Engineering for Non-Engineers explains in non-technical terms how oil and gas exploration and production are carried out in the upstream oil and gas industry. The aim is to help readers with no prior knowledge of the oil and gas industry obtain a working understanding of the field. Focuses on just the basics of what the layperson needs to know to understand the industry Uses non-technical terms, simple explanations, and illustrations to describe the inner workings of the field Explains how oil is detected underground, how well locations are determined, how drilling is done, and how wells are monitored during production Describes how and why oil and gas are separated from impurities before being sent to customers Aimed at non-engineers working within the oil and gas sector, this book helps readers get comfortable with the workings of this advanced field without the need for an advanced degree in the subject.
Sustainable Hydrogen Production provides readers with an introduction to the processes and technologies used in major hydrogen production methods. This book serves as a unique source for information on advanced hydrogen generation systems and applications (including integrated systems, hybrid systems, and multigeneration systems with hydrogen production). Advanced and clean technologies are linked to environmental impact issues, and methods for sustainable development are thoroughly discussed. With Earth's fast-growing populations, we face the challenge of rapidly rising energy needs. To balance these we must explore more sustainable methods of energy production. Hydrogen is one key sustainable method because of its versatility. It is a constituent of a large palette of essential materials, chemicals, and fuels. It is a source of power and a source of heat. Because of this versatility, the demand for hydrogen is sure to increase as we aim to explore more sustainable methods of energy. Furthermore, Sustainable Hydrogen Production provides methodologies, models, and analysis techniques to help achieve better use of resources, efficiency, cost-effectiveness, and sustainability. The book is intellectually rich and interesting as well as practical. The fundamental methods of hydrogen production are categorized based on type of energy source: electrical, thermal, photonic, and biochemical. Where appropriate, historical context is introduced. Thermodynamic concepts, illustrative examples, and case studies are used to solve concrete power engineering problems.
Rethinking Bhopal: A Definitive Guide to Investigating, Preventing, and Learning from Industrial Disasters is the go-to source for anyone seeking to learn how to improve process safety management (PSM) through applying fundamental asset reliability and incident investigation concepts. The seeds that unified PSM on a global scale were planted in Bhopal, India on December 3, 1984. Since then, considerable progress has been made to protect both workers and communities from catastrophic industrial failures. Industry acknowledges its responsibility to create value with accrued operating experience and that using information received from previous failures is a direct way to prevent future incidents. With this principle in mind, Bloch evaluates modern references related to the Bhopal Disaster, using recognized industrial asset reliability and incident investigation concepts. The practice of objective incident investigation offers a compelling insight into specific decisions and actions that resulted in history's worst industrial disaster. Recording a fully transparent sequence of events promotes a personal sense of accountability for anyone involved in the manufacturing industry. Lessons learned can be immediately implemented by those with direct PSM, management, engineering, and operating responsibilities. Case histories demonstrate how patterns observed in the timeline leading up to the Bhopal Disaster can be detected in modern incidents and by recognizing these patterns in present-day processes avoids counterproductive operating decisions and unprecedented destruction. This text is instrumental in helping existing organizations re-evaluate their own exposures and risks, and would be a valuable read for any member of a process safety management team. Rethinking Bhopal: A Definitive Guide to Investigating, Preventing, and Learning from Industrial Disasters provides an expansion of knowledge and understanding for the novice in PSM while also providing depth and application considerations to challenge more experienced industry professionals. Note: All royalties from this book go to the Process Safety Heritage Trust Scholarship at Lamar University in Beaumont, Texas, USA.
Every oil and gas refinery or petrochemical plant requires sufficient utilities support in order to maintain a successful operation. A comprehensive utilities complex must exist to distribute feedstocks, discharge waste streams, and remains an integrated part of the refinery's infrastructure. Essentials of Oil and Gas Utilities explains these support systems and provides essential information on their essential requirements and process design. This guide includes water treatment plants, condensate recovery plants, high pressure steam boilers, induced draft cooling towers, instrumentation/plant air compressors, and units for a refinery fuel gas and oil systems. In addition, the book offers recommendations for equipment and flow line protection against temperature fluctuations and the proper preparation and storage of strong and dilute caustic solutions. Essentials of Oil and Gas Utilities is a go-to resource for engineers and refinery personnel who must consider utility system design parameters and associated processes for the successful operations of their plants.
Explore a thorough and up to date overview of the current knowledge, developments and outstanding challenges in turbulent combustion and application. The balance among various renewable and combustion technologies are surveyed, and numerical and experimental tools are discussed along with recent advances. Covers combustion of gaseous, liquid and solid fuels and subsonic and supersonic flows. This detailed insight into the turbulence-combustion coupling with turbulence and other physical aspects, shared by a number of the world leading experts in the field, makes this an excellent reference for graduate students, researchers and practitioners in the field.
This book is a practical guide to sound engineering practice for engineers from industry and commerce responsible for the selection, installation, designing and maintenance of efficient and safe gas fired heating equipment. Starting from the basic principles of combustion, gas and dual fuel burners, this book describes the whole range of non-domestic gas fired equipment encountered in industrial and commercial premises. Gas controls and air-gas ration equipment are considered which is particularly relevant to those responsible for designing, servicing, maintaining and updating gas fired plant for safety and efficience. Individual chapters focus on gas supply, electrical power generation including combined heat and power and all aspects of instrumentation and measurment. Safety is a theme running throughout the book and all relevant references are made to the British Gas Standards and Codes of Practice.
Volume 1 deals with the origins of process gases and describes recovery, properties and composition. It covers as well the shale gas, the production from hydrocarbon rich deep shale formations, being one of the most quickly expanding trends in onshore domestic gas exploration. Vol. 2: Composition and Processing of Gas Streams. Vol. 3: Uses of Gas and Effects.
This book assesses the impact of energy transitions on the future of natural gas in the EU energy mix. As we approach 2050, the requirement to sharply decrease CO2 and other GHG emissions means that the role of gas infrastructure in the EU and beyond will change drastically. But what does such change mean? To address this question the author critically analyses the EU's evolving natural gas market policy and law. Clearly structured throughout, the book explores the following questions: How can we maximise the potential of gas infrastructure to reduce carbon emissions? What are the lessons learned from decision making experience in the natural gas sector? Is the EU moving towards or away from a climate neutral gas sector? How will green and low carbon gas technologies be supported? And, are proposals to drive a growing share of hydrogen, biomethane, and synthetic methane to the system just an excuse to prolong fossil fuel operations? The book explores whether the EU will continue to subsidy natural gas projects or decarbonise the gas grid before 2050, and at what cost. Recommendations are proposed for a new regulatory and policy framework for development and operation of hydrogen pipelines, injection of biomethane into the existing gas grid and for pipelines carrying CO2. Filling an important gap in the literature, this book aims to develop an understanding of and clarify the complex range of legislation involved within a single analytical framework. Although the focus is mainly on the future of gas in the EU, the findings and recommendations are relevant for a much wider geography. This book will be an invaluable reference to policy makers and practitioners as well as researchers and students across the social sciences interested in the future of energy.
Economic and environmental requirements for advanced power generating systems demand the removal of corrosive and other sulfurous compounds from hot coal gas. After a brief account of the world energy resources and an overview of clean coal technologies, a review of regenerable metal oxide sorbents for cleaning the hot gas is provided. Zinc oxide, copper oxide, calcium oxide, manganese oxide based as well as supported and mixed metal oxide sorbents are treated. Performance analysis of these sorbents, effects of various parameters on the desulfurization efficiency, kinetics of sulfidation and regeneration reactions, sulfiding and regeneration mechanisms are discussed. Two chapters present recent results in the direct production of elemental sulfur from regeneration or SO2-rich gases.
Deals with principles and practices in hydrocarbon industry in general and petroleum refinery in particular Focuses on elucidating the principals involved in operation and practices of the major process units aimed at professional engineer Covers acid gas treatment in view of increased emphasis on carbon capture and storage Elucidates methodologies for safety relief load computation for distillation columns Explains real life problems in boiler, corrosion in crude and vacuum distillation units along with case studies
Shale Gas: Exploration and Environmental and Economic Impacts explores the shale gas exploration and production activities that are increasing globally, also presenting a basic understanding on the geological, geochemical, and geophysical aspects. The book is a key reference that is useful for researchers, the oil and gas industry, and policymakers in gas producing and prospective countries. Users will find chapters on hydraulic fracturing and shale gas drilling, as well as the environmental and economic impacts of these activities. Further chapters include case studies on the shale gas revolution in the United States and other producing countries around the world. |
![]() ![]() You may like...
Rolling the Dice with State Initiatives…
Robert M. Alexander
Hardcover
R2,199
Discovery Miles 21 990
Nonselfadjoint Operator Algebras…
Hari Bercovici, Ciprian Foias, …
Hardcover
R2,593
Discovery Miles 25 930
The Politics of Persuasion - Should…
Urs S. Brandt, Gert T. Svendsen
Hardcover
R2,772
Discovery Miles 27 720
Dynamics: Numerical Explorations
Helena E. Nusse, James A. Yorke
Hardcover
R4,501
Discovery Miles 45 010
'Fragile States' in an Unequal World…
Isabel Rocha de Siqueira
Hardcover
R1,332
Discovery Miles 13 320
|