![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > General
This book will help readers understand fundamental and advanced statistical models and deep learning models for robust speaker recognition and domain adaptation. This useful toolkit enables readers to apply machine learning techniques to address practical issues, such as robustness under adverse acoustic environments and domain mismatch, when deploying speaker recognition systems. Presenting state-of-the-art machine learning techniques for speaker recognition and featuring a range of probabilistic models, learning algorithms, case studies, and new trends and directions for speaker recognition based on modern machine learning and deep learning, this is the perfect resource for graduates, researchers, practitioners and engineers in electrical engineering, computer science and applied mathematics.
The state of the art of modern lightwave system design
A guide to systems engineering that highlights creativity and innovation in order to foster great ideas and carry them out Practical Creativity and Innovation in Systems Engineering exposes engineers to a broad set of creative methods they can adopt in their daily practices. In addition, this book guides engineers to become entrepreneurs within traditional engineering companies, promoting creative and innovative culture around them. The author describes basic systems engineering concepts and includes an abbreviated summary of Standard 15288 systems' life cycle processes. He then provides an extensive collection of practical creative methods which are linked to the various systems' life cycle processes. Next, the author discusses obstacles to innovation and, in particular, how engineers can push creative ideas through layers of reactionary bureaucracy within non-innovative organizations. Finally, the author provides a comprehensive description of an exemplary creative and innovative case study recently completed. The book is filled with illustrative examples and offers effective guidelines that can enhance individual engineers' creative prowess as well as be used to create an organizational culture where creativity and innovation flourishes. This important book: Offers typical systems engineering processes that can be accomplished in creative ways throughout the development and post-development portions of a system's lifetime. Includes a large collection of practical creative methods applicable to engineering and other technological domains Includes innovation advice needed to transform creative ideas into new products, services, businesses and marketing processes Contains references and notes for further reading in every section Written for systems engineering practitioners, graduate school students and faculty members of systems, electrical, aerospace, mechanical and industrial engineering schools, Practical Creativity and Innovation in Systems Engineering offers a useful guide for creating a culture that promotes innovation.
Classical electromagnetism - one of the fundamental pillars of physics - is an important topic for all types of physicists from the theoretical to the applied. The subject is widely recognized to be one of the most challenging areas of the physics curriculum, both for students to learn and for lecturers to teach. Although textbooks on electromagnetism are plentiful, hardly any are written in the question-and-answer style format adopted in this book. It contains nearly 300 worked questions and solutions in classical electromagnetism, and is based on material usually encountered during the course of a standard university physics degree. Topics covered include some of the background mathematical techniques, electrostatics, magnetostatics, elementary circuit theory, electrodynamics, electromagnetic waves and electromagnetic radiation. For the most part the book deals with the microscopic theory, although we also introduce the important subject of macroscopic electromagnetism as well. Nearly all questions end with a series of comments whose purpose is to stimulate inductive reasoning and reach various important conclusions arising from the problem. Occasionally, points of historical interest are also mentioned. Both analytical and numerical techniques are used in obtaining and analyzing solutions. All computer calculations are performed with MathematicaCO (R) and the relevant code is provided in a notebook; either in the solution or the comments.
(Book). In the early 1960s, a handful of brash British kids needed a new sound for a new kind of music. They marched into a music store in their blue-collar town and asked the gentleman behind the desk to build them an amplifier with leg-shaking power and jaw-dropping tone. So he did. This first-ever biography tells the story of Jim Marshall founder of Marshall Amplification and creator of guitar amplifiers that have defined the sound of rock and are prized by rock guitarists of every age and style from his childhood when he was diagnosed with a rare bone disease that confined him to a body cast for nine years, to his stage success as a crooner and big-band drummer, through his development of the "Marshall Stack" and ultimate rise to the forefront of the music instrument industry. Forty years after Jim Marshall sold his first JTM45, three generations of guitarists and fans revere the name. Highlights in Marshall history, images of amp anatomy, details about famous players' preferred models, and testimonials from guitar stars round out this engrossing success story. Full-color photos throughout. "What Jim marshall did ... was provide English heavy metal and blues players of the mid '60s and early '70s with these weapons." Pete Townshend
The practical and comprehensive guide to the creation and application of holograms Written by Martin Richardson (an acclaimed leader and pioneer in the field) and John Wiltshire, The Hologram: Principles and Techniques is an important book that explores the various types of hologram in their multiple forms and explains how to create and apply the technology. The authors offer an insightful overview of the currently available recording materials, chemical formulas, and laser technology that includes the history of phase imaging and laser science. Accessible and comprehensive, the text contains a step-by-step guide to the production of holograms. In addition, The Hologram outlines the most common problems encountered in producing satisfactory images in the laboratory, as well as dealing with the wide range of optical and chemical techniques used in commercial holography. The Hologram is a well-designed instructive tool, involving three distinct disciplines: physics, chemistry, and graphic arts. This vital resource offers a guide to the development and understanding of the recording of materials, optics and processing chemistry in holography and: Discusses the pros and cons of the currently available recording materials Provides tutorials on the types of lasers required and optical systems, as well as diffraction theory and wave front reconstruction Details the chemical formulations for processing techniques Researchers and technicians working in academia and those employed in commercial laboratories on the production of holograms as well as students of the sciences will find The Hologram to be a comprehensive and effective resource.
This is the most comprehensive and in-depth study of the theory and practical applications of a new and groundbreaking method for the energy industry to "go green" with renewable and alternative energy sources. The global warming phenomenon as a significant sustainability issue is gaining worldwide support for development of renewable energy technologies. The term "polygeneration" is referred to as "an energy supply system, which delivers more than one form of energy to the final user." For example, electricity, cooling and desalination can be delivered from a polygeneration process. The polygeneration process in a hybrid solar thermal power plant can deliver electricity with less impact on the environment compared to a conventional fossil fuel-based power generating system. It is also THE next generation energy production technique with the potential to overcome the undesirable intermittence of renewable energy systems. In this study, the polygeneration process simultaneous production of power, vapor absorption refrigeration (VAR) cooling and multi-effect humidification and dehumidification (MEHD) desalination system from different heat sources in hybrid solar-biomass (HSB) system with higher energy efficiencies (energy and exergy), primary energy savings (PES) and payback period are investigated, focusing on several aspects associated with hybrid solar-biomass power generation installations, such as wide availability of biomass resources and solar direct normal irradiance (DNI), and other technologies. Thermodynamic evaluation (energy and exergy) of HSB power has also been investigated, along with the VAR cooling system, the modelling, simulation, optimization and cost analysis of the polygeneration hybrid solar biomass system, all accompanied by multiple case studies and examples for practical applications. This volume provides the researcher, student and engineer with the intellectual tool needed for understanding new ideas in this rapidly emerging field. The book is also intended to serve as a general source and reference book for the professional (consultant, designer, contractor etc.) who is working in the field of solar thermal, biomass, power plant, polygeneration, cooling and process heat. It is a must-have for anyone working in this field.
As we enter the Industrial Revolution 4.0, demands for an increasing degree of trust and privacy protection continue to be voiced. The development of blockchain technology is very important because it can help frictionless and transparent financial transactions and improve the business experience, which in turn has far-reaching effects for economic, psychological, educational and organizational improvements in the way we work, teach, learn and care for ourselves and each other. Blockchain is an eccentric technology, but at the same time, the least understood and most disruptive technology of the day. This book covers the latest technologies of cryptocurrencies and blockchain technology and their applications. This book discusses the blockchain and cryptocurrencies related issues and also explains how to provide the security differently through an algorithm, framework, approaches, techniques and mechanisms. A comprehensive understanding of what blockchain is and how it works, as well as insights into how it will affect the future of your organization and industry as a whole and how to integrate blockchain technology into your business strategy. In addition, the book explores the blockchain and its with other technologies like Internet of Things, big data and artificial intelligence, etc.
Unique and useful book covering fundamental knowledge and practical applications of polymer materials in energy storage systems In Functional Polymers for Metal-Ion Batteries, the recent development and achievements of polymer-based materials are comprehensively analyzed in four directions, including electrode materials, binders, separators, and solid electrolytes, highlighting the working mechanisms, classification, design strategies, and practical applications of these polymer materials in mental-ion batteries. Specific sample topics covered in Functional Polymers for Metal-Ion Batteries include: Prominent advantages of various solid-state electrolytes, such as low flammability, easy processability, more tolerance to vibration, shock, and mechanical deformation Why and how functional polymers present opportunities to maximize energy density and pursue the sustainability of the battery industry How the application of functional polymers in metal-ion batteries helps enhance the high energy density of energy storage devices and reduce carbon footprint during production How development of functional separators could significantly lower the cost of battery manufacturing Providing a comprehensive understanding of the role of polymers in the whole configuration of metal-ion batteries from electrodes to electrolytes, Functional Polymers for Metal-Ion Batteries is an ideal resource for materials scientists, electrochemists, and polymer, solid state, and physical chemists who wish to understand the latest developments of this technology.
Solitons in Optical Fiber Systems Discover a robust exploration of the main properties and behaviors of solitons in fiber systems In Solitons in Optical Fiber Systems, distinguished researcher Dr. Mario F. S. Ferreira delivers a thorough treatment of the main characteristics of solitons in optical fiber communication systems and fiber devices, paying special attention to stationary and pulsating dissipative soliton pulses. The book discusses the technical aspects associated with the physical background and the theoretical description of soliton characteristics under different conditions. The author employs numerical analyses and variational approaches to describe soliton evolution and describes the phenomenon of supercontinuum generation and various solitonic effects observed in highly nonlinear fibers, like photonic crystal fibers. Readers will learn about different applications of fiber solitons in transmission systems, fiber lasers, couplers, and pulse compression schemes, as well as complex Ginzburg-Landau equations, which are used to model different types of dissipative systems. The book also includes: A thorough introduction to solitons, including the linear and nonlinear effects of a wave, the discovery of solitary waves, and the discovery of solitons in optical fibers An exploration of fiber dispersion and nonlinearity, including optical fiber dispersion, the pulse propagation equation, and the impact of fiber dispersion Practical discussions of nonlinear effects in optical fibers, including self-phase modulation, cross-phase modulations, four-wave mixing, and stimulated raman scattering In-depth treatments of solitons in optical fibers, including modulation instability, dark solitons, bistable solitons, XPM-paired solitons, and the variational approach Perfect for senior undergraduate and graduate students in courses dealing with fiber-optics technology, Solitons in Optical Fiber Systems is also an ideal resource for engineers and technicians in the fiber-optics industry and researchers of nonlinear fiber optics.
SMART HYBRID AC/DC MICROGRIDS Addresses the technical aspects and implementation challenges of smart hybrid AC/DC microgrids Hybrid AC/DC Microgrids: Power Management, Energy Management, and Power Quality Control provides comprehensive coverage of interconnected smart hybrid microgrids, their different structures, and the technical issues associated with their control and implementation in the next generation of smart grids. This authoritative single-volume resource addresses smart hybrid microgrids power management, energy management, communications, power converter control, power quality, renewable generation integration, energy storage, and more. The book contains both basic and advanced technical information about smart hybrid AC/DC microgrids, featuring a detailed discussion of microgrid structures, communication technologies, and various configurations of interfacing power converters and control strategies. Numerous case studies highlight effective solutions for critical issues in hybrid microgrid operation, control and power quality compensation throughout the text. Topics include control strategies of renewable energy and energy storage interfacing converters in hybrid microgrids, supervisory control strategies of interfacing power converters for microgrid power management and energy microgrid, and smart interfacing power converters for power quality control. This volume: Includes a thorough overview of hybrid AC/DC microgrid concepts, structures, and applications Discusses communication and security enhancement techniques for guarding against cyberattacks Provides detailed controls of smart interfacing power electronics converters from distributed generations and energy storage systems in hybrid AC/DC microgrids Provides details on transient and steady-state power management systems in microgrids Discusses energy management systems, hierarchical control, multi-agent control, and advanced distribution management control of smart microgrids Identifies opportunities to control power quality with smart interfacing power electronic converters Addresses power quality issues in the context of real-world applications in data centers, electric railway systems, and electric vehicle charging stations Smart Hybrid AC/DC Microgrids: Power Management, Energy Management, and Power Quality Control is a valuable source of up-to-date information for senior undergraduate and graduate students as well as academic researchers and industry engineers in the areas of renewable energy, smart grids, microgrids, and power electronics.
A unified and systematic theoretical framework for solving problems related to finite impulse response (FIR) estimate Optimal and Robust State Estimation: Finite Impulse Response (FIR) and Kalman Approaches is a comprehensive investigation into batch state estimators and recursive forms. The work begins by introducing the reader to the state estimation approach and provides a brief historical overview. Next, the work discusses the specific properties of finite impulse response (FIR) state estimators. Further chapters give the basics of probability and stochastic processes, discuss the available linear and nonlinear state estimators, deal with optimal FIR filtering, and consider a limited memory batch and recursive algorithms. Other topics covered include solving the q-lag FIR smoothing problem, introducing the receding horizon (RH) FIR state estimation approach, and developing the theory of FIR state estimation under disturbances. The book closes by discussing the theory of FIR state estimation for uncertain systems and providing several applications where the FIR state estimators are used effectively. Key concepts covered in the work include: A holistic overview of the state estimation approach, which arose from the need to know the internal state of a real system, given that the input and output are both known Optimal, optimal unbiased, maximum likelihood, and unbiased and robust finite impulse response (FIR) structures FIR state estimation approach along with the infinite impulse response (IIR) and Kalman approaches Cost functions and the most critical properties of FIR and IIR state estimates Optimal and Robust State Estimation: Finite Impulse Response (FIR) and Kalman Approaches was written for professionals in the fields of microwave engineering, system engineering, and robotics who wish to move towards solving finite impulse response (FIR) estimate issues in both theoretical and practical applications. Graduate and senior undergraduate students with coursework dealing with state estimation will also be able to use the book to gain a valuable foundation of knowledge and become more adept in their chosen fields of study.
Nanomembranes Provides a thorough overview of the field of nanomembranes, covering materials science, fabrication processes, properties, and applications In recent years, the unique nature of the nanomembrane has led to new technology and applications in areas including flexible electronics, photonics, robotics, biology, microelectromechanical systems, and lab-on-a-chip (LOC) devices. Highly suitable for assembling three-dimensional structures, the nanomembrane can be integrated into devices and systems using conventional thin film technology. Nanomembranes: Materials, Properties, and Applications is an up-to-date review of recent advances in the rapidly expanding area within nanoscience and technology. Edited by leading researchers, the book covers the fabrications, properties, applications, design concepts, and challenges of nanomembranes and other nano-scale assembled structures. In-depth chapters address topics including three- and four-dimensional origami, nanomembrane-based transient electronics, development of inorganic flexible electronics, magnetic nanomembranes, bio-applications of three-dimensional scaffolds, nanomembrane-based micro and nanorobots, passive electronic components based on self-rolled-up nanomembranes, and more. Covers nanomembranes as well as nanostructures made from semiconductor, metal, insulator, polymer, and composite materials Provides broad overview of two-dimensional materials and assembled structures including origami and kirigami structures Explores applications of nanomembrane such as batteries, supercapacitors, robotics, electronics, and cell scaffolding Discusses nanomembranes made from polymeric materials, mechanical forces during deformation, and assembly of nanomembranes, Addresses monolayer two-dimensional materials such as graphene and transition metal dichalcogenides Nanomembranes: Materials, Properties, and Applications is an invaluable resource for material scientists, engineers, physicists, and chemists in academia and industry, and an excellent text for graduate students and researchers across disciplines with interest in the rapidly growing field.
Merging Optimization and Control in Power Systems A novel exploration of distributed control in power systems with insightful discussions of physical and cyber restrictions In Merging Optimization and Control in Power Systems an accomplished team of engineers deliver a comprehensive introduction to distributed optimal control in power systems. The book re-imagines control design within the framework of cyber-physical systems with restrictions in both the physical and cyber spaces, addressing operational constraints, non-smooth objective functions, rapid power fluctuations caused by renewable generations, partial control coverage, communication delays, and non-identical sampling rates. This book bridges the gap between optimization and control in two ways. First, optimization-based feedback control is explored. The authors describe feedback controllers which automatically drive system states asymptotically to specific, desired optimal working points. Second, the book discusses feedback-based optimization. Leveraging the philosophy of feedback control, the authors envision the online solving of complicated optimization and control problems of power systems to adapt to time-varying environments. Readers will also find: A thorough argument against the traditional and centralized hierarchy of power system control in favor of the merged approach described in the book Comprehensive explorations of the fundamental changes gripping the power system today, including the increasing penetration of renewable and distributed generation, the proliferation of electric vehicles, and increases in load demand Data, tables, illustrations, and case studies covering realistic power systems and experiments In-depth examinations of physical and cyber restrictions, as well as the robustness and adaptability of the proposed model Perfect for postgraduate students and researchers with the prerequisite knowledge of power system analysis, operation, and dynamics, convex optimization theory, and control theory, Merging Optimization and Control in Power Systems is an advanced and timely treatment of distributed optimal controller design.
This book offers a comprehensive overview of recently developed methods for assessing and optimizing system reliability. It consists of two main parts, for treating assessment methods and optimization methods, respectively. The first part covers methods of multi-state system reliability modelling and evaluation, Markov processes, Monte Carlo simulation and uncertainty analysis. The methods considered range from piecewise-deterministic Markov processes to belief function analysis. The second part covers optimization methods of mathematical programming and evolutionary algorithms, and problems of multi-objective optimization and optimization under uncertainty. The methods of this part range from non-dominated sorting genetic algorithm to robust optimization. The book also includes the application of the assessment and optimization methods considered on real case studies, particularly with respect to the reliability assessment and optimization of renewable energy systems, and bridges the gap between theoretical method development and engineering practice.
Van der Waals Ferroelectrics A comprehensive guide to a unique class of compounds with a variety of applications Since the discovery of graphene, there has been intensive interest in two-dimensional materials with similar electronic and industrial applications. The limitations on the usefulness of graphene itself, however, have powered the search for other materials with similar properties. One such class of materials, the phosphorous chalcogenides, has proven a particularly fruitful avenue for research, due to the favorable band gap and ferroelectric properties of these materials. Van der Waals Ferroelectrics provides, for the first time, a detailed overview of this highly relevant and sought-after class of materials, also known as transition metal chalcogenophosphates (TMCPs). Focusing on physical properties, the book explores the complex physics underlying these compounds as well as the unique characteristics that have driven their ever-increasing importance to the materials science community. Van der Waals Ferroelectrics readers will also find: Both computational and experimental perspectives on TCMP compounds In-depth discussion of the properties essential to the design and construction of devices like sensors, actuators, memory chips, and capacitors The first detailed review of the functional properties of TCMP compounds, such as ferrielectricity, electrostriction, and ionic conductivity Van der Waals Ferroelectrics is a useful reference for materials scientists, inorganic chemists, solid state chemists, solid state physicists, electrical engineers, and libraries supporting these professions.
Transition Metal Oxides for Electrochemical Energy Storage Explore this authoritative handbook on transition metal oxides for energy storage Metal oxides have become one of the most important classes of materials in energy storage and conversion. They continue to have tremendous potential for research into new materials and devices in a wide variety of fields. Transition Metal Oxides for Electrochemical Energy Storage delivers an insightful, concise, and focused exploration of the science and applications of metal oxides in intercalation-based batteries, solid electrolytes for ionic conduction, pseudocapacitive charge storage, transport and 3D architectures and interfacial phenomena and defects. The book serves as a one-stop reference for materials researchers seeking foundational and applied knowledge of the titled material classes. Transition Metal Oxides offers readers in-depth information covering electrochemistry, morphology, and both in situ and in operando characterization. It also provides novel approaches to transition metal oxide-enabled energy storage, like interface engineering and three-dimensional nanoarchitectures. Readers will also benefit from the inclusion of: A thorough introduction to the landscape and solid-state chemistry of transition metal oxides for energy storage An exploration of electrochemical energy storage mechanisms in transition metal oxides, including intercalation, pseudocapacitance, and conversion Practical discussions of the electrochemistry of transition metal oxides, including oxide/electrolyte interfaces and energy storage in aqueous electrolytes An examination of the characterization of transition metal oxides for energy storage Perfect for materials scientists, electrochemists, inorganic chemists, and applied physicists, Transition Metal Oxides for Electrochemical Energy Storage will also earn a place in the libraries of engineers in power technology and professions working in the electrotechnical industry seeking a one-stop reference on transition metal oxides for energy storage.
The sixth edition of Programmable Logic Controllers provides an up-to-date introduction to all aspects of PLC programming, installation, and maintaining procedures. The text is written in an easy-to-read style designed for students with no prior PLC experience. This edition is available in Connect with SmartBook 2.0. Instructor resources for this title include: Lecture PowerPoints, an Image Library, Instructor Solutions Manual, LogixPro Lab Manual Answer Key, and the RSLogix 5000 Lab Manual Answer Key.
FLEXIBLE SUPERCAPACITORS Comprehensive coverage of the latest advancements in flexible supercapacitors In Flexible Supercapacitors: Materials and Applications, a team of distinguished researchers deliver a comprehensive and insightful exploration of the foundational principles and real-world applications of flexible supercapacitors. This edited volume includes contributions from leading scientists working in the field of flexible supercapacitors. The book systematically summarizes the most recent research in the area, and covers fundamental concepts of electrode materials and devices, including on-chip microsupercapacitors and fiber supercapacitors. The latest progress and advancements in stretchable supercapacitors and healable supercapacitors are also discussed, as are problems and challenges commonly encountered in the development of flexible supercapacitors. The book concludes with suggestions and fresh perspectives on future research in this rapidly developing field. Flexible Supercapacitors: Materials and Applications also offers: A thorough introduction to the fundamentals of supercapacitors, including their materials and devices Comprehensive explorations of flexible fiber supercapacitors and two-dimensional materials for flexible supercapacitors In-depth examinations of flexible supercapacitors with metal oxides-based electrodes and flexible on-chip microsupercapacitors Practical discussions of stretchable and healable supercapacitors, as well as patterned nanostructured electrodes Perfect for researchers in the fields of materials science, physics, and electrical engineering, Flexible Supercapacitors: Materials and Applications is also an ideal reference for developers interested in supercapacitor design, materials, and devices.
Digital Audio Signal Processing The fully revised new edition of the popular textbook, featuring additional MATLAB exercises and new algorithms for processing digital audio signals Digital Audio Signal Processing (DASP) techniques are used in a variety of applications, ranging from audio streaming and computer-generated music to real-time signal processing and virtual sound processing. Digital Audio Signal Processing provides clear and accessible coverage of the fundamental principles and practical applications of digital audio processing and coding. Throughout the book, the authors explain a wide range of basic audio processing techniques and highlight new directions for automatic tuning of different algorithms and discuss state- of-the-art DASP approaches. Now in its third edition, this popular guide is fully updated with the latest signal processing algorithms for audio processing. Entirely new chapters cover nonlinear processing, Machine Learning (ML) for audio applications, distortion, soft/hard clipping, overdrive, equalizers and delay effects, sampling and reconstruction, and more. Covers the fundamentals of quantization, filters, dynamic range control, room simulation, sampling rate conversion, and audio coding Describes DASP techniques, their theoretical foundations, and their practical applications Discusses modern studio technology, digital transmission systems, storage media, and home entertainment audio components Features a new introductory chapter and extensively revised content throughout Provides updated application examples and computer-based activities supported with MATLAB exercises and interactive JavaScript applets via an author-hosted companion website Balancing essential concepts and technological topics, Digital Audio Signal Processing, Third Edition remains the ideal textbook for advanced music technology and engineering students in audio signal processing courses. It is also an invaluable reference for audio engineers, hardware and software developers, and researchers in both academia and industry.
System Assurances: Modeling and Management updates on system assurance and performance methods using advanced analytics and understanding of software reliability growth modeling from today's debugging team's point-of-view, along with information on preventive and predictive maintenance and the efficient use of testing resources. The book presents the rapidly growing application areas of systems and software modeling, including intelligent synthetic characters, human-machine interface, menu generators, user acceptance analysis, picture archiving and software systems. Students, research scholars, academicians, scientists and industry practitioners will benefit from the book as it provides better insights into modern related global trends, issues and practices. |
You may like...
Flash Memory Integration - Performance…
Jalil Boukhobza, Pierre Olivier
Hardcover
R1,831
Discovery Miles 18 310
Amazon Web Services in Action
Michael Wittig, Andreas Wittig
Paperback
R1,070
Discovery Miles 10 700
Intro to Python for Computer Science and…
Paul Deitel
Paperback
|