![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Mathematical foundations > General
Kurt Goedel (1906-1978) shook the mathematical world in 1931 by a result that has become an icon of 20th century science: The search for rigour in proving mathematical theorems had led to the formalization of mathematical proofs, to the extent that such proving could be reduced to the application of a few mechanical rules. Goedel showed that whenever the part of mathematics under formalization contains elementary arithmetic, there will be arithmetical statements that should be formally provable but aren't. The result is known as Goedel's first incompleteness theorem, so called because there is a second incompleteness result, embodied in his answer to the question "Can mathematics be proved consistent?" This book offers the first examination of Goedel's preserved notebooks from 1930, written in a long-forgotten German shorthand, that show his way to the results: his first ideas, how they evolved, and how the jewel-like final presentation in his famous publication On formally undecidable propositions was composed.The book also contains the original version of Goedel's incompleteness article, as handed in for publication with no mentioning of the second incompleteness theorem, as well as six contemporary lectures and seminars Goedel gave between 1931 and 1934 in Austria, Germany, and the United States. The lectures are masterpieces of accessible presentations of deep scientific results, readable even for those without special mathematical training, and published here for the first time.
Professor Atiyah is one of the greatest living mathematicians and is well known throughout the mathematical world. He is a recipient of the Fields Medal, the mathematical equivalent of the Nobel Prize, and is still at the peak of his career. His huge number of published papers, focusing on the areas of algebraic geometry and topology, have here been collected into six volumes, divided thematically for easy reference by individuals interested in a particular subject. Volumes III and IV cover papers written in 1963-84 and are the result of a long collaboration with I. M. Singer on the Index Theory of elliptic operators.
Professor Atiyah is one of the greatest living mathematicians and is well known throughout the mathematical world. He is a recipient of the Fields Medal, the mathematical equivalent of the Nobel Prize, and is still at the peak of his career. His huge number of published papers, focusing on the areas of algebraic geometry and topology, have here been collected into six volumes, divided thematically for easy reference by individuals interested in a particular subject. Volumes III and IV cover papers written in 1963-84 and are the result of a long collaboration with I. M. Singer on the Index Theory of elliptic operators.
This book collects and coherently presents the research that has been undertaken since the author's previous book Module Theory (1998). In addition to some of the key results since 1995, it also discusses the development of much of the supporting material. In the twenty years following the publication of the Camps-Dicks theorem, the work of Facchini, Herbera, Shamsuddin, Puninski, Prihoda and others has established the study of serial modules and modules with semilocal endomorphism rings as one of the promising directions for module-theoretic research. Providing readers with insights into the directions in which the research in this field is moving, as well as a better understanding of how it interacts with other research areas, the book appeals to undergraduates and graduate students as well as researchers interested in algebra.
In a fragment entitled Elementa Nova Matheseos Universalis (1683?) Leibniz writes "the mathesis [...] shall deliver the method through which things that are conceivable can be exactly determined"; in another fragment he takes the mathesis to be "the science of all things that are conceivable." Leibniz considers all mathematical disciplines as branches of the mathesis and conceives the mathesis as a general science of forms applicable not only to magnitudes but to every object that exists in our imagination, i.e. that is possible at least in principle. As a general science of forms the mathesis investigates possible relations between "arbitrary objects" ("objets quelconques"). It is an abstract theory of combinations and relations among objects whatsoever. In 1810 the mathematician and philosopher Bernard Bolzano published a booklet entitled Contributions to a Better-Grounded Presentation of Mathematics. There is, according to him, a certain objective connection among the truths that are germane to a certain homogeneous field of objects: some truths are the "reasons" ("Grunde") of others, and the latter are "consequences" ("Folgen") of the former. The reason-consequence relation seems to be the counterpart of causality at the level of a relation between true propositions. Arigorous proof is characterized in this context as a proof that shows the reason of the proposition that is to be proven. Requirements imposed on rigorous proofs seem to anticipate normalization results in current proof theory. The contributors of Mathesis Universalis, Computability and Proof, leading experts in the fields of computer science, mathematics, logic and philosophy, show the evolution of these and related ideas exploring topics in proof theory, computability theory, intuitionistic logic, constructivism and reverse mathematics, delving deeply into a contextual examination of the relationship between mathematical rigor and demands for simplification.
This book offers a gentle introduction to type-2 fuzzy sets and, in particular, interval type-2 fuzzy sets and their application in biological modeling. Interval type-2 fuzzy modeling is a comparatively recent direction of research in fuzzy modeling. As the modeling of biological problems is inherently uncertain, the use of fuzzy sets in this field is a natural choice. The coverage begins with a succinct review of type-1 fuzzy basic theory, before providing a comprehensive and didactic explanation of type-2 fuzzy set components. In turn, Fuzzy Rule-Based Systems, or FRBS, are shown for both types, interval type-2 and type-1 fuzzy sets. Applications include the pharmacological models, prediction of prostate cancer stages, a model for HIV population transfer (asymptomatic to symptomatic), an epidemiological disease caused by HIV, some models in population growth, included the Malthus Model, and an epidemic model refers to COVID-19. The book is ideally suited to graduate students in mathematics and related fields, professionals, researchers, or the public interested in interval type-2 fuzzy modeling. Largely self-contained, it can also be used as a supplementary text in specialized graduate courses.
This English edition of Yuri I. Manin's well-received lecture notes provides a concise but extremely lucid exposition of the basics of algebraic geometry and sheaf theory. The lectures were originally held in Moscow in the late 1960s, and the corresponding preprints were widely circulated among Russian mathematicians. This book will be of interest to students majoring in algebraic geometry and theoretical physics (high energy physics, solid body, astrophysics) as well as to researchers and scholars in these areas. "This is an excellent introduction to the basics of Grothendieck's theory of schemes; the very best first reading about the subject that I am aware of. I would heartily recommend every grad student who wants to study algebraic geometry to read it prior to reading more advanced textbooks."- Alexander Beilinson
This book lays out the theory of Mordell-Weil lattices, a very powerful and influential tool at the crossroads of algebraic geometry and number theory, which offers many fruitful connections to other areas of mathematics. The book presents all the ingredients entering into the theory of Mordell-Weil lattices in detail, notably, relevant portions of lattice theory, elliptic curves, and algebraic surfaces. After defining Mordell-Weil lattices, the authors provide several applications in depth. They start with the classification of rational elliptic surfaces. Then a useful connection with Galois representations is discussed. By developing the notion of excellent families, the authors are able to design many Galois representations with given Galois groups such as the Weyl groups of E6, E7 and E8. They also explain a connection to the classical topic of the 27 lines on a cubic surface.Two chapters deal with elliptic K3 surfaces, a pulsating area of recent research activity which highlights many central properties of Mordell-Weil lattices. Finally, the book turns to the rank problem-one of the key motivations for the introduction of Mordell-Weil lattices. The authors present the state of the art of the rank problem for elliptic curves both over Q and over C(t) and work out applications to the sphere packing problem. Throughout, the book includes many instructive examples illustrating the theory.
The book offers a collection of essays on various aspects of Leibniz's scientific thought, written by historians of science and world-leading experts on Leibniz. The essays deal with a vast array of topics on the exact sciences: Leibniz's logic, mereology, the notion of infinity and cardinality, the foundations of geometry, the theory of curves and differential geometry, and finally dynamics and general epistemology. Several chapters attempt a reading of Leibniz's scientific works through modern mathematical tools, and compare Leibniz's results in these fields with 19th- and 20th-Century conceptions of them. All of them have special care in framing Leibniz's work in historical context, and sometimes offer wider historical perspectives that go much beyond Leibniz's researches. A special emphasis is given to effective mathematical practice rather than purely epistemological thought. The book is addressed to all scholars of the exact sciences who have an interest in historical research and Leibniz in particular, and may be useful to historians of mathematics, physics, and epistemology, mathematicians with historical interests, and philosophers of science at large.
Through the infamous divorce of her parents, Ada Lovelace became the most talked-about child in Georgian Britain. This riveting biography tells the extraordinary yet little known story of her life and times-when mathematics was as fashionable as knitting among women and Ada became the world's first computer programmer. But for her era's view on gender, Ada would single-handedly have started the digital age more than two centuries ago.
From his return to Cambridge in 1929 to his death in 1951, Wittgenstein influenced philosophy almost exclusively through teaching and discussion. These lecture notes indicate what he considered to be salient features of his thinking in this period of his life.
This book constitutes the refereed proceedings of the 41st IFIP WG 6.1 International Conference on Formal Techniques for Distributed Objects, Components, and Systems, FORTE 2021, held in Valletta, Malta, in June 2021, as part of the 16th International Federated Conference on Distributed Computing Techniques, DisCoTec 2021. The 9 regular papers and 4 short papers presented were carefully reviewed and selected from 26 submissions. They cover topics such as: software quality, reliability, availability, and safety; security, privacy, and trust in distributed and/or communicating systems; service-oriented, ubiquitous, and cloud computing systems; component-and model-based design; object technology, modularity, and software adaptation; self-stabilisation and self-healing/organising; and verification, validation, formal analysis, and testing of the above. Due to the Corona pandemic this event was held virtually.
This edited work presents contemporary mathematical practice in the foundational mathematical theories, in particular set theory and the univalent foundations. It shares the work of significant scholars across the disciplines of mathematics, philosophy and computer science. Readers will discover systematic thought on criteria for a suitable foundation in mathematics and philosophical reflections around the mathematical perspectives. The volume is divided into three sections, the first two of which focus on the two most prominent candidate theories for a foundation of mathematics. Readers may trace current research in set theory, which has widely been assumed to serve as a framework for foundational issues, as well as new material elaborating on the univalent foundations, considering an approach based on homotopy type theory (HoTT). The third section then builds on this and is centred on philosophical questions connected to the foundations of mathematics. Here, the authors contribute to discussions on foundational criteria with more general thoughts on the foundations of mathematics which are not connected to particular theories. This book shares the work of some of the most important scholars in the fields of set theory (S. Friedman), non-classical logic (G. Priest) and the philosophy of mathematics (P. Maddy). The reader will become aware of the advantages of each theory and objections to it as a foundation, following the latest and best work across the disciplines and it is therefore a valuable read for anyone working on the foundations of mathematics or in the philosophy of mathematics.
This book presents a set of historical recollections on the work of Martin Davis and his role in advancing our understanding of the connections between logic, computing, and unsolvability. The individual contributions touch on most of the core aspects of Davis' work and set it in a contemporary context. They analyse, discuss and develop many of the ideas and concepts that Davis put forward, including such issues as contemporary satisfiability solvers, essential unification, quantum computing and generalisations of Hilbert's tenth problem. The book starts out with a scientific autobiography by Davis, and ends with his responses to comments included in the contributions. In addition, it includes two previously unpublished original historical papers in which Davis and Putnam investigate the decidable and the undecidable side of Logic, as well as a full bibliography of Davis' work. As a whole, this book shows how Davis' scientific work lies at the intersection of computability, theoretical computer science, foundations of mathematics, and philosophy, and draws its unifying vision from his deep involvement in Logic.
This volume collects contributions from speakers at the INdAM Workshop "Birational Geometry and Moduli Spaces", which was held in Rome on 11-15 June 2018. The workshop was devoted to the interplay between birational geometry and moduli spaces and the contributions of the volume reflect the same idea, focusing on both these areas and their interaction. In particular, the book includes both surveys and original papers on irreducible holomorphic symplectic manifolds, Severi varieties, degenerations of Calabi-Yau varieties, uniruled threefolds, toric Fano threefolds, mirror symmetry, canonical bundle formula, the Lefschetz principle, birational transformations, and deformations of diagrams of algebras. The intention is to disseminate the knowledge of advanced results and key techniques used to solve open problems. The book is intended for all advanced graduate students and researchers interested in the new research frontiers of birational geometry and moduli spaces.
There are a number of intriguing connections between Painleve equations and orthogonal polynomials, and this book is one of the first to provide an introduction to these. Researchers in integrable systems and non-linear equations will find the many explicit examples where Painleve equations appear in mathematical analysis very useful. Those interested in the asymptotic behavior of orthogonal polynomials will also find the description of Painleve transcendants and their use for local analysis near certain critical points helpful to their work. Rational solutions and special function solutions of Painleve equations are worked out in detail, with a survey of recent results and an outline of their close relationship with orthogonal polynomials. Exercises throughout the book help the reader to get to grips with the material. The author is a leading authority on orthogonal polynomials, giving this work a unique perspective on Painleve equations.
This book provides an informal and geodesic introduction to factorization homology, focusing on providing intuition through simple examples. Along the way, the reader is also introduced to modern ideas in homotopy theory and category theory, particularly as it relates to the use of infinity-categories. As with the original lectures, the text is meant to be a leisurely read suitable for advanced graduate students and interested researchers in topology and adjacent fields.
A comprehensive guide to statistics-with information on collecting, measuring, analyzing, and presenting statistical data-continuing the popular 101 series. Data is everywhere. In the age of the internet and social media, we're responsible for consuming, evaluating, and analyzing data on a daily basis. From understanding the percentage probability that it will rain later today, to evaluating your risk of a health problem, or the fluctuations in the stock market, statistics impact our lives in a variety of ways, and are vital to a variety of careers and fields of practice. Unfortunately, most statistics text books just make us want to take a snooze, but with Statistics 101, you'll learn the basics of statistics in a way that is both easy-to-understand and apply. From learning the theory of probability and different kinds of distribution concepts, to identifying data patterns and graphing and presenting precise findings, this essential guide can help turn statistical math from scary and complicated, to easy and fun. Whether you are a student looking to supplement your learning, a worker hoping to better understand how statistics works for your job, or a lifelong learner looking to improve your grasp of the world, Statistics 101 has you covered.
The contributions gathered here demonstrate how categorical ontology can provide a basis for linking three important basic sciences: mathematics, physics, and philosophy. Category theory is a new formal ontology that shifts the main focus from objects to processes. The book approaches formal ontology in the original sense put forward by the philosopher Edmund Husserl, namely as a science that deals with entities that can be exemplified in all spheres and domains of reality. It is a dynamic, processual, and non-substantial ontology in which all entities can be treated as transformations, and in which objects are merely the sources and aims of these transformations. Thus, in a rather surprising way, when employed as a formal ontology, category theory can unite seemingly disparate disciplines in contemporary science and the humanities, such as physics, mathematics and philosophy, but also computer and complex systems science.
This monograph introduces involutive categories and involutive operads, featuring applications to the GNS construction and algebraic quantum field theory. The author adopts an accessible approach for readers seeking an overview of involutive category theory, from the basics to cutting-edge applications. Additionally, the author's own recent advances in the area are featured, never having appeared previously in the literature. The opening chapters offer an introduction to basic category theory, ideal for readers new to the area. Chapters three through five feature previously unpublished results on coherence and strictification of involutive categories and involutive monoidal categories, showcasing the author's state-of-the-art research. Chapters on coherence of involutive symmetric monoidal categories, and categorical GNS construction follow. The last chapter covers involutive operads and lays important coherence foundations for applications to algebraic quantum field theory. With detailed explanations and exercises throughout, Involutive Category Theory is suitable for graduate seminars and independent study. Mathematicians and mathematical physicists who use involutive objects will also find this a valuable reference.
This book constitutes the thoroughly revised selected papers from the 16th International Conference on Formal Aspects of Component Software, FACS 2019, held in Amsterdam, The Netherlands, in October 2019. The 9 full papers presented together with 9 full papers and 3 short papers as well as 2 other papers were carefully reviewed and selected from 27 submissions. FACS 2019 is concerned with how formal methods can be used to make component-based and service-oriented software development succeed. Formal methods have provided a foundation for component-based software by successfully addressing challenging issues such as mathematical models for components, composition and adaptation, or rigorous approaches to verification, deployment, testing, and certification.
The major creations and developments in mathematics from the beginnings in Babylonia and Egypt through the first few decades of the twentieth century are presented with clarity and precision in this comprehensive historical study.
This book constitutes the refereed proceedings of the International Symposium on Logical Foundations of Computer Science, LFCS 2020, held in Deerfield Beach, FL, USA, in January 2020. The 17 revised full papers were carefully reviewed and selected from 30 submissions. The scope of the Symposium is broad and includes constructive mathematics and type theory; homotopy type theory; logic, automata, and automatic structures; computability and randomness; logical foundations of programming; logical aspects of computational complexity; parameterized complexity; logic programming and constraints; automated deduction and interactive theorem proving; logical methods in protocol and program verification; logical methods in program specification and extraction; domain theory logics; logical foundations of database theory; equational logic and term rewriting; lambda and combinatory calculi; categorical logic and topological semantics; linear logic; epistemic and temporal logics; intelligent and multiple-agent system logics; logics of proof and justification; non-monotonic reasoning; logic in game theory and social software; logic of hybrid systems; distributed system logics; mathematical fuzzy logic; system design logics; other logics in computer science.
This edited book focuses on concepts and their applications using the theory of conceptual spaces, one of today's most central tracks of cognitive science discourse. It features 15 papers based on topics presented at the Conceptual Spaces @ Work 2016 conference. The contributors interweave both theory and applications in their papers. Among the first mentioned are studies on metatheories, logical and systemic implications of the theory, as well as relations between concepts and language. Examples of the latter include explanatory models of paradigm shifts and evolution in science as well as dilemmas and issues of health, ethics, and education. The theory of conceptual spaces overcomes many translational issues between academic theoretization and practical applications. The paradigm is mainly associated with structural explanations, such as categorization and meronomy. However, the community has also been relating it to relations, functions, and systems. The book presents work that provides a geometric model for the representation of human conceptual knowledge that bridges the symbolic and the sub-conceptual levels of representation. The model has already proven to have a broad range of applicability beyond cognitive science and even across a number of disciplines related to concepts and representation.
This open access book constitutes the proceedings of the 23rd International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2020, which took place in Dublin, Ireland, in April 2020, and was held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The 31 regular papers presented in this volume were carefully reviewed and selected from 98 submissions. The papers cover topics such as categorical models and logics; language theory, automata, and games; modal, spatial, and temporal logics; type theory and proof theory; concurrency theory and process calculi; rewriting theory; semantics of programming languages; program analysis, correctness, transformation, and verification; logics of programming; software specification and refinement; models of concurrent, reactive, stochastic, distributed, hybrid, and mobile systems; emerging models of computation; logical aspects of computational complexity; models of software security; and logical foundations of data bases. |
![]() ![]() You may like...
The New Method Arithmetic [microform]
P (Phineas) McIntosh, C a (Carl Adolph) B 1879 Norman
Hardcover
R975
Discovery Miles 9 750
Key to Advanced Arithmetic for Canadian…
Barnard 1817-1876 Smith, Archibald McMurchy
Hardcover
R930
Discovery Miles 9 300
|