Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Mathematical foundations > General
Numbers and other mathematical objects are exceptional in having no locations in space or time and no causes or effects in the physical world. This makes it difficult to account for the possibility of mathematical knowledge, leading many philosophers to embrace nominalism, the doctrine that there are no abstract entitles, and to embark on ambitious projects for interpreting mathematics so as to preserve the subject while eliminating its objects. A Subject With No Object cuts through a host of technicalities that have obscured previous discussions of these projects, and presents clear, concise accounts, with minimal prerequisites, of a dozen strategies for nominalistic interpretation of mathematics, thus equipping the reader to evaluate each and to compare different ones. The authors also offer critical discussion, rare in the literature, of the aims and claims of nominalistic interpretation, suggesting that it is significant in a very different way from that usually assumed.
Provides an in-depth treatment of the Traveling Salesman problem--the archetypical problem in combinatorial optimization. Each chapter deals with a different aspect of the problem, and has been written by an acknowledged expert in the field. Focusses on the essential ideas in a self-contained manner. Includes exercises and an extensive bibliography.
This book provides an organized exposition of the current state of the theory of commutative semigroup cohomology, a theory which was originated by the author and has matured in the past few years. The work contains a fundamental scientific study of questions in the theory. The various approaches to commutative semigroup cohomology are compared. The problems arising from definitions in higher dimensions are addressed. Computational methods are reviewed. The main application is the computation of extensions of commutative semigroups and their classification. Previously the components of the theory were scattered among a number of research articles. This work combines all parts conveniently in one volume. It will be a valuable resource for future students of and researchers in commutative semigroup cohomology and related areas.
Teach Your Students Both the Mathematics of Numerical Methods and the Art of Computer Programming Introduction to Computational Linear Algebra presents classroom-tested material on computational linear algebra and its application to numerical solutions of partial and ordinary differential equations. The book is designed for senior undergraduate students in mathematics and engineering as well as first-year graduate students in engineering and computational science. The text first introduces BLAS operations of types 1, 2, and 3 adapted to a scientific computer environment, specifically MATLAB (R). It next covers the basic mathematical tools needed in numerical linear algebra and discusses classical material on Gauss decompositions as well as LU and Cholesky's factorizations of matrices. The text then shows how to solve linear least squares problems, provides a detailed numerical treatment of the algebraic eigenvalue problem, and discusses (indirect) iterative methods to solve a system of linear equations. The final chapter illustrates how to solve discretized sparse systems of linear equations. Each chapter ends with exercises and computer projects.
Features step-by-step examples based on actual data and connects fundamental mathematical modeling skills and decision making concepts to everyday applicability Featuring key linear programming, matrix, and probability concepts, Finite Mathematics: Models and Applications emphasizes cross-disciplinary applications that relate mathematics to everyday life. The book provides a unique combination of practical mathematical applications to illustrate the wide use of mathematics in fields ranging from business, economics, finance, management, operations research, and the life and social sciences. In order to emphasize the main concepts of each chapter, Finite Mathematics: Models and Applications features plentiful pedagogical elements throughout such as special exercises, end notes, hints, select solutions, biographies of key mathematicians, boxed key principles, a glossary of important terms and topics, and an overview of use of technology. The book encourages the modeling of linear programs and their solutions and uses common computer software programs such as LINDO. In addition to extensive chapters on probability and statistics, principles and applications of matrices are included as well as topics for enrichment such as the Monte Carlo method, game theory, kinship matrices, and dynamic programming. Supplemented with online instructional support materials, the book features coverage including: * Algebra Skills * Mathematics of Finance * Matrix Algebra * Geometric Solutions * Simplex Methods * Application Models * Set and Probability Relationships * Random Variables and Probability Distributions * Markov Chains * Mathematical Statistics * Enrichment in Finite Mathematics An ideal textbook, Finite Mathematics: Models and Applications is intended for students in fields from entrepreneurial and economic to environmental and social science, including many in the arts and humanities.
This completely revised and corrected version of the well-known Florence notes circulated by the authors together with E. Friedlander examines basic topology, emphasizing homotopy theory. Included is a discussion of Postnikov towers and rational homotopy theory. This is then followed by an in-depth look at differential forms and de Tham's theorem on simplicial complexes. In addition, Sullivan's results on computing the rational homotopy type from forms is presented. New to the Second Edition: *Fully-revised appendices including an expanded discussion of the Hirsch lemma *Presentation of a natural proof of a Serre spectral sequence result *Updated content throughout the book, reflecting advances in the area of homotopy theory With its modern approach and timely revisions, this second edition of Rational Homotopy Theory and Differential Forms will be a valuable resource for graduate students and researchers in algebraic topology, differential forms, and homotopy theory.
This book serves as a textbook in real analysis. It focuses on the fundamentals of the structural properties of metric spaces and analytical properties of functions defined between such spaces. Topics include sets, functions and cardinality, real numbers, analysis on R, topology of the real line, metric spaces, continuity and differentiability, sequences and series, Lebesgue integration, and Fourier series. It is primarily focused on the applications of analytical methods to solving partial differential equations rooted in many important problems in mathematics, physics, engineering, and related fields. Both the presentation and treatment of topics are fashioned to meet the expectations of interested readers working in any branch of science and technology. Senior undergraduates in mathematics and engineering are the targeted student readership, and the topical focus with applications to real-world examples will promote higher-level mathematical understanding for undergraduates in sciences and engineering.
Clear, concise compendium of about 150 time-saving math short-cuts features faster, easier ways to add, subtract, multiply, and divide. Each problem includes an explanation of the method, a step-by-step solution, the short-cut solution, and proof, as well as an explanation of why it works. No special math ability needed.
A general class of powerful and flexible modeling techniques, spline smoothing has attracted a great deal of research attention in recent years and has been widely used in many application areas, from medicine to economics. Smoothing Splines: Methods and Applications covers basic smoothing spline models, including polynomial, periodic, spherical, thin-plate, L-, and partial splines, as well as more advanced models, such as smoothing spline ANOVA, extended and generalized smoothing spline ANOVA, vector spline, nonparametric nonlinear regression, semiparametric regression, and semiparametric mixed-effects models. It also presents methods for model selection and inference. The book provides unified frameworks for estimation, inference, and software implementation by using the general forms of nonparametric/semiparametric, linear/nonlinear, and fixed/mixed smoothing spline models. The theory of reproducing kernel Hilbert space (RKHS) is used to present various smoothing spline models in a unified fashion. Although this approach can be technical and difficult, the author makes the advanced smoothing spline methodology based on RKHS accessible to practitioners and students. He offers a gentle introduction to RKHS, keeps theory at a minimum level, and explains how RKHS can be used to construct spline models. Smoothing Splines offers a balanced mix of methodology, computation, implementation, software, and applications. It uses R to perform all data analyses and includes a host of real data examples from astronomy, economics, medicine, and meteorology. The codes for all examples, along with related developments, can be found on the book's web page.
Gaisi Takeuti was one of the most brilliant, genius, and influential logicians of the 20th century. He was a long-time professor and professor emeritus of mathematics at the University of Illinois at Urbana-Champaign, USA, before he passed away on May 10, 2017, at the age of 91. Takeuti was one of the founders of Proof Theory, a branch of mathematical logic that originated from Hilbert's program about the consistency of mathematics. Based on Gentzen's pioneering works of proof theory in the 1930s, he proposed a conjecture in 1953 concerning the essential nature of formal proofs of higher-order logic now known as Takeuti's fundamental conjecture and of which he gave a partial positive solution. His arguments on the conjecture and proof theory in general have had great influence on the later developments of mathematical logic, philosophy of mathematics, and applications of mathematical logic to theoretical computer science. Takeuti's work ranged over the whole spectrum of mathematical logic, including set theory, computability theory, Boolean valued analysis, fuzzy logic, bounded arithmetic, and theoretical computer science. He wrote many monographs and textbooks both in English and in Japanese, and his monumental monograph Proof Theory, published in 1975, has long been a standard reference of proof theory. He had a wide range of interests covering virtually all areas of mathematics and extending to physics. His publications include many Japanese books for students and general readers about mathematical logic, mathematics in general, and connections between mathematics and physics, as well as many essays for Japanese science magazines. This volume is a collection of papers based on the Symposium on Advances in Mathematical Logic 2018. The symposium was held September 18-20, 2018, at Kobe University, Japan, and was dedicated to the memory of Professor Gaisi Takeuti.
This book explores the premise that a physical theory is an interpretation of the analytico-canonical formalism. Throughout the text, the investigation stresses that classical mechanics in its Lagrangian formulation is the formal backbone of theoretical physics. The authors start from a presentation of the analytico-canonical formalism for classical mechanics, and its applications in electromagnetism, Schroedinger's quantum mechanics, and field theories such as general relativity and gauge field theories, up to the Higgs mechanism. The analysis uses the main criterion used by physicists for a theory: to formulate a physical theory we write down a Lagrangian for it. A physical theory is a particular instance of the Lagrangian functional. So, there is already an unified physical theory. One only has to specify the corresponding Lagrangian (or Lagrangian density); the dynamical equations are the associated Euler-Lagrange equations. The theory of Suppes predicates as the main tool in the axiomatization and examples from the usual theories in physics. For applications, a whole plethora of results from logic that lead to interesting, and sometimes unexpected, consequences. This volume looks at where our physics happen and which mathematical universe we require for the description of our concrete physical events. It also explores if we use the constructive universe or if we need set-theoretically generic spacetimes.
The hybrid/heterogeneous nature of future microprocessors and large high-performance computing systems will result in a reliance on two major types of components: multicore/manycore central processing units and special purpose hardware/massively parallel accelerators. While these technologies have numerous benefits, they also pose substantial performance challenges for developers, including scalability, software tuning, and programming issues. Researchers at the Forefront Reveal Results from Their Own State-of-the-Art Work Edited by some of the top researchers in the field and with contributions from a variety of international experts, Scientific Computing with Multicore and Accelerators focuses on the architectural design and implementation of multicore and manycore processors and accelerators, including graphics processing units (GPUs) and the Sony Toshiba IBM (STI) Cell Broadband Engine (BE) currently used in the Sony PlayStation 3. The book explains how numerical libraries, such as LAPACK, help solve computational science problems; explores the emerging area of hardware-oriented numerics; and presents the design of a fast Fourier transform (FFT) and a parallel list ranking algorithm for the Cell BE. It covers stencil computations, auto-tuning, optimizations of a computational kernel, sequence alignment and homology, and pairwise computations. The book also evaluates the portability of drug design applications to the Cell BE and illustrates how to successfully exploit the computational capabilities of GPUs for scientific applications. It concludes with chapters on dataflow frameworks, the Charm++ programming model, scan algorithms, and a portable intracore communication framework. Explores the New Computational Landscape of Hybrid Processors By offering insight into the process of constructing and effectively using the technology, this volume provides a thorough and practical introduction to the area of hybrid computing. It discusses introductory concepts and simple examples of parallel computing, logical and performance debugging for parallel computing, and advanced topics and issues related to the use and building of many applications.
For a brief time in history, it was possible to imagine that a sufficiently advanced intellect could, given sufficient time and resources, in principle understand how to mathematically prove everything that was true. They could discern what math corresponds to physical laws, and use those laws to predict anything that happens before it happens. That time has passed. Goedel's undecidability results (the incompleteness theorems), Turing's proof of non-computable values, the formulation of quantum theory, chaos, and other developments over the past century have shown that there are rigorous arguments limiting what we can prove, compute, and predict. While some connections between these results have come to light, many remain obscure, and the implications are unclear. Are there, for example, real consequences for physics - including quantum mechanics - of undecidability and non-computability? Are there implications for our understanding of the relations between agency, intelligence, mind, and the physical world? This book, based on the winning essays from the annual FQXi competition, contains ten explorations of Undecidability, Uncomputability, and Unpredictability. The contributions abound with connections, implications, and speculations while undertaking rigorous but bold and open-minded investigation of the meaning of these constraints for the physical world, and for us as humans.
Mathematical induction, and its use in solving optimization problems, is a topic of great interest with many applications. It enables us to study multistage decision problems by proceeding backwards in time, using a method called dynamic programming. All the techniques needed to solve the various problems are explained, and the author’s fluent style will leave the reader with an avid interest in the subject.
Classically Semisimple Rings is a textbook on rings, modules and categories, aimed at advanced undergraduate and beginning graduate students. The book presents the classical theory of semisimple rings from a modern, category-theoretic point of view. Examples from algebra are used to motivate the abstract language of category theory, which then provides a framework for the study of rings and modules, culminating in the Wedderburn-Artin classification of semisimple rings. In the last part of the book, readers are gently introduced to related topics such as tensor products, exchange modules and C*-algebras. As a final flourish, Rickart's theorem on group rings ties a number of these topics together. Each chapter ends with a selection of exercises of varying difficulty, and readers interested in the history of mathematics will find biographical sketches of important figures scattered throughout the text.Assuming previous knowledge in linear and basic abstract algebra, this book can serve as a textbook for a course in algebra, providing students with valuable early exposure to category theory.
This book introduces the notion of an effective Kan fibration, a new mathematical structure which can be used to study simplicial homotopy theory. The main motivation is to make simplicial homotopy theory suitable for homotopy type theory. Effective Kan fibrations are maps of simplicial sets equipped with a structured collection of chosen lifts that satisfy certain non-trivial properties. Here it is revealed that fundamental properties of ordinary Kan fibrations can be extended to explicit constructions on effective Kan fibrations. In particular, a constructive (explicit) proof is given that effective Kan fibrations are stable under push forward, or fibred exponentials. Further, it is shown that effective Kan fibrations are local, or completely determined by their fibres above representables, and the maps which can be equipped with the structure of an effective Kan fibration are precisely the ordinary Kan fibrations. Hence implicitly, both notions still describe the same homotopy theory. These new results solve an open problem in homotopy type theory and provide the first step toward giving a constructive account of Voevodsky's model of univalent type theory in simplicial sets.
This volume is dedicated to Hiroakira Ono life's work on substructural logics. Chapters, written by well-established academics, cover topics related to universal algebra, algebraic logic and the Full Lambek calculus; the book includes a short biography about Hiroakira Ono. The book starts with detailed surveys on universal algebra, abstract algebraic logic, topological dualities, and connections to computer science. It further contains specialised contributions on connections to formal languages (recognizability in residuated lattices and connections to the finite embedding property), covering systems for modal substructural logics, results on the existence and disjunction properties and finally a study of conservativity of expansions. This book will be primarily of interest to researchers working in algebraic and non-classical logic.
Rave reviews for INTEGER AND COMBINATORIAL OPTIMIZATION "This book provides an excellent introduction and survey of traditional fields of combinatorial optimization . . . It is indeed one of the best and most complete texts on combinatorial optimization . . . available. [And] with more than 700 entries, [it] has quite an exhaustive reference list."—Optima "A unifying approach to optimization problems is to formulate them like linear programming problems, while restricting some or all of the variables to the integers. This book is an encyclopedic resource for such formulations, as well as for understanding the structure of and solving the resulting integer programming problems."—Computing Reviews "[This book] can serve as a basis for various graduate courses on discrete optimization as well as a reference book for researchers and practitioners."—Mathematical Reviews "This comprehensive and wide-ranging book will undoubtedly become a standard reference book for all those in the field of combinatorial optimization."—Bulletin of the London Mathematical Society "This text should be required reading for anybody who intends to do research in this area or even just to keep abreast of developments."—Times Higher Education Supplement, London Also of interest . . . INTEGER PROGRAMMING Laurence A. Wolsey Comprehensive and self-contained, this intermediate-level guide to integer programming provides readers with clear, up-to-date explanations on why some problems are difficult to solve, how techniques can be reformulated to give better results, and how mixed integer programming systems can be used more effectively. 1998 (0-471-28366-5) 260 pp.
This monograph presents a general theory of weakly implicative logics, a family covering a vast number of non-classical logics studied in the literature, concentrating mainly on the abstract study of the relationship between logics and their algebraic semantics. It can also serve as an introduction to (abstract) algebraic logic, both propositional and first-order, with special attention paid to the role of implication, lattice and residuated connectives, and generalized disjunctions. Based on their recent work, the authors develop a powerful uniform framework for the study of non-classical logics. In a self-contained and didactic style, starting from very elementary notions, they build a general theory with a substantial number of abstract results. The theory is then applied to obtain numerous results for prominent families of logics and their algebraic counterparts, in particular for superintuitionistic, modal, substructural, fuzzy, and relevant logics. The book may be of interest to a wide audience, especially students and scholars in the fields of mathematics, philosophy, computer science, or related areas, looking for an introduction to a general theory of non-classical logics and their algebraic semantics.
This book provides a hands-on introduction to runtime verification which guides the reader from zero to sufficient practical knowledge required to consider and apply it in industry. It starts with almost no assumptions on the knowledge of the reader and provides exercises throughout the book through which the reader builds their own runtime verification tool. All that is required are basic programming skills and a good working knowledge of the object-oriented paradigm, ideally Java. Drawing from years of the authors' real-world experience, the reader progresses from manually writing runtime verification code to instrumenting monitoring using aspect-oriented programming, after which they explore increasing levels of specification abstraction: automata, regular expressions, and linear time temporal logic. A range of other topics is also explored in the book, including real-time properties, concerns of efficiency and persistence, integration with testing and architectural considerations. The book is written for graduate students specializing in software engineering as well as for industry professionals who need an introduction to the topic of runtime verification. While the book focuses on underlying foundations and practical techniques, it additionally provides for each chapter a reading list in the appendix for the interested reader who would like to deepen their knowledge in a particular area.
This book is a comprehensive examination of the conception, perception, performance, and composition of time in music across time and culture. It surveys the literature of time in mathematics, philosophy, psychology, music theory, and somatic studies (medicine and disability studies) and looks ahead through original research in performance, composition, psychology, and education. It is the first monograph solely devoted to the theory of construction of musical time since Kramer in 1988, with new insights, mathematical precision, and an expansive global and historical context. The mathematical methods applied for the construction of musical time are totally new. They relate to category theory (projective limits) and the mathematical theory of gestures. These methods and results extend the music theory of time but also apply to the applied performative understanding of making music. In addition, it is the very first approach to a constructive theory of time, deduced from the recent theory of musical gestures and their categories. Making Musical Time is intended for a wide audience of scholars with interest in music. These include mathematicians, music theorists, (ethno)musicologists, music psychologists / educators / therapists, music performers, philosophers of music, audiologists, and acousticians.
This book presents a new nominalistic philosophy of mathematics: semantic conventionalism. Its central thesis is that mathematics should be founded on the human ability to create language - and specifically, the ability to institute conventions for the truth conditions of sentences. This philosophical stance leads to an alternative way of practicing mathematics: instead of "building" objects out of sets, a mathematician should introduce new syntactical sentence types, together with their truth conditions, as he or she develops a theory. Semantic conventionalism is justified first through criticism of Cantorian set theory, intuitionism, logicism, and predicativism; then on its own terms; and finally, exemplified by a detailed reconstruction of arithmetic and real analysis. Also included is a simple solution to the liar paradox and the other paradoxes that have traditionally been recognized as semantic. And since it is argued that mathematics is semantics, this solution also applies to Russell's paradox and the other mathematical paradoxes of self-reference. In addition to philosophers who care about the metaphysics and epistemology of mathematics or the paradoxes of self-reference, this book should appeal to mathematicians interested in alternative approaches.
Strange Attractors is a collection of approximately 150 poems with strong links to mathematics in content, form, or imagery. The common theme is love, and the editors draw from its various manifestations-romantic love, spiritual love, humorous love, love between parents and children, mathematicians in love, love of mathematics. The poets include literary masters as well as celebrated mathematicians and scientists. "What, after all, is mathematics but the poetry of the mind, and what is poetry but the mathematics of the heart?" So wrote the American mathematician and educator David Eugene Smith. In a similar vein, the German mathematician Karl Weierstrass declared, "A mathematician who is not at the same time something of a poet will never be a full mathematician." Most mathematicians will know what they meant. But what do professional poets think of mathematics? In this delightful collection, the editors present the view of the same terrain-the connections between mathematics and poetry-from the other side of the equation: the poets. Now is your chance to see if the equation balances. -Keith Devlin, mathematician, Stanford University, and author of The Math Gene, The Math Instinct, and The Language of Mathematics |
You may like...
Primary Maths for Scotland Textbook 2A…
Craig Lowther, Antoinette Irwin, …
Paperback
Alfred Tarski - Early Work in…
Andrew McFarland, Joanna McFarland, …
Hardcover
R2,912
Discovery Miles 29 120
Primary Maths for Scotland Textbook 1C…
Craig Lowther, Antoinette Irwin, …
Paperback
The High School Arithmetic - for Use in…
W. H. Ballard, A. C. McKay, …
Hardcover
R956
Discovery Miles 9 560
The New Method Arithmetic [microform]
P (Phineas) McIntosh, C a (Carl Adolph) B 1879 Norman
Hardcover
R897
Discovery Miles 8 970
The Public School Arithmetic - Based on…
J a (James Alexander) 18 McLellan, A F (Albert Flintoft) Ames
Hardcover
R896
Discovery Miles 8 960
|