![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Mathematical foundations > General
This survey of computability theory offers the techniques and tools that computer scientists (as well as mathematicians and philosophers studying the mathematical foundations of computing) need to mathematically analyze computational processes and investigate the theoretical limitations of computing. Beginning with an introduction to the mathematisation of "mechanical process" using URM programs, this textbook explains basic theory such as primitive recursive functions and predicates and sequence-coding, partial recursive functions and predicates, and loop programs. Advanced chapters cover the Ackerman function, Tarski's theorem on the non-representability of truth, Goedel's incompleteness and Rosser's incompleteness theorems, two short proofs of the incompleteness theorem that are based on Lob's deliverability conditions, Church's thesis, the second recursion theorem and applications, a provably recursive universal function for the primitive recursive functions, Oracle computations and various classes of computable functionals, the Arithmetical hierarchy, Turing reducibility and Turing degrees and the priority method, a thorough exposition of various versions of the first recursive theorem, Blum's complexity, Hierarchies of primitive recursive functions, and a machine-independent characterisation of Cobham's feasibly computable functions.
Strange Attractors is a collection of approximately 150 poems with strong links to mathematics in content, form, or imagery. The common theme is love, and the editors draw from its various manifestations-romantic love, spiritual love, humorous love, love between parents and children, mathematicians in love, love of mathematics. The poets include literary masters as well as celebrated mathematicians and scientists. "What, after all, is mathematics but the poetry of the mind, and what is poetry but the mathematics of the heart?" So wrote the American mathematician and educator David Eugene Smith. In a similar vein, the German mathematician Karl Weierstrass declared, "A mathematician who is not at the same time something of a poet will never be a full mathematician." Most mathematicians will know what they meant. But what do professional poets think of mathematics? In this delightful collection, the editors present the view of the same terrain-the connections between mathematics and poetry-from the other side of the equation: the poets. Now is your chance to see if the equation balances. -Keith Devlin, mathematician, Stanford University, and author of The Math Gene, The Math Instinct, and The Language of Mathematics
Categories for the Working Mathematician provides an array of general ideas useful in a wide variety of fields. Starting from the foundations, this book illuminates the concepts of category, functor, natural transformation, and duality. The book then turns to adjoint functors, which provide a description of universal constructions, an analysis of the representations of functors by sets of morphisms, and a means of manipulating direct and inverse limits. These categorical concepts are extensively illustrated in the remaining chapters, which include many applications of the basic existence theorem for adjoint functors. The categories of algebraic systems are constructed from certain adjoint-like data and characterized by Beck's theorem. After considering a variety of applications, the book continues with the construction and exploitation of Kan extensions. This second edition includes a number of revisions and additions, including two new chapters on topics of active interest. One is on symmetric monoidal categories and braided monoidal categories and the coherence theorems for them. The second describes 2-categories and the higher dimensional categories which have recently come into prominence. The bibliography has also been expanded to cover some of the many other recent advances concerning categories.
This classic text emphasizes the stochastic processes and the
interchange of stimuli between probability and analysis.
Non-probabilistic topics include Fourier series and integrals in
many variables; the Bochner integral; and the transforms of
Plancherel, Laplace, Poisson, and Mellin. Most notable is the
systematic presentation of Bochner's characteristic functional.
1955 edition.
This book serves as a textbook in real analysis. It focuses on the fundamentals of the structural properties of metric spaces and analytical properties of functions defined between such spaces. Topics include sets, functions and cardinality, real numbers, analysis on R, topology of the real line, metric spaces, continuity and differentiability, sequences and series, Lebesgue integration, and Fourier series. It is primarily focused on the applications of analytical methods to solving partial differential equations rooted in many important problems in mathematics, physics, engineering, and related fields. Both the presentation and treatment of topics are fashioned to meet the expectations of interested readers working in any branch of science and technology. Senior undergraduates in mathematics and engineering are the targeted student readership, and the topical focus with applications to real-world examples will promote higher-level mathematical understanding for undergraduates in sciences and engineering.
This volume collects chapters that examine representation theory as connected with affine Lie algebras and their quantum analogues, in celebration of the impact Vyjayanthi Chari has had on this area. The opening chapters are based on mini-courses given at the conference "Interactions of Quantum Affine Algebras with Cluster Algebras, Current Algebras and Categorification", held on the occasion of Chari's 60th birthday at the Catholic University of America in Washington D.C., June 2018. The chapters that follow present a broad view of the area, featuring surveys, original research, and an overview of Vyjayanthi Chari's significant contributions. Written by distinguished experts in representation theory, a range of topics are covered, including: String diagrams and categorification Quantum affine algebras and cluster algebras Steinberg groups for Jordan pairs Dynamical quantum determinants and Pfaffians Interactions of Quantum Affine Algebras with Cluster Algebras, Current Algebras and Categorification will be an ideal resource for researchers in the fields of representation theory and mathematical physics.
This book constitutes the refereed proceedings of the International Symposium on Logical Foundations of Computer Science, LFCS 2022, held in Deerfield Beach, FL, USA, in January 2022. The 23 revised full papers were carefully reviewed and selected from 35 submissions. The scope of the Symposium is broad and includes constructive mathematics and type theory; homotopy type theory; logic, automata, and automatic structures; computability and randomness; logical foundations of programming; logical aspects of computational complexity; parameterized complexity; logic programming and constraints; automated deduction and interactive theorem proving; logical methods in protocol and program verification; logical methods in program specification and extraction; domain theory logics; logical foundations of database theory; equational logic and term rewriting; lambda and combinatory calculi; categorical logic and topological semantics; linear logic; epistemic and temporal logics; intelligent and multiple-agent system logics; logics of proof and justification; non-monotonic reasoning; logic in game theory and social software; logic of hybrid systems; distributed system logics; mathematical fuzzy logic; system design logics; other logics in computer science.
This book is an exposition of recent progress on the Donaldson-Thomas (DT) theory. The DT invariant was introduced by R. Thomas in 1998 as a virtual counting of stable coherent sheaves on Calabi-Yau 3-folds. Later, it turned out that the DT invariants have many interesting properties and appear in several contexts such as the Gromov-Witten/Donaldson-Thomas conjecture on curve-counting theories, wall-crossing in derived categories with respect to Bridgeland stability conditions, BPS state counting in string theory, and others. Recently, a deeper structure of the moduli spaces of coherent sheaves on Calabi-Yau 3-folds was found through derived algebraic geometry. These moduli spaces admit shifted symplectic structures and the associated d-critical structures, which lead to refined versions of DT invariants such as cohomological DT invariants. The idea of cohomological DT invariants led to a mathematical definition of the Gopakumar-Vafa invariant, which was first proposed by Gopakumar-Vafa in 1998, but its precise mathematical definition has not been available until recently. This book surveys the recent progress on DT invariants and related topics, with a focus on applications to curve-counting theories.
Professor Chandrasekhar's work is an attempt by a distinguished practising scientist to read and comprehend the enormous intellectual achievement of the Principia without recourse to secondary sources. This text has stimulated great interest and debate among the scientific community, illuminating the brilliance of Newton's work under the gaze of Chandrasekhar's rare perception.
This graphic novel is both a historical novel as well as an entertaining way of using mathematics to solve a crime. The plot, the possible motive of every suspect, and the elements of his or her character are based on actual historical figures. The 2nd International Congress of Mathematicians is being held in Paris in 1900. The main speaker, the renowned Professor X, is found dead in the hotel dining room. Foul play is suspected. The greatest mathematicians of all time (who are attending the Congress) are called in for questioning. Their statements to the police, however, take the form of mathematical problems. The Chief Inspector enlists the aid of a young mathematician to help solve the crime. Do numbers always tell the truth? Or don't they?
Is mathematics a highly sophisticated intellectual game in which
the adepts display their skill by tackling invented problems, or
are mathematicians engaged in acts of discovery as they explore an
independent realm of mathematical reality? Why does this seemingly
abstract discipline provide the key to unlocking the deep secrets
of the physical universe? How one answers these questions will
significantly influence metaphysical thinking about reality.
Accessible to all students with a sound background in high school mathematics, A Concise Introduction to Pure Mathematics, Fourth Edition presents some of the most fundamental and beautiful ideas in pure mathematics. It covers not only standard material but also many interesting topics not usually encountered at this level, such as the theory of solving cubic equations; Euler's formula for the numbers of corners, edges, and faces of a solid object and the five Platonic solids; the use of prime numbers to encode and decode secret information; the theory of how to compare the sizes of two infinite sets; and the rigorous theory of limits and continuous functions. New to the Fourth Edition Two new chapters that serve as an introduction to abstract algebra via the theory of groups, covering abstract reasoning as well as many examples and applications New material on inequalities, counting methods, the inclusion-exclusion principle, and Euler's phi function Numerous new exercises, with solutions to the odd-numbered ones Through careful explanations and examples, this popular textbook illustrates the power and beauty of basic mathematical concepts in number theory, discrete mathematics, analysis, and abstract algebra. Written in a rigorous yet accessible style, it continues to provide a robust bridge between high school and higher-level mathematics, enabling students to study more advanced courses in abstract algebra and analysis.
This book explores the premise that a physical theory is an interpretation of the analytico-canonical formalism. Throughout the text, the investigation stresses that classical mechanics in its Lagrangian formulation is the formal backbone of theoretical physics. The authors start from a presentation of the analytico-canonical formalism for classical mechanics, and its applications in electromagnetism, Schroedinger's quantum mechanics, and field theories such as general relativity and gauge field theories, up to the Higgs mechanism. The analysis uses the main criterion used by physicists for a theory: to formulate a physical theory we write down a Lagrangian for it. A physical theory is a particular instance of the Lagrangian functional. So, there is already an unified physical theory. One only has to specify the corresponding Lagrangian (or Lagrangian density); the dynamical equations are the associated Euler-Lagrange equations. The theory of Suppes predicates as the main tool in the axiomatization and examples from the usual theories in physics. For applications, a whole plethora of results from logic that lead to interesting, and sometimes unexpected, consequences. This volume looks at where our physics happen and which mathematical universe we require for the description of our concrete physical events. It also explores if we use the constructive universe or if we need set-theoretically generic spacetimes.
Gaisi Takeuti was one of the most brilliant, genius, and influential logicians of the 20th century. He was a long-time professor and professor emeritus of mathematics at the University of Illinois at Urbana-Champaign, USA, before he passed away on May 10, 2017, at the age of 91. Takeuti was one of the founders of Proof Theory, a branch of mathematical logic that originated from Hilbert's program about the consistency of mathematics. Based on Gentzen's pioneering works of proof theory in the 1930s, he proposed a conjecture in 1953 concerning the essential nature of formal proofs of higher-order logic now known as Takeuti's fundamental conjecture and of which he gave a partial positive solution. His arguments on the conjecture and proof theory in general have had great influence on the later developments of mathematical logic, philosophy of mathematics, and applications of mathematical logic to theoretical computer science. Takeuti's work ranged over the whole spectrum of mathematical logic, including set theory, computability theory, Boolean valued analysis, fuzzy logic, bounded arithmetic, and theoretical computer science. He wrote many monographs and textbooks both in English and in Japanese, and his monumental monograph Proof Theory, published in 1975, has long been a standard reference of proof theory. He had a wide range of interests covering virtually all areas of mathematics and extending to physics. His publications include many Japanese books for students and general readers about mathematical logic, mathematics in general, and connections between mathematics and physics, as well as many essays for Japanese science magazines. This volume is a collection of papers based on the Symposium on Advances in Mathematical Logic 2018. The symposium was held September 18-20, 2018, at Kobe University, Japan, and was dedicated to the memory of Professor Gaisi Takeuti.
Classically Semisimple Rings is a textbook on rings, modules and categories, aimed at advanced undergraduate and beginning graduate students. The book presents the classical theory of semisimple rings from a modern, category-theoretic point of view. Examples from algebra are used to motivate the abstract language of category theory, which then provides a framework for the study of rings and modules, culminating in the Wedderburn-Artin classification of semisimple rings. In the last part of the book, readers are gently introduced to related topics such as tensor products, exchange modules and C*-algebras. As a final flourish, Rickart's theorem on group rings ties a number of these topics together. Each chapter ends with a selection of exercises of varying difficulty, and readers interested in the history of mathematics will find biographical sketches of important figures scattered throughout the text.Assuming previous knowledge in linear and basic abstract algebra, this book can serve as a textbook for a course in algebra, providing students with valuable early exposure to category theory.
This volume is dedicated to Hiroakira Ono life's work on substructural logics. Chapters, written by well-established academics, cover topics related to universal algebra, algebraic logic and the Full Lambek calculus; the book includes a short biography about Hiroakira Ono. The book starts with detailed surveys on universal algebra, abstract algebraic logic, topological dualities, and connections to computer science. It further contains specialised contributions on connections to formal languages (recognizability in residuated lattices and connections to the finite embedding property), covering systems for modal substructural logics, results on the existence and disjunction properties and finally a study of conservativity of expansions. This book will be primarily of interest to researchers working in algebraic and non-classical logic.
This book introduces the notion of an effective Kan fibration, a new mathematical structure which can be used to study simplicial homotopy theory. The main motivation is to make simplicial homotopy theory suitable for homotopy type theory. Effective Kan fibrations are maps of simplicial sets equipped with a structured collection of chosen lifts that satisfy certain non-trivial properties. Here it is revealed that fundamental properties of ordinary Kan fibrations can be extended to explicit constructions on effective Kan fibrations. In particular, a constructive (explicit) proof is given that effective Kan fibrations are stable under push forward, or fibred exponentials. Further, it is shown that effective Kan fibrations are local, or completely determined by their fibres above representables, and the maps which can be equipped with the structure of an effective Kan fibration are precisely the ordinary Kan fibrations. Hence implicitly, both notions still describe the same homotopy theory. These new results solve an open problem in homotopy type theory and provide the first step toward giving a constructive account of Voevodsky's model of univalent type theory in simplicial sets.
Desktop Grid Computing presents common techniques used in numerous models, algorithms, and tools developed during the last decade to implement desktop grid computing. These techniques enable the solution of many important sub-problems for middleware design, including scheduling, data management, security, load balancing, result certification, and fault tolerance. The book's first part covers the initial ideas and basic concepts of desktop grid computing. The second part explores challenging current and future problems. Each chapter presents the sub-problems, discusses theoretical and practical issues, offers details about implementation and experiments, and includes references to further reading and notes. One of the first books to give a thorough and up-to-date presentation of this topic, this resource describes various approaches and models as well as recent trends that underline the evolution of desktop grids. It balances the theory of designing desktop grid middleware and architecture with applications and real-world deployment on large-scale platforms.
This volume commemorates the life, work, and foundational views of Kurt Godel (1906 1978), most famous for his hallmark works on the completeness of first-order logic, the incompleteness of number theory, and the consistency with the other widely accepted axioms of set theory of the axiom of choice and of the generalized continuum hypothesis. It explores current research, advances, and ideas for future directions not only in the foundations of mathematics and logic, but also in the fields of computer science, artificial intelligence, physics, cosmology, philosophy, theology, and the history of science. The discussion is supplemented by personal reflections from several scholars who knew Godel personally, providing some interesting insights into his life. By putting his ideas and life's work into the context of current thinking and perceptions, this book will extend the impact of Godel's fundamental work in mathematics, logic, philosophy, and other disciplines for future generations of researchers."
Luitzen Egburtus Jan Brouwer founded a school of thought whose aim was to include mathematics within the framework of intuitionistic philosophy; mathematics was to be regarded as an essentially free development of the human mind. What emerged diverged considerably at some points from tradition, but intuitionism has survived well the struggle between contending schools in the foundations of mathematics and exact philosophy. Originally published in 1981, this monograph contains a series of lectures dealing with most of the fundamental topics such as choice sequences, the continuum, the fan theorem, order and well-order. Brouwer's own powerful style is evident throughout the work.
In the last 20 years, the study of operator algebras has developed from a branch of functional analysis to a central field of mathematics with applications and connections with different areas in both pure mathematics (foliations, index theory, K-theory, cyclic homology, affine Kac-Moody algebras, quantum groups, low dimensional topology) and mathematical physics (integrable theories, statistical mechanics, conformal field theories and the string theories of elementary particles). The theory of operator algebras was initiated by von Neumann and Murray as a tool for studying group representations and as a framework for quantum mechanics, and has since kept in touch with its roots in physics as a framework for quantum statistical mechanics and the formalism of algebraic quantum field theory. However, in 1981, the study of operator algebras took a new turn with the introduction by Vaughan Jones of subfactor theory and remarkable connections were found with knot theory, 3-manifolds, quantum groups and integrable systems in statistical mechanics and conformal field theory. The purpose of this book, one of the first in the area, is to look at these combinatorial-algebraic developments from the perspective of operator algebras; to bring the reader to the frontline of research with the minimum of prerequisites from classical theory.
All students taking laboratory courses within the physical sciences and engineering will benefit from this book, whilst researchers will find it an invaluable reference. This concise, practical guide brings the reader up-to-speed on the proper handling and presentation of scientific data and its inaccuracies. It covers all the vital topics with practical guidelines, computer programs (in Python), and recipes for handling experimental errors and reporting experimental data. In addition to the essentials, it also provides further background material for advanced readers who want to understand how the methods work. Plenty of examples, exercises and solutions are provided to aid and test understanding, whilst useful data, tables and formulas are compiled in a handy section for easy reference.
This book is a comprehensive examination of the conception, perception, performance, and composition of time in music across time and culture. It surveys the literature of time in mathematics, philosophy, psychology, music theory, and somatic studies (medicine and disability studies) and looks ahead through original research in performance, composition, psychology, and education. It is the first monograph solely devoted to the theory of construction of musical time since Kramer in 1988, with new insights, mathematical precision, and an expansive global and historical context. The mathematical methods applied for the construction of musical time are totally new. They relate to category theory (projective limits) and the mathematical theory of gestures. These methods and results extend the music theory of time but also apply to the applied performative understanding of making music. In addition, it is the very first approach to a constructive theory of time, deduced from the recent theory of musical gestures and their categories. Making Musical Time is intended for a wide audience of scholars with interest in music. These include mathematicians, music theorists, (ethno)musicologists, music psychologists / educators / therapists, music performers, philosophers of music, audiologists, and acousticians.
This book outlines a vast array of techniques and methods regarding model categories, without focussing on the intricacies of the proofs. Quillen model categories are a fundamental tool for the understanding of homotopy theory. While many introductions to model categories fall back on the same handful of canonical examples, the present book highlights a large, self-contained collection of other examples which appear throughout the literature. In particular, it collects a highly scattered literature into a single volume. The book is aimed at anyone who uses, or is interested in using, model categories to study homotopy theory. It is written in such a way that it can be used as a reference guide for those who are already experts in the field. However, it can also be used as an introduction to the theory for novices. |
You may like...
The New Method Arithmetic [microform]
P (Phineas) McIntosh, C a (Carl Adolph) B 1879 Norman
Hardcover
R921
Discovery Miles 9 210
Primary Maths for Scotland Textbook 2A…
Craig Lowther, Antoinette Irwin, …
Paperback
R481
Discovery Miles 4 810
The Public School Arithmetic - Based on…
J a (James Alexander) 18 McLellan, A F (Albert Flintoft) Ames
Hardcover
R919
Discovery Miles 9 190
The High School Arithmetic - for Use in…
W. H. Ballard, A. C. McKay, …
Hardcover
R981
Discovery Miles 9 810
|