![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Mathematical foundations > General
Intensional logic has emerged, since the 1960' s, as a powerful theoretical and practical tool in such diverse disciplines as computer science, artificial intelligence, linguistics, philosophy and even the foundations of mathematics. The present volume is a collection of carefully chosen papers, giving the reader a taste of the frontline state of research in intensional logics today. Most papers are representative of new ideas and/or new research themes. The collection would benefit the researcher as well as the student. This book is a most welcome addition to our series. The Editors CONTENTS PREFACE IX JOHAN VAN BENTHEM AND NATASHA ALECHINA Modal Quantification over Structured Domains PATRICK BLACKBURN AND WILFRIED MEYER-VIOL Modal Logic and Model-Theoretic Syntax 29 RUY J. G. B. DE QUEIROZ AND DOV M. GABBAY The Functional Interpretation of Modal Necessity 61 VLADIMIR V. RYBAKOV Logics of Schemes for First-Order Theories and Poly-Modal Propositional Logic 93 JERRY SELIGMAN The Logic of Correct Description 107 DIMITER VAKARELOV Modal Logics of Arrows 137 HEINRICH WANSING A Full-Circle Theorem for Simple Tense Logic 173 MICHAEL ZAKHARYASCHEV Canonical Formulas for Modal and Superintuitionistic Logics: A Short Outline 195 EDWARD N. ZALTA 249 The Modal Object Calculus and its Interpretation NAME INDEX 281 SUBJECT INDEX 285 PREFACE Intensional logic has many faces. In this preface we identify some prominent ones without aiming at completeness.
Group cohomology has a rich history that goes back a century or more. Its origins are rooted in investigations of group theory and num ber theory, and it grew into an integral component of algebraic topology. In the last thirty years, group cohomology has developed a powerful con nection with finite group representations. Unlike the early applications which were primarily concerned with cohomology in low degrees, the in teractions with representation theory involve cohomology rings and the geometry of spectra over these rings. It is this connection to represen tation theory that we take as our primary motivation for this book. The book consists of two separate pieces. Chronologically, the first part was the computer calculations of the mod-2 cohomology rings of the groups whose orders divide 64. The ideas and the programs for the calculations were developed over the last 10 years. Several new features were added over the course of that time. We had originally planned to include only a brief introduction to the calculations. However, we were persuaded to produce a more substantial text that would include in greater detail the concepts that are the subject of the calculations and are the source of some of the motivating conjectures for the com putations. We have gathered together many of the results and ideas that are the focus of the calculations from throughout the mathematical literature."
Quantifiers: Logics, Models and Computation is the first concentrated effort to give a systematic presentation of the main research results on the subject, since the modern concept was formulated in the late '50s and early '60s. The majority of the papers are in the nature of a handbook. All of them are self-contained, at various levels of difficulty. The Introduction surveys the main ideas and problems encountered in the logical investigation of quantifiers. The Prologue, written by Per Lindstrom, presents the early history of the concept of generalised quantifiers. The volume then continues with a series of papers surveying various research areas, particularly those that are of current interest. Together they provide introductions to the subject from the points of view of mathematics, linguistics, and theoretical computer science. The present volume has been prepared in parallel with Quantifiers: Logics, Models and Computation, Volume Two. Contributions, which contains a collection of research papers on the subject in areas that are too fresh to be summarised. The two volumes are complementary. For logicians, mathematicians, philosophers, linguists and computer scientists. Suitable as a text for advanced undergraduate and graduate specialised courses in logic. "
Since their appearance in the late 19th century, the Cantor--Dedekind theory of real numbers and philosophy of the continuum have emerged as pillars of standard mathematical philosophy. On the other hand, this period also witnessed the emergence of a variety of alternative theories of real numbers and corresponding theories of continua, as well as non-Archimedean geometry, non-standard analysis, and a number of important generalizations of the system of real numbers, some of which have been described as arithmetic continua of one type or another. With the exception of E.W. Hobson's essay, which is concerned with the ideas of Cantor and Dedekind and their reception at the turn of the century, the papers in the present collection are either concerned with or are contributions to, the latter groups of studies. All the contributors are outstanding authorities in their respective fields, and the essays, which are directed to historians and philosophers of mathematics as well as to mathematicians who are concerned with the foundations of their subject, are preceded by a lengthy historical introduction.
The present volume has its origins in a pair of informal workshops held at the Free University of Brussels, in June of 1998 and May of 1999, named "Current Research 1 in Operational Quantum Logic." These brought together mathematicians and physicists working in operational quantum logic and related areas, as well as a number of interested philosophers of science, for a rare opportunity to discuss recent developments in this field. After some discussion, it was decided that, rather than producing a volume of conference proceedings, we would try to organize the conferees to produce a set of comprehensive survey papers, which would not only report on recent developments in quantum logic, but also provide a tutorial overview of the subject suitable for an interested non-specialist audience. The resulting volume provides an overview of the concepts and methods used in current research in quantum logic, viewed both as a branch of mathemati cal physics and as an area of pure mathematics. The first half of the book is concerned with the algebraic side of the subject, and in particular the theory of orthomodular lattices and posets, effect algebras, etc. In the second half of the book, special attention is given to categorical methods and to connections with theoretical computer science. At the 1999 workshop, we were fortunate to hear three excellent lectures by David J. Foulis, represented here by two contributions. Dave's work, spanning 40 years, has helped to define, and continues to reshape, the field of quantum logic."
This book discusses the theory of triangular norms and surveys several applied fields in which triangular norms play a significant part: probabilistic metric spaces, aggregation operators, many-valued logics, fuzzy logics, sets and control, and non-additive measures together with their corresponding integrals. It includes many graphical illustrations and gives a well-balanced picture of theory and applications. It is for mathematicians, computer scientists, applied computer scientists and engineers.
This is the first of two volumes comprising the papers submitted for publication by the invited participants to the Tenth International Congress of Logic, Methodology and Philosophy of Science, held in Florence, August 1995. The Congress was held under the auspices of the International Union of History and Philosophy of Science, Division of Logic, Methodology and Philosophy of Science. The invited lectures published in the two volumes demonstrate much of what goes on in the fields of the Congress and give the state of the art of current research. The two volumes cover the traditional subdisciplines of mathematical logic and philosophical logic, as well as their interfaces with computer science, linguistics and philosophy. Philosophy of science is broadly represented, too, including general issues of natural sciences, social sciences and humanities. The papers in Volume One are concerned with logic, mathematical logic, the philosophy of logic and mathematics, and computer science.
While in classical (abelian) homological algebra additive functors from abelian (or additive) categories to abelian categories are investigated , non- abelian homological algebra deals with non-additive functors and their homological properties , in particular with functors having values in non-abelian categories. Such functors haveimportant applications in algebra, algebraic topology, functional analysis, algebraic geometry and other principal areas of mathematics. To study homological properties of non-additive functors it is necessary to define and investigate their derived functors and satellites. It will be the aim of this book based on the results of researchers of A. Razmadze Mathematical Institute of the Georgian Academy of Sciences devoted to non-abelian homological algebra. The most important considered cases will be functors from arbitrary categories to the category of modules, group valued functors and commutative semigroup valued functors. In Chapter I universal sequences of functors are defined and in- vestigated with respect to (co)presheaves of categories, extending in a natural way the satellites of additive functors to the non-additive case and generalizing the classical relative homological algebra in additive categories to arbitrary categories. Applications are given in the furth- coming chapters. Chapter II is devoted to the non-abelian derived functors of group valued functors with respect to projective classes using projective pseu- dosimplicial resolutions. Their functorial properties (exactness, Milnor exact sequence, relationship with cotriple derived functors, satellites and Grothendieck cohomology, spectral sequence of an epimorphism, degree of an arbitrary functor) are established and applications to ho- mology and cohomology of groups are given.
In this volume specialists in mathematics, physics, and linguistics present the first comprehensive analysis of the ideas and influence of Hermann G. Grassmann (1809-1877), the remarkable universalist whose work recast the foundations of these disciplines and shaped the course of their modern development.
It took many decades for Peirce's coneept of a relation to find its way into the microelectronic innards of control systems of eement kilns, subway trains, and tunnel-digging machinery. But what is amazing is that the more we leam about the basically simple coneept of a relation, the more aware we become of its fundamental importanee and wide ranging ramifications. The work by Di Nola, Pedrycz, Sanchez, and Sessa takes us a long distanee in this direction by opening new vistas on both the theory and applications of fuzzy relations - relations which serve to model the imprecise coneepts which pervade the real world. Di Nola, Pedrycz, Sanchez, and Sessa focus their attention on a eentral problem in the theory of fuzzy relations, namely the solution of fuzzy relational equations. The theory of such equations was initiated by Sanchez in 1976, ina seminal paper dealing with the resolution of composite fuzzy relational equations. Sinee then, hundreds of papers have been written on this and related topics, with major contributions originating in France, Italy, Spain, Germany, Poland, Japan, China, the Soviet Union, India, and other countries. The bibliography included in this volume highlights the widespread interest in the theory of fuzzy relational equations and the broad spectrum of its applications.
Generalized Measure Theory examines the relatively new mathematical area of generalized measure theory. The exposition unfolds systematically, beginning with preliminaries and new concepts, followed by a detailed treatment of important new results regarding various types of nonadditive measures and the associated integration theory. The latter involves several types of integrals: Sugeno integrals, Choquet integrals, pan-integrals, and lower and upper integrals. All of the topics are motivated by numerous examples, culminating in a final chapter on applications of generalized measure theory. Some key features of the book include: many exercises at the end of each chapter along with relevant historical and bibliographical notes, an extensive bibliography, and name and subject indices. The work is suitable for a classroom setting at the graduate level in courses or seminars in applied mathematics, computer science, engineering, and some areas of science. A sound background in mathematical analysis is required. Since the book contains many original results by the authors, it will also appeal to researchers working in the emerging area of generalized measure theory.
Fuzzy logic in narrow sense is a promising new chapter of formal logic whose basic ideas were formulated by Lotfi Zadeh (see Zadeh 1975]a). The aim of this theory is to formalize the "approximate reasoning" we use in everyday life, the object of investigation being the human aptitude to manage vague properties (as, for example, "beautiful," "small," "plausible," "believable," etc. ) that by their own nature can be satisfied to a degree different from 0 (false) and I (true). It is worth noting that the traditional deductive framework in many-valued logic is different from the one adopted in this book for fuzzy logic: in the former logics one always uses a "crisp" deduction apparatus, producing crisp sets of formulas, the formulas that are considered logically valid. By contrast, fuzzy logical deductive machinery is devised to produce a fuzzy set of formulas (the theorems) from a fuzzy set of formulas (the hypotheses). Approximate reasoning has generated a very interesting literature in recent years. However, in spite of several basic results, in our opinion, we are still far from a satisfactory setting of this very hard and mysterious subject. The aim of this book is to furnish some theoretical devices and to sketch a general framework for fuzzy logic. This is also in accordance with the non Fregean attitude of the book."
Fixed point theory in probabilistic metric spaces can be considered as a part of Probabilistic Analysis, which is a very dynamic area of mathematical research. A primary aim of this monograph is to stimulate interest among scientists and students in this fascinating field. The text is self-contained for a reader with a modest knowledge of the metric fixed point theory. Several themes run through this book. The first is the theory of triangular norms (t-norms), which is closely related to fixed point theory in probabilistic metric spaces. Its recent development has had a strong influence upon the fixed point theory in probabilistic metric spaces. In Chapter 1 some basic properties of t-norms are presented and several special classes of t-norms are investigated. Chapter 2 is an overview of some basic definitions and examples from the theory of probabilistic metric spaces. Chapters 3, 4, and 5 deal with some single-valued and multi-valued probabilistic versions of the Banach contraction principle. In Chapter 6, some basic results in locally convex topological vector spaces are used and applied to fixed point theory in vector spaces. Audience: The book will be of value to graduate students, researchers, and applied mathematicians working in nonlinear analysis and probabilistic metric spaces.
Emphasizes the computer science aspects of the subject.
The thirty-one papers collected in this volume represent most of the arti cles that I have published in the philosophy of science and related founda tional areas of science since 1970. The present volume is a natural succes sor to Studies in the Methodology and Foundations of Science, a collection of my articles published in 1969 by Reidel (now a part of Kluwer). The articles are arranged under five main headings. Part I contains six articles on general methodology. The topics range from formal methods to the plurality of science. Part II contains six articles on causality and explanation. The emphasis is almost entirely on probabilistic approaches. Part III contains six articles on probability and measurement. The impor tance of representation theorems for both probability and measurement is stressed. Part IV contains five articles on the foundations of physics. The first three articles are concerned with action at a distance and space and time, the last two with quantum mechanics. Part V contains eight articles on the foundations of psychology. This is the longest part and the articles reflect my continuing strong interest in the nature of learning and perception. Within each part the articles are arranged chronologically. I turn now to a more detailed overview of the content. The first article of Part I concerns the role of formal methods in the philosophy of science. Here I discuss what is the new role for formal methods now that the imperialism of logical positivism has disappeared."
The notion of a dominated or rnajorized operator rests on a simple idea that goes as far back as the Cauchy method of majorants. Loosely speaking, the idea can be expressed as follows. If an operator (equation) under study is dominated by another operator (equation), called a dominant or majorant, then the properties of the latter have a substantial influence on the properties of the former . Thus, operators or equations that have "nice" dominants must possess "nice" properties. In other words, an operator with a somehow qualified dominant must be qualified itself. Mathematical tools, putting the idea of domination into a natural and complete form, were suggested by L. V. Kantorovich in 1935-36. He introduced the funda mental notion of a vector space normed by elements of a vector lattice and that of a linear operator between such spaces which is dominated by a positive linear or monotone sublinear operator. He also applied these notions to solving functional equations. In the succeedingyears many authors studied various particular cases of lattice normed spaces and different classes of dominated operators. However, research was performed within and in the spirit of the theory of vector and normed lattices. So, it is not an exaggeration to say that dominated operators, as independent objects of investigation, were beyond the reach of specialists for half a century. As a consequence, the most important structural properties and some interesting applications of dominated operators have become available since recently."
The infinite! No other question has ever moved so profoundly the spirit of man; no other idea has so fruitfully stimulated his intellect; yet no other concept stands in greater need of clarification than that of the infinite. . . - David Hilbert (1862-1943) Infinity is a fathomless gulf, There is a story attributed to David Hilbert, the preeminent mathe into which all things matician whose quotation appears above. A man walked into a vanish. hotel late one night and asked for a room. "Sorry, we don't have o Marcus Aurelius (121- 180), Roman Emperor any more vacancies," replied the owner, "but let's see, perhaps and philosopher I can find you a room after alL" Leaving his desk, the owner reluctantly awakened his guests and asked them to change their rooms: the occupant of room #1 would move to room #2, the occupant of room #2 would move to room #3, and so on until each occupant had moved one room over. To the utter astonish ment of our latecomer, room #1 suddenly became vacated, and he happily moved in and settled down for the night. But a numbing thought kept him from sleep: How could it be that by merely moving the occupants from one room to another, the first room had become vacated? (Remember, all of the rooms were occupied when he arrived.
This second volume of this text covers the classical aspects of the theory of groups and their representations. It also offers a general introduction to the modern theory of representations including the representations of quivers and finite partially ordered sets and their applications to finite dimensional algebras. It reviews key recent developments in the theory of special ring classes including Frobenius, quasi-Frobenius, and others.
"In the mathematics I can report no deficience, except that it be that men do not sufficiently understand the excellent use of the pure mathematics, in that they do remedy and cure many defects in the wit and faculties intellectual. For if the wit be too dull, they sharpen it; if too wandering, they fix it; if too inherent in the sense, they abstract it. " Roger Bacon (1214?-1294?) "Mathematics-the art and science of effective reasoning. " E. W. Dijkstra, 1976 "A person who had studied at a good mathematical school can do anything. " Ye. Bunimovich, 2000 This is the third book published by Kluwer based on the very successful OOPSLA workshops on behavioral semantics (the first two books were published in 1996 [KH 1996] and 1999 [KRS 1999]). These workshops fostered precise and explicit specifications of business and system semantics, independently of any (possible) realization. Some progress has been made in these areas, both in academia and in industry. At the same time, in too many cases only lip service to elegant specifica tions of semantics has been provided, and as a result the systems we build or buy are all too often not what they are supposed to be. We used to live with that, and quite often users relied on human intermediaries to "sort the things out. " This approach worked perfectly well for a long time.
In the last years, it was observed an increasing interest of computer scientists in the structure of biological molecules and the way how they can be manipulated in vitro in order to define theoretical models of computation based on genetic engineering tools. Along the same lines, a parallel interest is growing regarding the process of evolution of living organisms. Much of the current data for genomes are expressed in the form of maps which are now becoming available and permit the study of the evolution of organisms at the scale of genome for the first time. On the other hand, there is an active trend nowadays throughout the field of computational biology toward abstracted, hierarchical views of biological sequences, which is very much in the spirit of computational linguistics. In the last decades, results and methods in the field of formal language theory that might be applied to the description of biological sequences were pointed out.
This reference work deals with important topics in general topology and their role in functional analysis and axiomatic set theory, for graduate students and researchers working in topology, functional analysis, set theory and probability theory. It provides a guide to recent research findings, with three contributions by Arhangel'skii and Choban.
During the past 25 years, set theory has developed in several interesting directions. The most outstanding results cover the application of sophisticated techniques to problems in analysis, topology, infinitary combinatorics and other areas of mathematics. This book contains a selection of contributions, some of which are expository in nature, embracing various aspects of the latest developments. Amongst topics treated are forcing axioms and their applications, combinatorial principles used to construct models, and a variety of other set theoretical tools including inner models, partitions and trees. Audience: This book will be of interest to graduate students and researchers in foundational problems of mathematics.
Many-valued logics were developed as an attempt to handle philosophical doubts about the "law of excluded middle" in classical logic. The first many-valued formal systems were developed by J. Lukasiewicz in Poland and E.Post in the U.S.A. in the 1920s, and since then the field has expanded dramatically as the applicability of the systems to other philosophical and semantic problems was recognized. Intuitionisticlogic, for example, arose from deep problems in the foundations of mathematics. Fuzzy logics, approximation logics, and probability logics all address questions that classical logic alone cannot answer. All these interpretations of many-valued calculi motivate specific formal systems thatallow detailed mathematical treatment. In this volume, the authors are concerned with finite-valued logics, and especially with three-valued logical calculi. Matrix constructions, axiomatizations of propositional and predicate calculi, syntax, semantic structures, and methodology are discussed. Separate chapters deal with intuitionistic logic, fuzzy logics, approximation logics, and probability logics. These systems all find application in practice, in automatic inference processes, which have been decisive for the intensive development of these logics. This volume acquaints the reader with theoretical fundamentals of many-valued logics. It is intended to be the first of a two-volume work. The second volume will deal with practical applications and methods of automated reasoning using many-valued logics.
This issue contains a selected group Qf papers presented during the International Workshop on Categorical Topology held from August 31 - September 4, 1994 at the University of L' Aquila, L' Aquila, Italy. The workshop was organized by the Department of Pure and Applied Mathe- matics of the University of L' Aquila and was made possible by grants from the Department, the University, the Regione Abruzzo and the Cassa Di Risparmio della Provincia de l' Aquila. We wish to thank the officers of the University and public local administrations who facilitated the financial supports. We would also like to thank the INFN (Istituto Nazionale di Fisica Nucleare) for giving the opportunity to all participants to visit the impressive laboratories under Gran Sasso and the major of Roseto who organized a nice party in the garden of the Villa Comunale. The meeting was organized by E. Giuli, H. Herrlich and A. Tozzi and was attended by 45 mathematicians from 11 countries. The program consisted of 34 talks on various aspects of categorical topology. We would like to express our gratitude to the Dean of the Faculty of Science Umberto Villante for the friendly welcome he extended to the participants on behalf of the University of L' Aquila and to the Head of the Department Josef Myjak for his encouragement. Thanks are due to the many referees of the papers presented for publication in this issue for their indispensable assistance in selecting and improving the papers.
The geometric calculus, in general, consists in a system of operations on geometric entities, and their consequences, analogous to those that algebra has on the num bers. It permits the expression in formulas of the results of geometric constructions, the representation with equations of propositions of geometry, and the substitution of a transformation of equations for a verbal argument. The geometric calculus exhibits analogies with analytic geometry; but it differs from it in that, whereas in analytic geometry the calculations are made on the numbers that determine the geometric entities, in this new science the calculations are made on the geometric entities themselves. A first attempt at a geometric calculus was due to the great mind of Leibniz (1679);1 in the present century there were proposed and developed various methods of calculation having practical utility, among which deserving special mention are 2 the barycentric calculus of Mobius (1827), that of the equipollences of Bellavitis (1832),3 the quaternions of Hamilton (1853),4 and the applications to geometry 5 of the Ausdehnungslehre of Hermann Grassmann (1844). Of these various methods, the last cited to a great extent incorporates the others and is superior in its powers of calculation and in the simplicity of its formulas. But the excessively lofty and abstruse contents of the Ausdehnungslehre impeded the diffusion of that science; and thus even its applications to geometry are still very little appreciated by mathematicians." |
![]() ![]() You may like...
Progresses in Artificial Intelligence…
Anna Esposito, Marcos Faundez-Zanuy, …
Hardcover
R5,484
Discovery Miles 54 840
Advances in Interdisciplinary Research…
P.K. Kapur, Gurinder Singh, …
Hardcover
R3,118
Discovery Miles 31 180
Handbook of Reinforcement Learning and…
Kyriakos G. Vamvoudakis, Yan Wan, …
Hardcover
R6,849
Discovery Miles 68 490
Empirical Inference - Festschrift in…
Bernhard Schoelkopf, Zhiyuan Luo, …
Hardcover
Handbook of Mathematical and Digital…
Adedeji B. Badiru, Olumuyiwa Asaolu
Hardcover
R5,331
Discovery Miles 53 310
Modern Approaches in Machine Learning…
Vinit Kumar Gunjan, Jacek M. Zurada, …
Hardcover
R4,674
Discovery Miles 46 740
New Centrality Measures in Networks…
Fuad Aleskerov, Sergey Shvydun, …
Hardcover
R1,694
Discovery Miles 16 940
Air Traffic Management and Systems IV…
Electronic Navigation Research Institute
Hardcover
R7,472
Discovery Miles 74 720
|