![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Mathematical foundations > General
Today the notion of the algorithm is familiar not only to mathematicians. It forms a conceptual base for information processing; the existence of a corresponding algorithm makes automatic information processing possible. The theory of algorithms (together with mathematical logic ) forms the the oretical basis for modern computer science (see [Sem Us 86]; this article is called "Mathematical Logic in Computer Science and Computing Practice" and in its title mathematical logic is understood in a broad sense including the theory of algorithms). However, not everyone realizes that the word "algorithm" includes a transformed toponym Khorezm. Algorithms were named after a great sci entist of medieval East, is al-Khwarizmi (where al-Khwarizmi means "from Khorezm"). He lived between c. 783 and 850 B.C. and the year 1983 was chosen to celebrate his 1200th birthday. A short biography of al-Khwarizmi compiled in the tenth century starts as follows: "al-Khwarizmi. His name is Muhammad ibn Musa, he is from Khoresm" (cited according to [Bul Rozen Ah 83, p.8]).
"Is quantum logic really logic?" This book argues for a positive
answer to this question once and for all. There are many quantum
logics and their structures are delightfully varied. The most
radical aspect of quantum reasoning is reflected in unsharp quantum
logics, a special heterodox branch of fuzzy thinking.
Intensional logic has emerged, since the 1960' s, as a powerful theoretical and practical tool in such diverse disciplines as computer science, artificial intelligence, linguistics, philosophy and even the foundations of mathematics. The present volume is a collection of carefully chosen papers, giving the reader a taste of the frontline state of research in intensional logics today. Most papers are representative of new ideas and/or new research themes. The collection would benefit the researcher as well as the student. This book is a most welcome addition to our series. The Editors CONTENTS PREFACE IX JOHAN VAN BENTHEM AND NATASHA ALECHINA Modal Quantification over Structured Domains PATRICK BLACKBURN AND WILFRIED MEYER-VIOL Modal Logic and Model-Theoretic Syntax 29 RUY J. G. B. DE QUEIROZ AND DOV M. GABBAY The Functional Interpretation of Modal Necessity 61 VLADIMIR V. RYBAKOV Logics of Schemes for First-Order Theories and Poly-Modal Propositional Logic 93 JERRY SELIGMAN The Logic of Correct Description 107 DIMITER VAKARELOV Modal Logics of Arrows 137 HEINRICH WANSING A Full-Circle Theorem for Simple Tense Logic 173 MICHAEL ZAKHARYASCHEV Canonical Formulas for Modal and Superintuitionistic Logics: A Short Outline 195 EDWARD N. ZALTA 249 The Modal Object Calculus and its Interpretation NAME INDEX 281 SUBJECT INDEX 285 PREFACE Intensional logic has many faces. In this preface we identify some prominent ones without aiming at completeness.
The main aim of this book is to present recent ideas in logic centered around the notion of a consequence operation. We wish to show these ideas in a factually and materially connected way, i.e., in the form of a consistent theory derived from several simple assumptions and definitions. These ideas have arisen in many research centers. The thorough study of their history can certainly be an exciting task for the historian of logic; in the book this aspect of the theory is being played down. The book belongs to abstract algebraic logic, the area of research that explores to a large extent interconnections between algebra and logic. The results presented here concern logics defined in zero-order languages (Le., quantifier-free sentential languages without predicate symbols). The reach of the theory expounded in the book is, in fact, much wider. The theory is also valid for logics defined in languages of higer orders. The problem of transferring the theory to the level of first-order languages has been satisfactorily solved and new ideas within this area have been put forward in the work of Blok and Pigozzi [1989].
This book examines an abstract mathematical theory, placing special emphasis on results applicable to formal logic. If a theory is especially abstract, it may find a natural home within several of the more familiar branches of mathematics. This is the case with the theory of closure spaces. It might be considered part of topology, lattice theory, universal algebra or, no doubt, one of several other branches of mathematics as well. In our development we have treated it, conceptually and methodologically, as part of topology, partly because we first thought ofthe basic structure involved (closure space), as a generalization of Frechet's concept V-space. V-spaces have been used in some developments of general topology as a generalization of topological space. Indeed, when in the early '50s, one of us started thinking about closure spaces, we thought ofit as the generalization of Frechet V space which comes from not requiring the null set to be CLOSURE SPACES ANDLOGIC XlI closed(as it is in V-spaces). This generalization has an extreme advantage in connection with application to logic, since the most important closure notion in logic, deductive closure, in most cases does not generate a V-space, since the closure of the null set typically consists of the "logical truths" of the logic being examined."
This book discusses the theory of triangular norms and surveys several applied fields in which triangular norms play a significant part: probabilistic metric spaces, aggregation operators, many-valued logics, fuzzy logics, sets and control, and non-additive measures together with their corresponding integrals. It includes many graphical illustrations and gives a well-balanced picture of theory and applications. It is for mathematicians, computer scientists, applied computer scientists and engineers.
This is the first of two volumes comprising the papers submitted for publication by the invited participants to the Tenth International Congress of Logic, Methodology and Philosophy of Science, held in Florence, August 1995. The Congress was held under the auspices of the International Union of History and Philosophy of Science, Division of Logic, Methodology and Philosophy of Science. The invited lectures published in the two volumes demonstrate much of what goes on in the fields of the Congress and give the state of the art of current research. The two volumes cover the traditional subdisciplines of mathematical logic and philosophical logic, as well as their interfaces with computer science, linguistics and philosophy. Philosophy of science is broadly represented, too, including general issues of natural sciences, social sciences and humanities. The papers in Volume One are concerned with logic, mathematical logic, the philosophy of logic and mathematics, and computer science.
Generalized Measure Theory examines the relatively new mathematical area of generalized measure theory. The exposition unfolds systematically, beginning with preliminaries and new concepts, followed by a detailed treatment of important new results regarding various types of nonadditive measures and the associated integration theory. The latter involves several types of integrals: Sugeno integrals, Choquet integrals, pan-integrals, and lower and upper integrals. All of the topics are motivated by numerous examples, culminating in a final chapter on applications of generalized measure theory. Some key features of the book include: many exercises at the end of each chapter along with relevant historical and bibliographical notes, an extensive bibliography, and name and subject indices. The work is suitable for a classroom setting at the graduate level in courses or seminars in applied mathematics, computer science, engineering, and some areas of science. A sound background in mathematical analysis is required. Since the book contains many original results by the authors, it will also appeal to researchers working in the emerging area of generalized measure theory.
Time is a fascinating subject and has long since captured mankind's imagination, from the ancients to modern man, both adult and child alike. It has been studied across a wide range of disciplines, from the natural sciences to philosophy and logic. Today, thirty plus years since Prior's work in laying out foundations for temporal logic, and two decades on from Pnueli's seminal work applying of temporal logic in specification and verification of computer programs, temporal logic has a strong and thriving international research community within the broad disciplines of computer science and artificial intelligence. Areas of activity include, but are certainly not restricted to: Pure Temporal Logic, e. g. temporal systems, proof theory, model theory, expressiveness and complexity issues, algebraic properties, application of game theory; Specification and Verification, e. g. of reactive systems, ofreal-time components, of user interaction, of hardware systems, techniques and tools for verification, execution and prototyping methods; Temporal Databases, e. g. temporal representation, temporal query ing, granularity of time, update mechanisms, active temporal data bases, hypothetical reasoning; Temporal Aspects in AI, e. g. modelling temporal phenomena, in terval temporal calculi, temporal nonmonotonicity, interaction of temporal reasoning with action/knowledge/belief logics, temporal planning; Tense and Aspect in Natural Language, e. g. models, ontologies, temporal quantifiers, connectives, prepositions, processing tempo ral statements; Temporal Theorem Proving, e. g. translation methods, clausal and non-clausal resolution, tableaux, automata-theoretic approaches, tools and practical systems."
We welcome Volume 20, Formal Aspects of Context. Context has always been recognised as strongly relevant to models in language, philosophy, logic and artifi cial intelligence. In recent years theoretical advances in these areas and especially in logic have accelerated the study of context in the international community. An annual conference is held and many researchers have come to realise that many of the old puzzles should be reconsidered with proper attention to context. The volume editors and contributors are from among the most active front-line researchers in the area and the contents shows how wide and vigorous this area is. There are strong scientific connections with earlier volumes in the series. I am confident that the appearance of this book in our series will help secure the study of context as an important area of applied logic. D.M.Gabbay INTRODUCTION This book is a result of the First International and Interdisciplinary Con ference on Modelling and Using Context, which was organised in Rio de Janeiro in January 1997, and contains a selection of the papers presented there, refereed and revised through a process of anonymous peer review. The treatment of contexts as bona-fide objects of logical formalisation has gained wide acceptance in recent years, following the seminal impetus by McCarthy in his 'lUring award address."
Mathematics has stood as a bridge between the Humanities and the Sciences since the days of classical antiquity. For Plato, mathematics was evidence of Being in the midst of Becoming, garden variety evidence apparent even to small children and the unphilosophical, and therefore of the highest educational significance. In the great central similes of The Republic it is the touchstone ofintelligibility for discourse, and in the Timaeus it provides in an oddly literal sense the framework of nature, insuring the intelligibility ofthe material world. For Descartes, mathematical ideas had a clarity and distinctness akin to the idea of God, as the fifth of the Meditations makes especially clear. Cartesian mathematicals are constructions as well as objects envisioned by the soul; in the Principles, the work ofthe physicist who provides a quantified account ofthe machines of nature hovers between description and constitution. For Kant, mathematics reveals the possibility of universal and necessary knowledge that is neither the logical unpacking ofconcepts nor the record of perceptual experience. In the Critique ofPure Reason, mathematics is one of the transcendental instruments the human mind uses to apprehend nature, and by apprehending to construct it under the universal and necessary lawsofNewtonian mechanics.
Resolution Proof Systems: An Algebraic Theory presents a new algebraic framework for the design and analysis of resolution- based automated reasoning systems for a range of non-classical logics. It develops an algebraic theory of resolution proof systems focusing on the problems of proof theory, representation and efficiency of the deductive process. A new class of logical calculi, the class of resolution logics, emerges as a second theme of the book. The logical and computational aspects of the relationship between resolution logics and resolution proof systems is explored in the context of monotonic as well as nonmonotonic reasoning. This book is aimed primarily at researchers and graduate students in artificial intelligence, symbolic and computational logic. The material is suitable as a reference book for researchers and as a text book for graduate courses on the theoretical aspects of automated reasoning and computational logic.
Descriptive set theory and definable proper forcing are two areas of set theory that developed quite independently of each other. This monograph unites them and explores the connections between them. Forcing is presented in terms of quotient algebras of various natural sigma-ideals on Polish spaces, and forcing properties in terms of Fubini-style properties or in terms of determined infinite games on Boolean algebras. Many examples of forcing notions appear, some newly isolated from measure theory, dynamical systems, and other fields. The descriptive set theoretic analysis of operations on forcings opens the door to applications of the theory: absoluteness theorems for certain classical forcing extensions, duality theorems, and preservation theorems for the countable support iteration. Containing original research, this text highlights the connections that forcing makes with other areas of mathematics, and is essential reading for academic researchers and graduate students in set theory, abstract analysis and measure theory.
Many-valued logics were developed as an attempt to handle philosophical doubts about the "law of excluded middle" in classical logic. The first many-valued formal systems were developed by J. Lukasiewicz in Poland and E.Post in the U.S.A. in the 1920s, and since then the field has expanded dramatically as the applicability of the systems to other philosophical and semantic problems was recognized. Intuitionisticlogic, for example, arose from deep problems in the foundations of mathematics. Fuzzy logics, approximation logics, and probability logics all address questions that classical logic alone cannot answer. All these interpretations of many-valued calculi motivate specific formal systems thatallow detailed mathematical treatment. In this volume, the authors are concerned with finite-valued logics, and especially with three-valued logical calculi. Matrix constructions, axiomatizations of propositional and predicate calculi, syntax, semantic structures, and methodology are discussed. Separate chapters deal with intuitionistic logic, fuzzy logics, approximation logics, and probability logics. These systems all find application in practice, in automatic inference processes, which have been decisive for the intensive development of these logics. This volume acquaints the reader with theoretical fundamentals of many-valued logics. It is intended to be the first of a two-volume work. The second volume will deal with practical applications and methods of automated reasoning using many-valued logics.
'A Geometry of Approximation' addresses Rough Set Theory, a field of interdisciplinary research first proposed by Zdzislaw Pawlak in 1982, and focuses mainly on its logic-algebraic interpretation. The theory is embedded in a broader perspective that includes logical and mathematical methodologies pertaining to the theory, as well as related epistemological issues. Any mathematical technique that is introduced in the book is preceded by logical and epistemological explanations. Intuitive justifications are also provided, insofar as possible, so that the general perspective is not lost. Such an approach endows the present treatise with a unique character. Due to this uniqueness in the treatment of the subject, the book will be useful to researchers, graduate and pre-graduate students from various disciplines, such as computer science, mathematics and philosophy. It features an impressive number of examples supported by about 40 tables and 230 figures. The comprehensive index of concepts turns the book into a sort of encyclopaedia for researchers from a number of fields. 'A Geometry of Approximation' links many areas of academic pursuit without losing track of its focal point, Rough Sets.
This second volume of this text covers the classical aspects of the theory of groups and their representations. It also offers a general introduction to the modern theory of representations including the representations of quivers and finite partially ordered sets and their applications to finite dimensional algebras. It reviews key recent developments in the theory of special ring classes including Frobenius, quasi-Frobenius, and others.
In the last years, it was observed an increasing interest of computer scientists in the structure of biological molecules and the way how they can be manipulated in vitro in order to define theoretical models of computation based on genetic engineering tools. Along the same lines, a parallel interest is growing regarding the process of evolution of living organisms. Much of the current data for genomes are expressed in the form of maps which are now becoming available and permit the study of the evolution of organisms at the scale of genome for the first time. On the other hand, there is an active trend nowadays throughout the field of computational biology toward abstracted, hierarchical views of biological sequences, which is very much in the spirit of computational linguistics. In the last decades, results and methods in the field of formal language theory that might be applied to the description of biological sequences were pointed out.
The Institute Vienna Circle held a conference in Vienna in 2003, Cambridge and Vienna Frank P. Ramsey and the Vienna Circle, to commemorate the philosophical and scientific work of Frank Plumpton Ramsey (1903 1930). This Ramsey conference provided not only historical and biographical perspectives on one of the most gifted thinkers of the Twentieth Century, but also new impulses for further research on at least some of the topics pioneered by Ramsey, whose interest and potential are greater than ever. Ramsey did pioneering work in several fields, practitioners of which rarely know of his important work in other fields: philosophy of logic and theory of language, foundations of mathematics, mathematics, probability theory, methodology of science, philosophy of psychology, and economics. There was a focus on the one topic which was of strongest mutual concern to Ramsey and the Vienna Circle, namely the question of foundations of mathematics, in particular the status of logicism. Although the major scientific connection linking Ramsey with Austria is his work on logic, to which the Vienna Circle dedicated several meetings, certainly the connection which is of greater general interest concerns Ramsey's visits and discussions with Wittgenstein. Ramsey was the only important thinker to actually visit Wittgenstein during his school-teaching career in Puchberg and Ottertal in the 1920s, in Lower Austria; and later, Ramsey was instrumental in getting Wittgenstein positions at Cambridge. "
Held December 16-919, 1999, this proceedings is derived from the Global Foundation Inc.'s Orbis Scientiae 1999. Topics include: cosmological parameters, unifying elementary particle physics, cosmology, superstrings, and black holes.
Fuzzy Modelling: Paradigms and Practice provides an up-to-date and authoritative compendium of fuzzy models, identification algorithms and applications. Chapters in this book have been written by the leading scholars and researchers in their respective subject areas. Several of these chapters include both theoretical material and applications. The editor of this volume has organized and edited the chapters into a coherent and uniform framework. The objective of this book is to provide researchers and practitioners involved in the development of models for complex systems with an understanding of fuzzy modelling, and an appreciation of what makes these models unique. The chapters are organized into three major parts covering relational models, fuzzy neural networks and rule-based models. The material on relational models includes theory along with a large number of implemented case studies, including some on speech recognition, prediction, and ecological systems. The part on fuzzy neural networks covers some fundamentals, such as neurocomputing, fuzzy neurocomputing, etc., identifies the nature of the relationship that exists between fuzzy systems and neural networks, and includes extensive coverage of their architectures. The last part addresses the main design principles governing the development of rule-based models. Fuzzy Modelling: Paradigms and Practice provides a wealth of specific fuzzy modelling paradigms, algorithms and tools used in systems modelling. Also included is a panoply of case studies from various computer, engineering and science disciplines. This should be a primary reference work for researchers and practitioners developing models of complex systems.
The lecture courses in this work are derived from the SERC 'Logic for IT' Summer School and Conference on Proof Theory held at Leeds University. The contributions come from acknowledged experts and comprise expository and research articles; put together in this book they form an invaluable introduction to proof theory that is aimed at both mathematicians and computer scientists.
The theory of formal languages is widely accepted as the backbone of t- oretical computer science. It mainly originated from mathematics (com- natorics, algebra, mathematical logic) and generative linguistics. Later, new specializations emerged from areas ofeither computer science(concurrent and distributed systems, computer graphics, arti?cial life), biology (plant devel- ment, molecular genetics), linguistics (parsing, text searching), or mathem- ics (cryptography). All human problem solving capabilities can be considered, in a certain sense, as a manipulation of symbols and structures composed by symbols, which is actually the stem of formal language theory. Language - in its two basic forms, natural and arti?cial - is a particular case of a symbol system. This wide range of motivations and inspirations explains the diverse - plicability of formal language theory ? and all these together explain the very large number of monographs and collective volumes dealing with formal language theory. In 2004 Springer-Verlag published the volume Formal Languages and - plications, edited by C. Martin-Vide, V. Mitrana and G. P?un in the series Studies in Fuzziness and Soft Computing 148, which was aimed at serving as an overall course-aid and self-study material especially for PhD students in formal language theory and applications. Actually, the volume emerged in such a context: it contains the core information from many of the lectures - livered to the students of the International PhD School in Formal Languages and Applications organized since 2002 by the Research Group on Mathem- ical Linguistics from Rovira i Virgili University, Tarragona, Spain."
Graham Solomon, to whom this collection is dedicated, went into hospital for antibiotic treatment of pneumonia in Oc- ber, 2001. Three days later, on Nov. 1, he died of a massive stroke, at the age of 44. Solomon was well liked by those who got the chance to know him-it was a revelation to ?nd out, when helping to sort out his a?airs after his death, how many "friends" he had whom he had actually never met, as his email included correspondence with philosophers around the world running sometimes to hundreds of messages. He was well respected in the philosophical community more broadly. He was for several years a member of the editorial board for the Western Ontario Series in Philosophy of Science. While he was employed at Wilfrid Laurier University in Waterloo, Ontario, several of us at the University of Wat- loo always regarded our own department as a sort of second academic home for him. We therefore decided that it would be appropriate to hold a memorial conference in his honour. Thanks to the generous ?nancial support of the Humphrey Conference Fund, we were able to do so in May 2003. Many of the papers in this volume were presented at that conf- ence.
This book presents contributions from world-renowned logicians, discussing important topics of logic from the point of view of their further development in light of requirements arising from successful application in Computer Science and AI language. Coverage includes: the logic of provability, computability theory applied to biology, psychology, physics, chemistry, economics, and other basic sciences; computability theory and computable models; logic and space-time geometry; hybrid systems; logic and region-based theory of space.
Function Algebras on Finite Sets gives a broad introduction to the subject, leading up to the cutting edge of research. The general concepts of the Universal Algebra are given in the first part of the book, to familiarize the reader from the very beginning on with the algebraic side of function algebras. The second part covers the following topics: Galois-connection between function algebras and relation algebras, completeness criterions, and clone theory. |
You may like...
Key to Advanced Arithmetic for Canadian…
Barnard 1817-1876 Smith, Archibald McMurchy
Hardcover
R863
Discovery Miles 8 630
The Public School Arithmetic - Based on…
J a (James Alexander) 18 McLellan, A F (Albert Flintoft) Ames
Hardcover
R919
Discovery Miles 9 190
The New Method Arithmetic [microform]
P (Phineas) McIntosh, C a (Carl Adolph) B 1879 Norman
Hardcover
R921
Discovery Miles 9 210
The High School Arithmetic - for Use in…
W. H. Ballard, A. C. McKay, …
Hardcover
R981
Discovery Miles 9 810
An Elementary Arithmetic [microform]
By a Committee of Teachers Supervised
Hardcover
R807
Discovery Miles 8 070
|