![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Mathematical foundations > General
Approximate reasoning is a key motivation in fuzzy sets and possibility theory. This volume provides a coherent view of this field, and its impact on database research and information retrieval. First, the semantic foundations of approximate reasoning are presented. Special emphasis is given to the representation of fuzzy rules and specialized types of approximate reasoning. Then syntactic aspects of approximate reasoning are surveyed and the algebraic underpinnings of fuzzy consequence relations are presented and explained. The second part of the book is devoted to inductive and neuro-fuzzy methods for learning fuzzy rules. It also contains new material on the application of possibility theory to data fusion. The last part of the book surveys the growing literature on fuzzy information systems. Each chapter contains extensive bibliographical material. Fuzzy Sets in Approximate Reasoning and Information Systems is a major source of information for research scholars and graduate students in computer science and artificial intelligence, interested in human information processing.
On January 22, 1990, the late John Bell held at CERN (European Laboratory for Particle Physics), Geneva a seminar organized by the Center of Quantum Philosophy, that at this time was an association of scientists interested in the interpretation of quantum mechanics. In this seminar Bell presented once again his famous theorem. Thereafter a discussion took place in which not only physical but also highly speculative epistemological and philosophical questions were vividly debated. The list of topics included: assumption of free will in Bell's theorem, the understanding of mind, the relationship between the mathematical and the physical world, the existence of unobservable causes and the limits of human knowledge in mathematics and physics. Encouraged by this stimulating discussion some of the participants decided to found an Institute for Interdisciplinary Studies (lIS) to promote philosoph ical and interdisciplinary reflection on the advances of science. Meanwhile the lIS has associated its activities with the Swiss foundation, Fondation du Leman, and the Dutch foundation, Stichting Instudo, registered in Geneva and Amsterdam, respectively. With its activities the lIS intends to strengthen the unity between the professional activities in science and the reflection on fun damental philosophical questions. In addition the interdisciplinary approach is expected to give a contribution to the progress of science and the socio economic development. At present three working groups are active within the lIS, i. e.: - the Center for Quantum Philosophy, - the Wealth Creation and Sustainable Development Group, - the Neural Science Group."
This book constitutes the refereed proceedings of the International Symposium on Logical Foundations of Computer Science, LFCS 2013, held in San Diego, CA, USA in January 2013. The volume presents 29 revised refereed papers carefully selected by the program committee. The scope of the Symposium is broad and includes constructive mathematics and type theory; logic, automata and automatic structures; computability and randomness; logical foundations of programming; logical aspects of computational complexity; logic programming and constraints; automated deduction and interactive theorem proving; logical methods in protocol and program verification; logical methods in program specification and extraction; domain theory logic; logical foundations of database theory; equational logic and term rewriting; lambda and combinatory calculi; categorical logic and topological semantics; linear logic; epistemic and temporal logics; intelligent and multiple agent system logics; logics of proof and justification; nonmonotonic reasoning; logic in game theory and social software; logic of hybrid systems; distributed system logics; mathematical fuzzy logic; system design logics; and other logics in computer science.
The classical theory of computation has its origins in the work of Goedel, Turing, Church, and Kleene and has been an extraordinarily successful framework for theoretical computer science. The thesis of this book, however, is that it provides an inadequate foundation for modern scientific computation where most of the algorithms are real number algorithms. The goal of this book is to develop a formal theory of computation which integrates major themes of the classical theory and which is more directly applicable to problems in mathematics, numerical analysis, and scientific computing. Along the way, the authors consider such fundamental problems as: * Is the Mandelbrot set decidable? * For simple quadratic maps, is the Julia set a halting set? * What is the real complexity of Newton's method? * Is there an algorithm for deciding the knapsack problem in a ploynomial number of steps? * Is the Hilbert Nullstellensatz intractable? * Is the problem of locating a real zero of a degree four polynomial intractable? * Is linear programming tractable over the reals? The book is divided into three parts: The first part provides an extensive introduction and then proves the fundamental NP-completeness theorems of Cook-Karp and their extensions to more general number fields as the real and complex numbers. The later parts of the book develop a formal theory of computation which integrates major themes of the classical theory and which is more directly applicable to problems in mathematics, numerical analysis, and scientific computing.
This book presents the general theory of categorical closure operators to gether with a number of examples, mostly drawn from topology and alge bra, which illustrate the general concepts in several concrete situations. It is aimed mainly at researchers and graduate students in the area of cate gorical topology, and to those interested in categorical methods applied to the most common concrete categories. Categorical Closure Operators is self-contained and can be considered as a graduate level textbook for topics courses in algebra, topology or category theory. The reader is expected to have some basic knowledge of algebra, topology and category theory, however, all categorical concepts that are recurrent are included in Chapter 2. Moreover, Chapter 1 contains all the needed results about Galois connections, and Chapter 3 presents the the ory of factorization structures for sinks. These factorizations not only are essential for the theory developed in this book, but details about them can not be found anywhere else, since all the results about these factorizations are usually treated as the duals of the theory of factorization structures for sources. Here, those hard-to-find details are provided. Throughout the book I have kept the number of assumptions to a min imum, even though this implies that different chapters may use different hypotheses. Normally, the hypotheses in use are specified at the beginning of each chapter and they also apply to the exercise set of that chapter."
This IMA Volume in Mathematics and its Applications RANDOM SETS: THEORY AND APPLICATIONS is based on the proceedings of a very successful 1996 three-day Summer Program on "Application and Theory of Random Sets." We would like to thank the scientific organizers: John Goutsias (Johns Hopkins University), Ronald P.S. Mahler (Lockheed Martin), and Hung T. Nguyen (New Mexico State University) for their excellent work as organizers of the meeting and for editing the proceedings. We also take this opportunity to thank the Army Research Office (ARO), the Office ofNaval Research (0NR), and the Eagan, MinnesotaEngineering Center ofLockheed Martin Tactical Defense Systems, whose financial support made the summer program possible. Avner Friedman Robert Gulliver v PREFACE "Later generations will regard set theory as a disease from which one has recovered. " - Henri Poincare Random set theory was independently conceived by D.G. Kendall and G. Matheron in connection with stochastic geometry. It was however G.
Finite Fields are fundamental structures of Discrete Mathematics. They serve as basic data structures in pure disciplines like Finite Geometries and Combinatorics, and also have aroused much interest in applied disciplines like Coding Theory and Cryptography. A look at the topics of the proceed ings volume of the Third International Conference on Finite Fields and Their Applications (Glasgow, 1995) (see [18]), or at the list of references in I. E. Shparlinski's book [47] (a recent extensive survey on the Theory of Finite Fields with particular emphasis on computational aspects), shows that the area of Finite Fields goes through a tremendous development. The central topic of the present text is the famous Normal Basis Theo rem, a classical result from field theory, stating that in every finite dimen sional Galois extension E over F there exists an element w whose conjugates under the Galois group of E over F form an F-basis of E (i. e. , a normal basis of E over F; w is called free in E over F). For finite fields, the Nor mal Basis Theorem has first been proved by K. Hensel [19] in 1888. Since normal bases in finite fields in the last two decades have been proved to be very useful for doing arithmetic computations, at present, the algorithmic and explicit construction of (particular) such bases has become one of the major research topics in Finite Field Theory.
This book has a rather strange history. It began in spring 1989, thirteen years after our Systems Science Department at SUNY-Binghamton was established, when I was asked by a group of students in our doctoral program to have a meeting with them. The spokesman of the group, Cliff Joslyn, opened our meeting by stating its purpose. I can closely paraphrase what he said: "We called this meeting to discuss with you, as Chairman of the Department, a fundamental problem with our systems science curriculum. In general, we consider it a good curriculum: we learn a lot of concepts, principles, and methodological tools, mathematical, computational, heu ristic, which are fundamental to understanding and dealing with systems. And, yet, we learn virtually nothing about systems science itself. What is systems science? What are its historical roots? What are its aims? Where does it stand and where is it likely to go? These are pressing questions to us. After all, aren't we supposed to carry the systems science flag after we graduate from this program? We feel that a broad introductory course to systems science is urgently needed in the curriculum. Do you agree with this assessment?" The answer was obvious and, yet, not easy to give: "I agree, of course, but I do not see how the situation could be alleviated in the foreseeable future.
Scheduling in Parallel Computing Systems: Fuzzy and Annealing Techniques advocates the viability of using fuzzy and annealing methods in solving scheduling problems for parallel computing systems. The book proposes new techniques for both static and dynamic scheduling, using emerging paradigms that are inspired by natural phenomena such as fuzzy logic, mean-field annealing, and simulated annealing. Systems that are designed using such techniques are often referred to in the literature as intelligent' because of their capability to adapt to sudden changes in their environments. Moreover, most of these changes cannot be anticipated in advance or included in the original design of the system. Scheduling in Parallel Computing Systems: Fuzzy and Annealing Techniques provides results that prove such approaches can become viable alternatives to orthodox solutions to the scheduling problem, which are mostly based on heuristics. Although heuristics are robust and reliable when solving certain instances of the scheduling problem, they do not perform well when one needs to obtain solutions to general forms of the scheduling problem. On the other hand, techniques inspired by natural phenomena have been successfully applied for solving a wide range of combinatorial optimization problems (e.g. traveling salesman, graph partitioning). The success of these methods motivated their use in this book to solve scheduling problems that are known to be formidable combinatorial problems. Scheduling in Parallel Computing Systems: Fuzzy and Annealing Techniques is an excellent reference and may be used for advanced courses on the topic.
Fuzzy hardware developments have been a major force driving the applications of fuzzy set theory and fuzzy logic in both science and engineering. This volume provides the reader with a comprehensive up-to-date look at recent works describing new innovative developments of fuzzy hardware. An important research trend is the design of improved fuzzy hardware. There is an increasing interest in both analog and digital implementations of fuzzy controllers in particular and fuzzy systems in general. Specialized analog and digital VLSI implementations of fuzzy systems, in the form of dedicated architectures, aim at the highest implementation efficiency. This particular efficiency is asserted in terms of processing speed and silicon utilization. Processing speed in particular has caught the attention of developers of fuzzy hardware and researchers in the field.The volume includes detailed material on a variety of fuzzy hardware related topics such as: * Historical review of fuzzy hardware research * Fuzzy hardware based on encoded trapezoids * Pulse stream techniques for fuzzy hardware * Hardware realization of fuzzy neural networks * Design of analog neuro-fuzzy systems in CMOS digital technologies * Fuzzy controller synthesis method * Automatic design of digital and analog neuro-fuzzy controllers * Electronic implementation of complex controllers * Silicon compilation of fuzzy hardware systems * Digital fuzzy hardware processing * Parallel processor architecture for real-time fuzzy applications * Fuzzy cellular systems Fuzzy Hardware: Architectures and Applications is a technical reference book for researchers, engineers and scientists interested in fuzzy systems in general and in building fuzzy systems in particular.
The main theme in classical ring theory is the structure theory of rings of a particular kind. For example, no one text book in ring theory could miss the Wedderburn-Artin theorem, which says that a ring R is semisimple Artinian iffR is isomorphic to a finite direct sum of full matrix rings over skew fields. This is an example of a finiteness condition which, at least historically, has dominated in ring theory. Ifwe would like to consider a requirement of a lattice-theoretical type, other than being Artinian or Noetherian, the most natural is uni-seriality. Here a module M is called uni-serial if its lattice of submodules is a chain, and a ring R is uni-serial if both RR and RR are uni-serial modules. The class of uni-serial rings includes commutative valuation rings and closed under homomorphic images. But it is not closed under direct sums nor with respect to Morita equivalence: a matrix ring over a uni-serial ring is not uni-serial. There is a class of rings which is very close to uni-serial but closed under the constructions just mentioned: serial rings. A ring R is called serial if RR and RR is a direct sum (necessarily finite) of uni-serial modules. Amongst others this class includes triangular matrix rings over a skew field. Also if F is a finite field of characteristic p and G is a finite group with a cyclic normal p-Sylow subgroup, then the group ring FG is serial.
Logic and Complexity looks at basic logic as it is used in Computer Science, and provides students with a logical approach to Complexity theory. With plenty of exercises, this book presents classical notions of mathematical logic, such as decidability, completeness and incompleteness, as well as new ideas brought by complexity theory such as NP-completeness, randomness and approximations, providing a better understanding for efficient algorithmic solutions to problems. Divided into three parts, it covers: - Model Theory and Recursive Functions - introducing the basic model theory of propositional, 1st order, inductive definitions and 2nd order logic. Recursive functions, Turing computability and decidability are also examined. - Descriptive Complexity - looking at the relationship between definitions of problems, queries, properties of programs and their computational complexity. - Approximation - explaining how some optimization problems and counting problems can be approximated according to their logical form. Logic is important in Computer Science, particularly for verification problems and database query languages such as SQL. Students and researchers in this field will find this book of great interest.
Aggregation plays a central role in many of the technological tasks we are faced with. The importance of this process will become even greater as we move more and more toward becoming an information-cent.ered society, us is happening with the rapid growth of the Internet and the World Wirle Weh. Here we shall be faced with many issues related to the fusion of information. One very pressing issue here is the development of mechanisms to help search for information, a problem that clearly has a strong aggregation-related component. More generally, in order to model the sophisticated ways in which human beings process information, as well as going beyond the human capa bilities, we need provide a basket of aggregation tools. The centrality of aggregation in human thought can be be very clearly seen by looking at neural networks, a technology motivated by modeling the human brain. One can see that the basic operations involved in these networks are learning and aggregation. The Ordered Weighted Averaging (OWA) operators provide a parameter ized family of aggregation operators which include many of the well-known operators such as the maximum, minimum and the simple average."
Mathematical Principles of Fuzzy Logic provides a systematic study of the formal theory of fuzzy logic. The book is based on logical formalism demonstrating that fuzzy logic is a well-developed logical theory. It includes the theory of functional systems in fuzzy logic, providing an explanation of what can be represented, and how, by formulas of fuzzy logic calculi. It also presents a more general interpretation of fuzzy logic within the environment of other proper categories of fuzzy sets stemming either from the topos theory, or even generalizing the latter. This book presents fuzzy logic as the mathematical theory of vagueness as well as the theory of commonsense human reasoning, based on the use of natural language, the distinguishing feature of which is the vagueness of its semantics.
An approach to complexity theory which offers a means of analysing algorithms in terms of their tractability. The authors consider the problem in terms of parameterized languages and taking "k-slices" of the language, thus introducing readers to new classes of algorithms which may be analysed more precisely than was the case until now. The book is as self-contained as possible and includes a great deal of background material. As a result, computer scientists, mathematicians, and graduate students interested in the design and analysis of algorithms will find much of interest.
This text covers the parts of contemporary set theory relevant to other areas of pure mathematics. After a review of "naive" set theory, it develops the Zermelo-Fraenkel axioms of the theory before discussing the ordinal and cardinal numbers. It then delves into contemporary set theory, covering such topics as the Borel hierarchy and Lebesgue measure. A final chapter presents an alternative conception of set theory useful in computer science.
In writing this book, our goal was to produce a text suitable for a first course in mathematical logic more attuned than the traditional textbooks to the re cent dramatic growth in the applications oflogic to computer science. Thus, our choice oftopics has been heavily influenced by such applications. Of course, we cover the basic traditional topics: syntax, semantics, soundnes5, completeness and compactness as well as a few more advanced results such as the theorems of Skolem-Lowenheim and Herbrand. Much ofour book, however, deals with other less traditional topics. Resolution theorem proving plays a major role in our treatment of logic especially in its application to Logic Programming and PRO LOG. We deal extensively with the mathematical foundations ofall three ofthese subjects. In addition, we include two chapters on nonclassical logics - modal and intuitionistic - that are becoming increasingly important in computer sci ence. We develop the basic material on the syntax and semantics (via Kripke frames) for each of these logics. In both cases, our approach to formal proofs, soundness and completeness uses modifications of the same tableau method in troduced for classical logic. We indicate how it can easily be adapted to various other special types of modal logics. A number of more advanced topics (includ ing nonmonotonic logic) are also briefly introduced both in the nonclassical logic chapters and in the material on Logic Programming and PROLOG.
Intelligent Hybrid Systems: Fuzzy Logic, Neural Networks, and Genetic Algorithms is an organized edited collection of contributed chapters covering basic principles, methodologies, and applications of fuzzy systems, neural networks and genetic algorithms. All chapters are original contributions by leading researchers written exclusively for this volume. This book reviews important concepts and models, and focuses on specific methodologies common to fuzzy systems, neural networks and evolutionary computation. The emphasis is on development of cooperative models of hybrid systems. Included are applications related to intelligent data analysis, process analysis, intelligent adaptive information systems, systems identification, nonlinear systems, power and water system design, and many others. Intelligent Hybrid Systems: Fuzzy Logic, Neural Networks, and Genetic Algorithms provides researchers and engineers with up-to-date coverage of new results, methodologies and applications for building intelligent systems capable of solving large-scale problems.
Basic Real Analysis demonstrates the richness of real analysis, giving students an introduction both to mathematical rigor and to the deep theorems and counter examples that arise from such rigor. In this modern and systematic text, all the touchstone results and fundamentals are carefully presented in a style that requires little prior familiarity with proofs or mathematical language. With its many examples, exercises and broad view of analysis, this work is ideal for senior undergraduates and beginning graduate students, either in the classroom or for self-study.
An Introduction to Fuzzy Logic Applications in Intelligent Systems consists of a collection of chapters written by leading experts in the field of fuzzy sets. Each chapter addresses an area where fuzzy sets have been applied to situations broadly related to intelligent systems. The volume provides an introduction to and an overview of recent applications of fuzzy sets to various areas of intelligent systems. Its purpose is to provide information and easy access for people new to the field. The book also serves as an excellent reference for researchers in the field and those working in the specifics of systems development. People in computer science, especially those in artificial intelligence, knowledge-based systems, and intelligent systems will find this to be a valuable sourcebook. Engineers, particularly control engineers, will also have a strong interest in this book. Finally, the book will be of interest to researchers working in decision support systems, operations research, decision theory, management science and applied mathematics. An Introduction to Fuzzy Logic Applications in Intelligent Systems may also be used as an introductory text and, as such, it is tutorial in nature.
A basic issue in computer science is the complexity of problems. Computational complexity measures how much time or memory is needed as a function of the input problem size. Descriptive complexity is concerned with problems which may be described in first-order logic. By virtue of the close relationship between logic and relational databses, it turns out that this subject has important applications to databases such as analysing the queries computable in polynomial time, analysing the parallel time needed to compute a query, and the analysis of nondeterministic classes. This book is written as a graduate text and so aims to provide a reasonably self-contained introduction to this subject. The author has provided numerous examples and exercises to further illustrate the ideas presented.
One high-level ability of the human brain is to understand what it has learned. This seems to be the crucial advantage in comparison to the brain activity of other primates. At present we are technologically almost ready to artificially reproduce human brain tissue, but we still do not fully understand the information processing and the related biological mechanisms underlying this ability. Thus an electronic clone of the human brain is still far from being realizable. At the same time, around twenty years after the revival of the connectionist paradigm, we are not yet satisfied with the typical subsymbolic attitude of devices like neural networks: we can make them learn to solve even difficult problems, but without a clear explanation of why a solution works. Indeed, to widely use these devices in a reliable and non elementary way we need formal and understandable expressions of the learnt functions. of being tested, manipulated and composed with These must be susceptible other similar expressions to build more structured functions as a solution of complex problems via the usual deductive methods of the Artificial Intelligence. Many effort have been steered in this directions in the last years, constructing artificial hybrid systems where a cooperation between the sub symbolic processing of the neural networks merges in various modes with symbolic algorithms. In parallel, neurobiology research keeps on supplying more and more detailed explanations of the low-level phenomena responsible for mental processes.
ClDo _ IIIIIIIoaIIIics bu _ die 'EI JDDi, *** sij'_ ...-..._. je _ ...lIbupalaJllllllllll __ D'y_poa~: wbae it beIoap...die . . "...,. . _ DOD to dlecluly __ * __ . ~ 1110 _ is dioapaI; -. . e _ may be EricT. BeD IbIetodo--'_iL O. 1feaoriIide Mathematics is a tool for dloogIrt. A bighly necessary tool in a world where both feedback and noolineari- ties abound. Similarly, all kinds of parts of IIIIIIhcmatiI:s serve as tools for odIcr parts and for ocher sci- eoccs. Applying a simple rewriting rule to the quote on the right above one finds suc:h stalements as: 'One ser- vice topology has rcncIerM mathematical physics ...'; 'One service logic has rendered computer science . * . '; 'One service category theory has rmdcn:d mathematics ...'. All arguably true. And all statements obrainable this way form part of the raison d'etm of this series. This series, Mathmlatics tDIII Its Applications, saaned in 1977. Now that over one hundred volumcs have appeared it seems opportune to reexamine its scope. AI. the time I wrote "Growing spccialization and divenification have brought a host of monographs and textbooks on incJeasingly specialized topics. However, the 'tree' of knowledge of JJJatbcmatics and reIatcd ficIds docs not grow only by putting forth new bnDdIcs. It also happens, quite often in fact, that brancbes which were thought to be comp1etcly disparate am suddenly seen to be rdatcd.
An introduction to the basic tools of the theory of (partially) ordered sets such as visualization via diagrams, subsets, homomorphisms, important order-theoretical constructions and classes of ordered sets. Using a thematic approach, the author presents open or recently solved problems to motivate the development of constructions and investigations for new classes of ordered sets. The text can be used as a focused follow-up or companion to a first proof (set theory and relations) or graph theory course.
Since its inception, the theory of fuzzy sets has advanced in a
variety of ways and in many disciplines. Applications of fuzzy
technology can be found in artificial intelligence, computer
science, control engineering, decision theory, expert systems,
logic, management science, operations research, robotics, and
others. Theoretical advances have been made in many directions.
|
![]() ![]() You may like...
The New Method Arithmetic [microform]
P (Phineas) McIntosh, C a (Carl Adolph) B 1879 Norman
Hardcover
R937
Discovery Miles 9 370
An Elementary Arithmetic [microform]
By a Committee of Teachers Supervised
Hardcover
R830
Discovery Miles 8 300
A Course on Basic Model Theory
Haimanti Sarbadhikari, Shashi Mohan Srivastava
Hardcover
R2,290
Discovery Miles 22 900
The High School Arithmetic - for Use in…
W. H. Ballard, A. C. McKay, …
Hardcover
R999
Discovery Miles 9 990
|