![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Mathematical foundations > General
without a properly developed inconsistent calculus based on infinitesimals, then in consistent claims from the history of the calculus might well simply be symptoms of confusion. This is addressed in Chapter 5. It is further argued that mathematics has a certain primacy over logic, in that paraconsistent or relevant logics have to be based on inconsistent mathematics. If the latter turns out to be reasonably rich then paraconsistentism is vindicated; while if inconsistent mathematics has seri ous restriytions then the case for being interested in inconsistency-tolerant logics is weakened. (On such restrictions, see this chapter, section 3. ) It must be conceded that fault-tolerant computer programming (e. g. Chapter 8) finds a substantial and important use for paraconsistent logics, albeit with an epistemological motivation (see this chapter, section 3). But even here it should be noted that if inconsistent mathematics turned out to be functionally impoverished then so would inconsistent databases. 2. Summary In Chapter 2, Meyer's results on relevant arithmetic are set out, and his view that they have a bearing on G8del's incompleteness theorems is discussed. Model theory for nonclassical logics is also set out so as to be able to show that the inconsistency of inconsistent theories can be controlled or limited, but in this book model theory is kept in the background as much as possible. This is then used to study the functional properties of various equational number theories."
In the summer of 1991 the Department of Mathematics and Statistics of the Universite de Montreal was fortunate to host the NATO Advanced Study Institute "Algebras and Orders" as its 30th Seminaire de mathematiques superieures (SMS), a summer school with a long tradition and well-established reputation. This book contains the contributions of the invited speakers. Universal algebra- which established itself only in the 1930's- grew from traditional algebra (e.g., groups, modules, rings and lattices) and logic (e.g., propositional calculus, model theory and the theory of relations). It started by extending results from these fields but by now it is a well-established and dynamic discipline in its own right. One of the objectives of the ASI was to cover a broad spectrum of topics in this field, and to put in evidence the natural links to, and interactions with, boolean algebra, lattice theory, topology, graphs, relations, automata, theoretical computer science and (partial) orders. The theory of orders is a relatively young and vigorous discipline sharing certain topics as well as many researchers and meetings with universal algebra and lattice theory. W. Taylor surveyed the abstract clone theory which formalizes the process of compos ing operations (i.e., the formation of term operations) of an algebra as a special category with countably many objects, and leading naturally to the interpretation and equivalence of varieties."
hiS volume in the Synthese Library Series is the result of a conference T held at the University of Roskilde, Denmark, October 31st-November 1st, 1997. The aim was to provide a forum within which philosophers, math ematicians, logicians and historians of mathematics could exchange ideas pertaining to the historical and philosophical development of proof theory. Hence the conference was called Proof Theory: History and Philosophical Significance. To quote from the conference abstract: Proof theory was developed as part of Hilberts Programme. According to Hilberts Programme one could provide mathematics with a firm and se cure foundation by formalizing all of mathematics and subsequently prove consistency of these formal systems by finitistic means. Hence proof theory was developed as a formal tool through which this goal should be fulfilled. It is well known that Hilbert's Programme in its original form was unfeasible mainly due to Gtldel's incompleteness theorems. Additionally it proved impossible to formalize all of mathematics and impossible to even prove the consistency of relatively simple formalized fragments of mathematics by finitistic methods. In spite of these problems, Gentzen showed that by extending Hilbert's proof theory it would be possible to prove the consistency of interesting formal systems, perhaps not by finitis tic methods but still by methods of minimal strength. This generalization of Hilbert's original programme has fueled modern proof theory which is a rich part of mathematical logic with many significant implications for the philosophy of mathematics."
This book examines an abstract mathematical theory, placing special emphasis on results applicable to formal logic. If a theory is especially abstract, it may find a natural home within several of the more familiar branches of mathematics. This is the case with the theory of closure spaces. It might be considered part of topology, lattice theory, universal algebra or, no doubt, one of several other branches of mathematics as well. In our development we have treated it, conceptually and methodologically, as part of topology, partly because we first thought ofthe basic structure involved (closure space), as a generalization of Frechet's concept V-space. V-spaces have been used in some developments of general topology as a generalization of topological space. Indeed, when in the early '50s, one of us started thinking about closure spaces, we thought ofit as the generalization of Frechet V space which comes from not requiring the null set to be CLOSURE SPACES ANDLOGIC XlI closed(as it is in V-spaces). This generalization has an extreme advantage in connection with application to logic, since the most important closure notion in logic, deductive closure, in most cases does not generate a V-space, since the closure of the null set typically consists of the "logical truths" of the logic being examined."
This textbook prepares graduate students for research in numerical analysis/computational mathematics by giving to them a mathematical framework embedded in functional analysis and focused on numerical analysis. This helps the student to move rapidly into a research program. The text covers basic results of functional analysis, approximation theory, Fourier analysis and wavelets, iteration methods for nonlinear equations, finite difference methods, Sobolev spaces and weak formulations of boundary value problems, finite element methods, elliptic variational inequalities and their numerical solution, numerical methods for solving integral equations of the second kind, and boundary integral equations for planar regions. The presentation of each topic is meant to be an introduction with certain degree of depth. Comprehensive references on a particular topic are listed at the end of each chapter for further reading and study. Because of the relevance in solving real world problems, multivariable polynomials are playing an ever more important role in research and applications. In this third editon, a new chapter on this topic has been included and some major changes are made on two chapters from the previous edition. In addition, there are numerous minor changes throughout the entire text and new exercises are added. Review of earlier edition: ..".the book is clearly written, quite pleasant to read, and contains a lot of important material; and the authors have done an excellent job at balancing theoretical developments, interesting examples and exercises, numerical experiments, and bibliographical references." R. Glowinski, SIAM Review, 2003
Recent major advances in model theory include connections between model theory and Diophantine and real analytic geometry, permutation groups, and finite algebras. The present book contains lectures on recent results in algebraic model theory, covering topics from the following areas: geometric model theory, the model theory of analytic structures, permutation groups in model theory, the spectra of countable theories, and the structure of finite algebras. Audience: Graduate students in logic and others wishing to keep abreast of current trends in model theory. The lectures contain sufficient introductory material to be able to grasp the recent results presented.
Reasoning under uncertainty is always based on a specified language or for malism, including its particular syntax and semantics, but also on its associated inference mechanism. In the present volume of the handbook the last aspect, the algorithmic aspects of uncertainty calculi are presented. Theory has suffi ciently advanced to unfold some generally applicable fundamental structures and methods. On the other hand, particular features of specific formalisms and ap proaches to uncertainty of course still influence strongly the computational meth ods to be used. Both general as well as specific methods are included in this volume. Broadly speaking, symbolic or logical approaches to uncertainty and nu merical approaches are often distinguished. Although this distinction is somewhat misleading, it is used as a means to structure the present volume. This is even to some degree reflected in the two first chapters, which treat fundamental, general methods of computation in systems designed to represent uncertainty. It has been noted early by Shenoy and Shafer, that computations in different domains have an underlying common structure. Essentially pieces of knowledge or information are to be combined together and then focused on some particular question or domain. This can be captured in an algebraic structure called valuation algebra which is described in the first chapter. Here the basic operations of combination and focus ing (marginalization) of knowledge and information is modeled abstractly subject to simple axioms."
This monograph is a continuation of several themes presented in my previous books [146, 149]. In those volumes, I was concerned primarily with the properties of semirings. Here, the objects of investigation are sets of the form RA, where R is a semiring and A is a set having a certain structure. The problem is one of translating that structure to RA in some "natural" way. As such, it tries to find a unified way of dealing with diverse topics in mathematics and theoretical com puter science as formal language theory, the theory of fuzzy algebraic structures, models of optimal control, and many others. Another special case is the creation of "idempotent analysis" and similar work in optimization theory. Unlike the case of the previous work, which rested on a fairly established mathematical foundation, the approach here is much more tentative and docimastic. This is an introduction to, not a definitative presentation of, an area of mathematics still very much in the making. The basic philosphical problem lurking in the background is one stated suc cinctly by Hahle and Sostak [185]: ". . . to what extent basic fields of mathematics like algebra and topology are dependent on the underlying set theory?" The conflicting definitions proposed by various researchers in search of a resolution to this conundrum show just how difficult this problem is to see in a proper light.
This book, in some sense, began to be written by the first author in 1983, when optional lectures on Abelian groups were held at the Fac ulty of Mathematics and Computer Science, 'Babes-Bolyai' University in Cluj-Napoca, Romania. From 1992, these lectures were extended to a twosemester electivecourse on abelian groups for undergraduate stu dents, followed by a twosemester course on the same topic for graduate students in Algebra. All the other authors attended these two years of lectures and are now Assistants to the Chair of Algebra of this Fac ulty. The first draft of this collection, including only exercises solved by students as home works, the last ten years, had 160pages. We felt that there is a need for a book such as this one, because it would provide a nice bridge between introductory Abelian Group Theory and more advanced research problems. The book InfiniteAbelianGroups, published by LaszloFuchsin two volumes 1970 and 1973 willwithout doubt last as the most important guide for abelian group theorists. Many exercises are selected from this source but there are plenty of other bibliographical items (see the Bibliography) which were used in order to make up this collection. For some of the problems stated, recent developments are also given. Nevertheless, there are plenty of elementary results (the so called 'folklore') in Abelian Group Theory whichdo not appear in any written material. It is also one purpose of this book to complete this gap."
A partially ordered group is an algebraic object having the structure of a group and the structure of a partially ordered set which are connected in some natural way. These connections were established in the period between the end of 19th and beginning of 20th century. It was realized that ordered algebraic systems occur in various branches of mathemat ics bound up with its fundamentals. For example, the classification of infinitesimals resulted in discovery of non-archimedean ordered al gebraic systems, the formalization of the notion of real number led to the definition of ordered groups and ordered fields, the construc tion of non-archimedean geometries brought about the investigation of non-archimedean ordered groups and fields. The theory of partially ordered groups was developed by: R. Dedekind, a. Holder, D. Gilbert, B. Neumann, A. I. Mal'cev, P. Hall, G. Birkhoff. These connections between partial order and group operations allow us to investigate the properties of partially ordered groups. For exam ple, partially ordered groups with interpolation property were intro duced in F. Riesz's fundamental paper 1] as a key to his investigations of partially ordered real vector spaces, and the study of ordered vector spaces with interpolation properties were continued by many functional analysts since. The deepest and most developed part of the theory of partially ordered groups is the theory of lattice-ordered groups. In the 40s, following the publications of the works by G. Birkhoff, H. Nakano and P."
The IOth International Congress of Logic, Methodology and Philosophy of Science, which took place in Florence in August 1995, offered a vivid and comprehensive picture of the present state of research in all directions of Logic and Philosophy of Science. The final program counted 51 invited lectures and around 700 contributed papers, distributed in 15 sections. Following the tradition of previous LMPS-meetings, some authors, whose papers aroused particular interest, were invited to submit their works for publication in a collection of selected contributed papers. Due to the large number of interesting contributions, it was decided to split the collection into two distinct volumes: one covering the areas of Logic, Foundations of Mathematics and Computer Science, the other focusing on the general Philosophy of Science and the Foundations of Physics. As a leading choice criterion for the present volume, we tried to combine papers containing relevant technical results in pure and applied logic with papers devoted to conceptual analyses, deeply rooted in advanced present-day research. After all, we believe this is part of the genuine spirit underlying the whole enterprise of LMPS studies."
The Centre pour la Synthese d'une Epistemologie Formalisee, henceforth briefly named CeSEF, was founded in June 1994 by a small group of s- entists working in various disciplines, with the definite aim to synthesize a "formalized epistemology" founded on the methods identifiable within the foremost modern scientificdisciplines. Most of the founders were already authors of well-known works displaying a particular sensitivity to episte- logical questions. But the aim that united us was new. This aim along with the peculiar choice of its verbal expression are thoroughly discussed in the Introduction. In the present volume, we publish the first harvest of explorations and constructive proposals advanced in pursuit of our goal. The contributions are expressive also of the views of those who shared only our beginnings and 1 then left us; they equally reflect input from those who participated in our workshops but did not contribute to this volume. We are indebted to the Association Naturalia et Biologica for having supported with a donation the publication of this volume. The camera-ready form of this book we owe to the patient and met- ulous labor of Ms. Jackie Gratrix. The superb job she has done is herewith gratefully acknowledged. Mioara Mugur-Schachter and Alwyn van der Merwe 1 Paul Bourgine and, quite specially, Bernard Walliser."
Today the notion of the algorithm is familiar not only to mathematicians. It forms a conceptual base for information processing; the existence of a corresponding algorithm makes automatic information processing possible. The theory of algorithms (together with mathematical logic ) forms the the oretical basis for modern computer science (see [Sem Us 86]; this article is called "Mathematical Logic in Computer Science and Computing Practice" and in its title mathematical logic is understood in a broad sense including the theory of algorithms). However, not everyone realizes that the word "algorithm" includes a transformed toponym Khorezm. Algorithms were named after a great sci entist of medieval East, is al-Khwarizmi (where al-Khwarizmi means "from Khorezm"). He lived between c. 783 and 850 B.C. and the year 1983 was chosen to celebrate his 1200th birthday. A short biography of al-Khwarizmi compiled in the tenth century starts as follows: "al-Khwarizmi. His name is Muhammad ibn Musa, he is from Khoresm" (cited according to [Bul Rozen Ah 83, p.8]).
A basic problem for the interconnection of communications media is to design interconnection networks for specific needs. For example, to minimize delay and to maximize reliability, networks are required that have minimum diameter and maximum connectivity under certain conditions. The book provides a recent solution to this problem. The subject of all five chapters is the interconnection problem. The first two chapters deal with Cayley digraphs which are candidates for networks of maximum connectivity with given degree and number of nodes. Chapter 3 addresses Bruijn digraphs, Kautz digraphs, and their generalizations, which are candidates for networks of minimum diameter and maximum connectivity with given degree and number of nodes. Chapter 4 studies double loop networks, and Chapter 5 considers broadcasting and the Gossiping problem. All the chapters emphasize the combinatorial aspects of network theory. Audience: A vital reference for graduate students and researchers in applied mathematics and theoretical computer science.
In 1907 Luitzen Egbertus Jan Brouwer defended his doctoral dissertation on the foundations of mathematics and with this event the modem version of mathematical intuitionism came into being. Brouwer attacked the main currents of the philosophy of mathematics: the formalists and the Platonists. In tum, both these schools began viewing intuitionism as the most harmful party among all known philosophies of mathematics. That was the origin of the now-90-year-old debate over intuitionism. As both sides have appealed in their arguments to philosophical propositions, the discussions have attracted the attention of philosophers as well. One might ask here what role a philosopher can play in controversies over mathematical intuitionism. Can he reasonably enter into disputes among mathematicians? I believe that these disputes call for intervention by a philo sopher. The three best-known arguments for intuitionism, those of Brouwer, Heyting and Dummett, are based on ontological and epistemological claims, or appeal to theses that properly belong to a theory of meaning. Those lines of argument should be investigated in order to find what their assumptions are, whether intuitionistic consequences really follow from those assumptions, and finally, whether the premises are sound and not absurd. The intention of this book is thus to consider seriously the arguments of mathematicians, even if philosophy was not their main field of interest. There is little sense in disputing whether what mathematicians said about the objectivity and reality of mathematical facts belongs to philosophy, or not."
Quantifiers: Logics, Models and Computation is the first concentrated effort to give a systematic presentation of the main research results on the subject, since the modern concept was formulated in the late '50s and early '60s. The majority of the papers are in the nature of a handbook. All of them are self-contained, at various levels of difficulty. The Introduction surveys the main ideas and problems encountered in the logical investigation of quantifiers. The Prologue, written by Per Lindstrom, presents the early history of the concept of generalised quantifiers. The volume then continues with a series of papers surveying various research areas, particularly those that are of current interest. Together they provide introductions to the subject from the points of view of mathematics, linguistics, and theoretical computer science. The present volume has been prepared in parallel with Quantifiers: Logics, Models and Computation, Volume Two. Contributions, which contains a collection of research papers on the subject in areas that are too fresh to be summarised. The two volumes are complementary. For logicians, mathematicians, philosophers, linguists and computer scientists. Suitable as a text for advanced undergraduate and graduate specialised courses in logic. "
"Is quantum logic really logic?" This book argues for a positive
answer to this question once and for all. There are many quantum
logics and their structures are delightfully varied. The most
radical aspect of quantum reasoning is reflected in unsharp quantum
logics, a special heterodox branch of fuzzy thinking.
Group cohomology has a rich history that goes back a century or more. Its origins are rooted in investigations of group theory and num ber theory, and it grew into an integral component of algebraic topology. In the last thirty years, group cohomology has developed a powerful con nection with finite group representations. Unlike the early applications which were primarily concerned with cohomology in low degrees, the in teractions with representation theory involve cohomology rings and the geometry of spectra over these rings. It is this connection to represen tation theory that we take as our primary motivation for this book. The book consists of two separate pieces. Chronologically, the first part was the computer calculations of the mod-2 cohomology rings of the groups whose orders divide 64. The ideas and the programs for the calculations were developed over the last 10 years. Several new features were added over the course of that time. We had originally planned to include only a brief introduction to the calculations. However, we were persuaded to produce a more substantial text that would include in greater detail the concepts that are the subject of the calculations and are the source of some of the motivating conjectures for the com putations. We have gathered together many of the results and ideas that are the focus of the calculations from throughout the mathematical literature."
Since their appearance in the late 19th century, the Cantor--Dedekind theory of real numbers and philosophy of the continuum have emerged as pillars of standard mathematical philosophy. On the other hand, this period also witnessed the emergence of a variety of alternative theories of real numbers and corresponding theories of continua, as well as non-Archimedean geometry, non-standard analysis, and a number of important generalizations of the system of real numbers, some of which have been described as arithmetic continua of one type or another. With the exception of E.W. Hobson's essay, which is concerned with the ideas of Cantor and Dedekind and their reception at the turn of the century, the papers in the present collection are either concerned with or are contributions to, the latter groups of studies. All the contributors are outstanding authorities in their respective fields, and the essays, which are directed to historians and philosophers of mathematics as well as to mathematicians who are concerned with the foundations of their subject, are preceded by a lengthy historical introduction.
The present volume has its origins in a pair of informal workshops held at the Free University of Brussels, in June of 1998 and May of 1999, named "Current Research 1 in Operational Quantum Logic." These brought together mathematicians and physicists working in operational quantum logic and related areas, as well as a number of interested philosophers of science, for a rare opportunity to discuss recent developments in this field. After some discussion, it was decided that, rather than producing a volume of conference proceedings, we would try to organize the conferees to produce a set of comprehensive survey papers, which would not only report on recent developments in quantum logic, but also provide a tutorial overview of the subject suitable for an interested non-specialist audience. The resulting volume provides an overview of the concepts and methods used in current research in quantum logic, viewed both as a branch of mathemati cal physics and as an area of pure mathematics. The first half of the book is concerned with the algebraic side of the subject, and in particular the theory of orthomodular lattices and posets, effect algebras, etc. In the second half of the book, special attention is given to categorical methods and to connections with theoretical computer science. At the 1999 workshop, we were fortunate to hear three excellent lectures by David J. Foulis, represented here by two contributions. Dave's work, spanning 40 years, has helped to define, and continues to reshape, the field of quantum logic."
While in classical (abelian) homological algebra additive functors from abelian (or additive) categories to abelian categories are investigated , non- abelian homological algebra deals with non-additive functors and their homological properties , in particular with functors having values in non-abelian categories. Such functors haveimportant applications in algebra, algebraic topology, functional analysis, algebraic geometry and other principal areas of mathematics. To study homological properties of non-additive functors it is necessary to define and investigate their derived functors and satellites. It will be the aim of this book based on the results of researchers of A. Razmadze Mathematical Institute of the Georgian Academy of Sciences devoted to non-abelian homological algebra. The most important considered cases will be functors from arbitrary categories to the category of modules, group valued functors and commutative semigroup valued functors. In Chapter I universal sequences of functors are defined and in- vestigated with respect to (co)presheaves of categories, extending in a natural way the satellites of additive functors to the non-additive case and generalizing the classical relative homological algebra in additive categories to arbitrary categories. Applications are given in the furth- coming chapters. Chapter II is devoted to the non-abelian derived functors of group valued functors with respect to projective classes using projective pseu- dosimplicial resolutions. Their functorial properties (exactness, Milnor exact sequence, relationship with cotriple derived functors, satellites and Grothendieck cohomology, spectral sequence of an epimorphism, degree of an arbitrary functor) are established and applications to ho- mology and cohomology of groups are given.
In this volume specialists in mathematics, physics, and linguistics present the first comprehensive analysis of the ideas and influence of Hermann G. Grassmann (1809-1877), the remarkable universalist whose work recast the foundations of these disciplines and shaped the course of their modern development.
Intensional logic has emerged, since the 1960' s, as a powerful theoretical and practical tool in such diverse disciplines as computer science, artificial intelligence, linguistics, philosophy and even the foundations of mathematics. The present volume is a collection of carefully chosen papers, giving the reader a taste of the frontline state of research in intensional logics today. Most papers are representative of new ideas and/or new research themes. The collection would benefit the researcher as well as the student. This book is a most welcome addition to our series. The Editors CONTENTS PREFACE IX JOHAN VAN BENTHEM AND NATASHA ALECHINA Modal Quantification over Structured Domains PATRICK BLACKBURN AND WILFRIED MEYER-VIOL Modal Logic and Model-Theoretic Syntax 29 RUY J. G. B. DE QUEIROZ AND DOV M. GABBAY The Functional Interpretation of Modal Necessity 61 VLADIMIR V. RYBAKOV Logics of Schemes for First-Order Theories and Poly-Modal Propositional Logic 93 JERRY SELIGMAN The Logic of Correct Description 107 DIMITER VAKARELOV Modal Logics of Arrows 137 HEINRICH WANSING A Full-Circle Theorem for Simple Tense Logic 173 MICHAEL ZAKHARYASCHEV Canonical Formulas for Modal and Superintuitionistic Logics: A Short Outline 195 EDWARD N. ZALTA 249 The Modal Object Calculus and its Interpretation NAME INDEX 281 SUBJECT INDEX 285 PREFACE Intensional logic has many faces. In this preface we identify some prominent ones without aiming at completeness.
This book discusses the theory of triangular norms and surveys several applied fields in which triangular norms play a significant part: probabilistic metric spaces, aggregation operators, many-valued logics, fuzzy logics, sets and control, and non-additive measures together with their corresponding integrals. It includes many graphical illustrations and gives a well-balanced picture of theory and applications. It is for mathematicians, computer scientists, applied computer scientists and engineers.
This is the first of two volumes comprising the papers submitted for publication by the invited participants to the Tenth International Congress of Logic, Methodology and Philosophy of Science, held in Florence, August 1995. The Congress was held under the auspices of the International Union of History and Philosophy of Science, Division of Logic, Methodology and Philosophy of Science. The invited lectures published in the two volumes demonstrate much of what goes on in the fields of the Congress and give the state of the art of current research. The two volumes cover the traditional subdisciplines of mathematical logic and philosophical logic, as well as their interfaces with computer science, linguistics and philosophy. Philosophy of science is broadly represented, too, including general issues of natural sciences, social sciences and humanities. The papers in Volume One are concerned with logic, mathematical logic, the philosophy of logic and mathematics, and computer science. |
You may like...
Quantum Theory Made Simple - Discover…
Theodore Giesselman
Hardcover
The New Method Arithmetic [microform]
P (Phineas) McIntosh, C a (Carl Adolph) B 1879 Norman
Hardcover
R921
Discovery Miles 9 210
The High School Arithmetic - for Use in…
W. H. Ballard, A. C. McKay, …
Hardcover
R981
Discovery Miles 9 810
The Public School Arithmetic - Based on…
J a (James Alexander) 18 McLellan, A F (Albert Flintoft) Ames
Hardcover
R919
Discovery Miles 9 190
National Arithmetic in Theory and…
John Herbert 1831-1904 Sangster
Hardcover
R983
Discovery Miles 9 830
|