![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Mathematical foundations > General
The present monograph is a slightly revised version of my Habilitations schrift Proof-theoretic Aspects of Intensional and Non-Classical Logics, successfully defended at Leipzig University, November 1997. It collects work on proof systems for modal and constructive logics I have done over the last few years. The main concern is display logic, a certain refinement of Gentzen's sequent calculus developed by Nuel D. Belnap. This book is far from offering a comprehensive presentation of generalized sequent systems for modal logics broadly conceived. The proof-theory of non-classical logics is a rapidly developing field, and even the generalizations of the ordinary notion of sequent listed in Chapter 1 can hardly be presented in great detail within a single volume. In addition to further investigating the various approaches toward generalized Gentzen systems, it is important to compare them and to discuss their relative advantages and disadvantages. An initial attempt at bringing together work on different kinds of proof systems for modal logics has been made in [188]. Another step in the same direction is [196]. Since Chapter 1 contains introductory considerations and, moreover, every remaining chapter begins with some surveying or summarizing remarks, in this preface I shall only emphasize a relation to philosophy that is important to me, register the sources of papers that have entered this book in some form or another, and acknowledge advice and support.
Constructive mathematics is based on the thesis that the meaning of a mathematical formula is given, not by its truth-conditions, but in terms of what constructions count as a proof of it. However, the meaning of the terms `construction' and `proof' has never been adequately explained (although Kriesel, Goodman and Martin-Loef have attempted axiomatisations). This monograph develops precise (though not wholly formal) definitions of construction and proof, and describes the algorithmic substructure underlying intuitionistic logic. Interpretations of Heyting arithmetic and constructive analysis are given. The philosophical basis of constructivism is explored thoroughly in Part I. The author seeks to answer objections from platonists and to reconcile his position with the central insights of Hilbert's formalism and logic. Audience: Philosophers of mathematics and logicians, both academic and graduate students, particularly those interested in Brouwer and Hilbert; theoretical computer scientists interested in the foundations of functional programming languages and program correctness calculi.
This book examines an abstract mathematical theory, placing special emphasis on results applicable to formal logic. If a theory is especially abstract, it may find a natural home within several of the more familiar branches of mathematics. This is the case with the theory of closure spaces. It might be considered part of topology, lattice theory, universal algebra or, no doubt, one of several other branches of mathematics as well. In our development we have treated it, conceptually and methodologically, as part of topology, partly because we first thought ofthe basic structure involved (closure space), as a generalization of Frechet's concept V-space. V-spaces have been used in some developments of general topology as a generalization of topological space. Indeed, when in the early '50s, one of us started thinking about closure spaces, we thought ofit as the generalization of Frechet V space which comes from not requiring the null set to be CLOSURE SPACES ANDLOGIC XlI closed(as it is in V-spaces). This generalization has an extreme advantage in connection with application to logic, since the most important closure notion in logic, deductive closure, in most cases does not generate a V-space, since the closure of the null set typically consists of the "logical truths" of the logic being examined."
This book is devoted to some results from the classical Point Set Theory and their applications to certain problems in mathematical analysis of the real line. Notice that various topics from this theory are presented in several books and surveys. From among the most important works devoted to Point Set Theory, let us first of all mention the excellent book by Oxtoby [83] in which a deep analogy between measure and category is discussed in detail. Further, an interesting general approach to problems concerning measure and category is developed in the well-known monograph by Morgan [79] where a fundamental concept of a category base is introduced and investigated. We also wish to mention that the monograph by Cichon, W";glorz and the author [19] has recently been published. In that book, certain classes of subsets of the real line are studied and various cardinal valued functions (characteristics) closely connected with those classes are investigated. Obviously, the IT-ideal of all Lebesgue measure zero subsets of the real line and the IT-ideal of all first category subsets of the same line are extensively studied in [19], and several relatively new results concerning this topic are presented. Finally, it is reasonable to notice here that some special sets of points, the so-called singular spaces, are considered in the classi
The main aim of this book is to present recent ideas in logic centered around the notion of a consequence operation. We wish to show these ideas in a factually and materially connected way, i.e., in the form of a consistent theory derived from several simple assumptions and definitions. These ideas have arisen in many research centers. The thorough study of their history can certainly be an exciting task for the historian of logic; in the book this aspect of the theory is being played down. The book belongs to abstract algebraic logic, the area of research that explores to a large extent interconnections between algebra and logic. The results presented here concern logics defined in zero-order languages (Le., quantifier-free sentential languages without predicate symbols). The reach of the theory expounded in the book is, in fact, much wider. The theory is also valid for logics defined in languages of higer orders. The problem of transferring the theory to the level of first-order languages has been satisfactorily solved and new ideas within this area have been put forward in the work of Blok and Pigozzi [1989].
without a properly developed inconsistent calculus based on infinitesimals, then in consistent claims from the history of the calculus might well simply be symptoms of confusion. This is addressed in Chapter 5. It is further argued that mathematics has a certain primacy over logic, in that paraconsistent or relevant logics have to be based on inconsistent mathematics. If the latter turns out to be reasonably rich then paraconsistentism is vindicated; while if inconsistent mathematics has seri ous restriytions then the case for being interested in inconsistency-tolerant logics is weakened. (On such restrictions, see this chapter, section 3. ) It must be conceded that fault-tolerant computer programming (e. g. Chapter 8) finds a substantial and important use for paraconsistent logics, albeit with an epistemological motivation (see this chapter, section 3). But even here it should be noted that if inconsistent mathematics turned out to be functionally impoverished then so would inconsistent databases. 2. Summary In Chapter 2, Meyer's results on relevant arithmetic are set out, and his view that they have a bearing on G8del's incompleteness theorems is discussed. Model theory for nonclassical logics is also set out so as to be able to show that the inconsistency of inconsistent theories can be controlled or limited, but in this book model theory is kept in the background as much as possible. This is then used to study the functional properties of various equational number theories."
Poland has played an enormous role in the development of mathematical logic. Leading Polish logicians, like Lesniewski, Lukasiewicz and Tarski, produced several works related to philosophical logic, a field covering different topics relevant to philosophical foundations of logic itself, as well as various individual sciences. This collection presents contemporary Polish work in philosophical logic which in many respects continue the Polish way of doing philosophical logic. This book will be of interest to logicians, mathematicians, philosophers, and linguists.
This book proposes a uniform logic and probabilistic (LP) approach to risk estimation and analysis in engineering and economics. It covers the methodological and theoretical basis of risk management at the design, test, and operation stages of economic, banking, and engineering systems with groups of incompatible events (GIE). This edition includes new chapters providing a detailed treatment of scenario logic and probabilistic models for revealing bribes. It also contains clear definitions and notations, revised sections and chapters, an extended list of references, and a new subject index, as well as more than a hundred illustrations and tables which motivate the presentation.
This textbook prepares graduate students for research in numerical analysis/computational mathematics by giving to them a mathematical framework embedded in functional analysis and focused on numerical analysis. This helps the student to move rapidly into a research program. The text covers basic results of functional analysis, approximation theory, Fourier analysis and wavelets, iteration methods for nonlinear equations, finite difference methods, Sobolev spaces and weak formulations of boundary value problems, finite element methods, elliptic variational inequalities and their numerical solution, numerical methods for solving integral equations of the second kind, and boundary integral equations for planar regions. The presentation of each topic is meant to be an introduction with certain degree of depth. Comprehensive references on a particular topic are listed at the end of each chapter for further reading and study. Because of the relevance in solving real world problems, multivariable polynomials are playing an ever more important role in research and applications. In this third editon, a new chapter on this topic has been included and some major changes are made on two chapters from the previous edition. In addition, there are numerous minor changes throughout the entire text and new exercises are added. Review of earlier edition: ..".the book is clearly written, quite pleasant to read, and contains a lot of important material; and the authors have done an excellent job at balancing theoretical developments, interesting examples and exercises, numerical experiments, and bibliographical references." R. Glowinski, SIAM Review, 2003
After the pioneering works by Robbins {1944, 1945) and Choquet (1955), the notation of a set-valued random variable (called a random closed set in literatures) was systematically introduced by Kendall {1974) and Matheron {1975). It is well known that the theory of set-valued random variables is a natural extension of that of general real-valued random variables or random vectors. However, owing to the topological structure of the space of closed sets and special features of set-theoretic operations ( cf. Beer [27]), set-valued random variables have many special properties. This gives new meanings for the classical probability theory. As a result of the development in this area in the past more than 30 years, the theory of set-valued random variables with many applications has become one of new and active branches in probability theory. In practice also, we are often faced with random experiments whose outcomes are not numbers but are expressed in inexact linguistic terms.
The aim of this book is to give self-contained proofs of all basic results concerning the infinite-valued proposition al calculus of Lukasiewicz and its algebras, Chang's MV -algebras. This book is for self-study: with the possible exception of Chapter 9 on advanced topics, the only prere- quisite for the reader is some acquaintance with classical propositional logic, and elementary algebra and topology. In this book it is not our aim to give an account of Lukasiewicz's motivations for adding new truth values: readers interested in this topic will find appropriate references in Chapter 10. Also, we shall not explain why Lukasiewicz infinite-valued propositionallogic is a ba- sic ingredient of any logical treatment of imprecise notions: Hajek's book in this series on Trends in Logic contains the most authorita- tive explanations. However, in order to show that MV-algebras stand to infinite-valued logic as boolean algebras stand to two-valued logic, we shall devote Chapter 5 to Ulam's game of Twenty Questions with lies/errors, as a natural context where infinite-valued propositions, con- nectives and inferences are used. While several other semantics for infinite-valued logic are known in the literature-notably Giles' game- theoretic semantics based on subjective probabilities-still the transi- tion from two-valued to many-valued propositonallogic can hardly be modelled by anything simpler than the transformation of the familiar game of Twenty Questions into Ulam game with lies/errors.
Much progress has been made during the last decade on the subjects of non commutative valuation rings, and of semi-hereditary and Priifer orders in a simple Artinian ring which are considered, in a sense, as global theories of non-commu tative valuation rings. So it is worth to present a survey of the subjects in a self-contained way, which is the purpose of this book. Historically non-commutative valuation rings of division rings were first treat ed systematically in Schilling's Book [Sc], which are nowadays called invariant valuation rings, though invariant valuation rings can be traced back to Hasse's work in [Has]. Since then, various attempts have been made to study the ideal theory of orders in finite dimensional algebras over fields and to describe the Brauer groups of fields by usage of "valuations", "places", "preplaces", "value functions" and "pseudoplaces". In 1984, N. 1. Dubrovin defined non-commutative valuation rings of simple Artinian rings with notion of places in the category of simple Artinian rings and obtained significant results on non-commutative valuation rings (named Dubrovin valuation rings after him) which signify that these rings may be the correct def inition of valuation rings of simple Artinian rings. Dubrovin valuation rings of central simple algebras over fields are, however, not necessarily to be integral over their centers.
To our wives, Masha and Marian Interest in the so-called completely integrable systems with infinite num ber of degrees of freedom was aroused immediately after publication of the famous series of papers by Gardner, Greene, Kruskal, Miura, and Zabusky [75, 77, 96, 18, 66, 19J (see also [76]) on striking properties of the Korteweg-de Vries (KdV) equation. It soon became clear that systems of such a kind possess a number of characteristic properties, such as infinite series of symmetries and/or conservation laws, inverse scattering problem formulation, L - A pair representation, existence of prolongation structures, etc. And though no satisfactory definition of complete integrability was yet invented, a need of testing a particular system for these properties appeared. Probably one of the most efficient tests of this kind was first proposed by Lenard [19]' who constructed a recursion operator for symmetries of the KdV equation. It was a strange operator, in a sense: being formally integro-differential, its action on the first classical symmetry (x-translation) was well-defined and produced the entire series of higher KdV equations; but applied to the scaling symmetry, it gave expressions containing terms of the type J u dx which had no adequate interpretation in the framework of the existing theories. It is not surprising that P. Olver wrote "The de duction of the form of the recursion operator (if it exists) requires a certain amount of inspired guesswork. . . " [80, p.
A partially ordered group is an algebraic object having the structure of a group and the structure of a partially ordered set which are connected in some natural way. These connections were established in the period between the end of 19th and beginning of 20th century. It was realized that ordered algebraic systems occur in various branches of mathemat ics bound up with its fundamentals. For example, the classification of infinitesimals resulted in discovery of non-archimedean ordered al gebraic systems, the formalization of the notion of real number led to the definition of ordered groups and ordered fields, the construc tion of non-archimedean geometries brought about the investigation of non-archimedean ordered groups and fields. The theory of partially ordered groups was developed by: R. Dedekind, a. Holder, D. Gilbert, B. Neumann, A. I. Mal'cev, P. Hall, G. Birkhoff. These connections between partial order and group operations allow us to investigate the properties of partially ordered groups. For exam ple, partially ordered groups with interpolation property were intro duced in F. Riesz's fundamental paper 1] as a key to his investigations of partially ordered real vector spaces, and the study of ordered vector spaces with interpolation properties were continued by many functional analysts since. The deepest and most developed part of the theory of partially ordered groups is the theory of lattice-ordered groups. In the 40s, following the publications of the works by G. Birkhoff, H. Nakano and P."
Recent major advances in model theory include connections between model theory and Diophantine and real analytic geometry, permutation groups, and finite algebras. The present book contains lectures on recent results in algebraic model theory, covering topics from the following areas: geometric model theory, the model theory of analytic structures, permutation groups in model theory, the spectra of countable theories, and the structure of finite algebras. Audience: Graduate students in logic and others wishing to keep abreast of current trends in model theory. The lectures contain sufficient introductory material to be able to grasp the recent results presented.
Reasoning under uncertainty is always based on a specified language or for malism, including its particular syntax and semantics, but also on its associated inference mechanism. In the present volume of the handbook the last aspect, the algorithmic aspects of uncertainty calculi are presented. Theory has suffi ciently advanced to unfold some generally applicable fundamental structures and methods. On the other hand, particular features of specific formalisms and ap proaches to uncertainty of course still influence strongly the computational meth ods to be used. Both general as well as specific methods are included in this volume. Broadly speaking, symbolic or logical approaches to uncertainty and nu merical approaches are often distinguished. Although this distinction is somewhat misleading, it is used as a means to structure the present volume. This is even to some degree reflected in the two first chapters, which treat fundamental, general methods of computation in systems designed to represent uncertainty. It has been noted early by Shenoy and Shafer, that computations in different domains have an underlying common structure. Essentially pieces of knowledge or information are to be combined together and then focused on some particular question or domain. This can be captured in an algebraic structure called valuation algebra which is described in the first chapter. Here the basic operations of combination and focus ing (marginalization) of knowledge and information is modeled abstractly subject to simple axioms."
There are three outstanding points of this book. First: for the first time, a collective point of view on the role of artificial intelligence paradigm in logic design is introduced. Second, the book reveals new horizons of logic design tools on the technologies of the near future. Finally, the contributors of the book are twenty recognizable leaders in the field from the seven research centres. The chapters of the book have been carefully reviewed by equally qualified experts. All contributors are experienced in practical electronic design and in teaching engineering courses. Thus, the book's style is accessible to graduate students, practical engineers and researchers.
This monograph is a continuation of several themes presented in my previous books [146, 149]. In those volumes, I was concerned primarily with the properties of semirings. Here, the objects of investigation are sets of the form RA, where R is a semiring and A is a set having a certain structure. The problem is one of translating that structure to RA in some "natural" way. As such, it tries to find a unified way of dealing with diverse topics in mathematics and theoretical com puter science as formal language theory, the theory of fuzzy algebraic structures, models of optimal control, and many others. Another special case is the creation of "idempotent analysis" and similar work in optimization theory. Unlike the case of the previous work, which rested on a fairly established mathematical foundation, the approach here is much more tentative and docimastic. This is an introduction to, not a definitative presentation of, an area of mathematics still very much in the making. The basic philosphical problem lurking in the background is one stated suc cinctly by Hahle and Sostak [185]: ". . . to what extent basic fields of mathematics like algebra and topology are dependent on the underlying set theory?" The conflicting definitions proposed by various researchers in search of a resolution to this conundrum show just how difficult this problem is to see in a proper light.
This book, in some sense, began to be written by the first author in 1983, when optional lectures on Abelian groups were held at the Fac ulty of Mathematics and Computer Science, 'Babes-Bolyai' University in Cluj-Napoca, Romania. From 1992, these lectures were extended to a twosemester electivecourse on abelian groups for undergraduate stu dents, followed by a twosemester course on the same topic for graduate students in Algebra. All the other authors attended these two years of lectures and are now Assistants to the Chair of Algebra of this Fac ulty. The first draft of this collection, including only exercises solved by students as home works, the last ten years, had 160pages. We felt that there is a need for a book such as this one, because it would provide a nice bridge between introductory Abelian Group Theory and more advanced research problems. The book InfiniteAbelianGroups, published by LaszloFuchsin two volumes 1970 and 1973 willwithout doubt last as the most important guide for abelian group theorists. Many exercises are selected from this source but there are plenty of other bibliographical items (see the Bibliography) which were used in order to make up this collection. For some of the problems stated, recent developments are also given. Nevertheless, there are plenty of elementary results (the so called 'folklore') in Abelian Group Theory whichdo not appear in any written material. It is also one purpose of this book to complete this gap."
I am very happy to have this opportunity to introduce Luca Vigano's book on Labelled Non-Classical Logics. I put forward the methodology of labelled deductive systems to the participants of Logic Colloquium'90 (Labelled Deductive systems, a Position Paper, In J. Oikkonen and J. Vaananen, editors, Logic Colloquium '90, Volume 2 of Lecture Notes in Logic, pages 66-68, Springer, Berlin, 1993), in an attempt to bring labelling as a recognised and significant component of our logic culture. It was a response to earlier isolated uses of labels by various distinguished authors, as a means to achieve local proof theoretic goals. Labelling was used in many different areas such as resource labelling in relevance logics, prefix tableaux in modal logics, annotated logic programs in logic programming, proof tracing in truth maintenance systems, and various side annotations in higher-order proof theory, arithmetic and analysis. This widespread local use of labels was an indication of an underlying logical pattern, namely the simultaneous side-by-side manipulation of several kinds of logical information. It was clear that there was a need to establish the labelled deductive systems methodology. Modal logic is one major area where labelling can be developed quickly and sys tematically with a view of demonstrating its power and significant advantage. In modal logic the labels can play a double role."
The IOth International Congress of Logic, Methodology and Philosophy of Science, which took place in Florence in August 1995, offered a vivid and comprehensive picture of the present state of research in all directions of Logic and Philosophy of Science. The final program counted 51 invited lectures and around 700 contributed papers, distributed in 15 sections. Following the tradition of previous LMPS-meetings, some authors, whose papers aroused particular interest, were invited to submit their works for publication in a collection of selected contributed papers. Due to the large number of interesting contributions, it was decided to split the collection into two distinct volumes: one covering the areas of Logic, Foundations of Mathematics and Computer Science, the other focusing on the general Philosophy of Science and the Foundations of Physics. As a leading choice criterion for the present volume, we tried to combine papers containing relevant technical results in pure and applied logic with papers devoted to conceptual analyses, deeply rooted in advanced present-day research. After all, we believe this is part of the genuine spirit underlying the whole enterprise of LMPS studies."
The Centre pour la Synthese d'une Epistemologie Formalisee, henceforth briefly named CeSEF, was founded in June 1994 by a small group of s- entists working in various disciplines, with the definite aim to synthesize a "formalized epistemology" founded on the methods identifiable within the foremost modern scientificdisciplines. Most of the founders were already authors of well-known works displaying a particular sensitivity to episte- logical questions. But the aim that united us was new. This aim along with the peculiar choice of its verbal expression are thoroughly discussed in the Introduction. In the present volume, we publish the first harvest of explorations and constructive proposals advanced in pursuit of our goal. The contributions are expressive also of the views of those who shared only our beginnings and 1 then left us; they equally reflect input from those who participated in our workshops but did not contribute to this volume. We are indebted to the Association Naturalia et Biologica for having supported with a donation the publication of this volume. The camera-ready form of this book we owe to the patient and met- ulous labor of Ms. Jackie Gratrix. The superb job she has done is herewith gratefully acknowledged. Mioara Mugur-Schachter and Alwyn van der Merwe 1 Paul Bourgine and, quite specially, Bernard Walliser."
Today the notion of the algorithm is familiar not only to mathematicians. It forms a conceptual base for information processing; the existence of a corresponding algorithm makes automatic information processing possible. The theory of algorithms (together with mathematical logic ) forms the the oretical basis for modern computer science (see [Sem Us 86]; this article is called "Mathematical Logic in Computer Science and Computing Practice" and in its title mathematical logic is understood in a broad sense including the theory of algorithms). However, not everyone realizes that the word "algorithm" includes a transformed toponym Khorezm. Algorithms were named after a great sci entist of medieval East, is al-Khwarizmi (where al-Khwarizmi means "from Khorezm"). He lived between c. 783 and 850 B.C. and the year 1983 was chosen to celebrate his 1200th birthday. A short biography of al-Khwarizmi compiled in the tenth century starts as follows: "al-Khwarizmi. His name is Muhammad ibn Musa, he is from Khoresm" (cited according to [Bul Rozen Ah 83, p.8]).
The A-calculus was invented by Church in the 1930s with the purpose of sup plying a logical foundation for logic and mathematics 25]. Its use by Kleene as a coding for computable functions makes it the first programming lan guage, in an abstract sense, exactly as the Thring machine can be considered the first computer machine 57]. The A-calculus has quite a simple syntax (with just three formation rules for terms) and a simple operational seman tics (with just one operation, substitution), and so it is a very basic setting for studying computation properties. The first contact between A-calculus and real programming languages was in the years 1956-1960, when McCarthy developed the LISP programming language, inspired from A-calculus, which is the first "functional" program ming language, Le., where functions are first-dass citizens 66]. But the use of A-calculus as an abstract paradigm for programming languages started later as the work of three important scientists: Strachey, Landin and B6hm."
A basic problem for the interconnection of communications media is to design interconnection networks for specific needs. For example, to minimize delay and to maximize reliability, networks are required that have minimum diameter and maximum connectivity under certain conditions. The book provides a recent solution to this problem. The subject of all five chapters is the interconnection problem. The first two chapters deal with Cayley digraphs which are candidates for networks of maximum connectivity with given degree and number of nodes. Chapter 3 addresses Bruijn digraphs, Kautz digraphs, and their generalizations, which are candidates for networks of minimum diameter and maximum connectivity with given degree and number of nodes. Chapter 4 studies double loop networks, and Chapter 5 considers broadcasting and the Gossiping problem. All the chapters emphasize the combinatorial aspects of network theory. Audience: A vital reference for graduate students and researchers in applied mathematics and theoretical computer science. |
![]() ![]() You may like...
The High School Arithmetic - for Use in…
W. H. Ballard, A. C. McKay, …
Hardcover
R999
Discovery Miles 9 990
Groups, Invariants, Integrals, and…
Maria Ulan, Stanislav Hronek
Hardcover
R3,427
Discovery Miles 34 270
Key to Advanced Arithmetic for Canadian…
Barnard 1817-1876 Smith, Archibald McMurchy
Hardcover
R895
Discovery Miles 8 950
|