Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Mathematical foundations > General
The European Summer School in Logic, Language and Information (ESSLLI) is organized every year by the Association for Logic, Language and Information (FoLLI) in different sites around Europe. The main focus of ESSLLI is on the interface between linguistics, logic and computation. ESSLLI offers foundational, introductory and advanced courses, as well as workshops, covering a wide variety of topics within the three areas of interest: Language and Computation, Language and Logic, and Logic and Computation. The 16 papers presented in this volume have been selected among 44 papers presented by talks or posters at the Student Sessions of the 24th and 25th editions of ESSLLI, held in 2012 in Opole, Poland, and 2013 in Dusseldorf, Germany. The papers are extended versions of the versions presented, and have all been subjected to a second round of blind peer review.
In his rich and varied career as a mathematician, computer scientist, and educator, Jacob T. Schwartz wrote seminal works in analysis, mathematical economics, programming languages, algorithmics, and computational geometry. In this volume of essays, his friends, students, and collaborators at the Courant Institute of Mathematical Sciences present recent results in some of the fields that Schwartz explored: quantum theory, the theory and practice of programming, program correctness and decision procedures, dextrous manipulation in Robotics, motion planning, and genomics. In addition to presenting recent results in these fields, these essays illuminate the astonishingly productive trajectory of a brilliant and original scientist and thinker.
This textbook gives an introduction to axiomatic set theory and examines the prominent questions that are relevant in current research in a manner that is accessible to students. Its main theme is the interplay of large cardinals, inner models, forcing and descriptive set theory. The following topics are covered:
Optimization is of central concern to a number of discip lines. Operations Research and Decision Theory are often consi dered to be identical with optimizationo But also in other areas such as engineering design, regional policy, logistics and many others, the search for optimal solutions is one of the prime goals. The methods and models which have been used over the last decades in these areas have primarily been "hard" or "crisp," i. e. the solutions were considered to be either fea sible or unfeasible, either above a certain aspiration level or below. This dichotomous structure of methods very often forced the modeller to approximate real problem situations of the more-or-less type by yes-or-no-type models, the solutions of which might turn out not to be the solutions to the real prob lems. This is particularly true if the problem under considera tion includes vaguely defined relationships, human evaluations, uncertainty due to inconsistent or incomplete evidence, if na tural language has to be modelled or if state variables can only be described approximately. Until recently, everything which was not known with cer tainty, i. e. which was not known to be either true or false or which was not known to either happen with certainty or to be impossible to occur, was modelled by means of probabilitieso This holds in particular for uncertainties concerning the oc currence of events."
Fuzzy Set Theory - And Its Applications, Third Edition is a
textbook for courses in fuzzy set theory. It can also be used as an
introduction to the subject. The character of a textbook is
balanced with the dynamic nature of the research in the field by
including many useful references to develop a deeper understanding
among interested readers.
Ernst Zermelo (1871-1953) is regarded as the founder of axiomatic set theory and is best-known for the first formulation of the axiom of choice. However, his papers also include pioneering work in applied mathematics and mathematical physics. This edition of his collected papers consists of two volumes. The present Volume II covers Ernst Zermelo's work on the calculus of variations, applied mathematics, and physics. The papers are each presented in their original language together with an English translation, the versions facing each other on opposite pages. Each paper or coherent group of papers is preceded by an introductory note provided by an acknowledged expert in the field who comments on the historical background, motivation, accomplishments, and influence.
This is the first book devoted to the systematic study of sparse graphs and sparse finite structures. Although the notion of sparsity appears in various contexts and is a typical example of a hard to define notion, the authors devised an unifying classification of general classes of structures. This approach is very robust and it has many remarkable properties. For example the classification is expressible in many different ways involving most extremal combinatorial invariants. This study of sparse structures found applications in such diverse areas as algorithmic graph theory, complexity of algorithms, property testing, descriptive complexity and mathematical logic (homomorphism preservation,fixed parameter tractability and constraint satisfaction problems). It should be stressed that despite of its generality this approach leads to linear (and nearly linear) algorithms. Jaroslav Nesetril is a professor at Charles University, Prague; Patrice Ossona de Mendez is a CNRS researcher et EHESS, Paris. This book is related to the material presented by the first author at ICM 2010.
"Intuition" has perhaps been the least understood and the most abused term in philosophy. It is often the term used when one has no plausible explanation for the source of a given belief or opinion. According to some sceptics, it is understood only in terms of what it is not, and it is not any of the better understood means for acquiring knowledge. In mathematics the term has also unfortunately been used in this way. Thus, intuition is sometimes portrayed as if it were the Third Eye, something only mathematical "mystics," like Ramanujan, possess. In mathematics the notion has also been used in a host of other senses: by "intuitive" one might mean informal, or non-rigourous, or visual, or holistic, or incomplete, or perhaps even convincing in spite of lack of proof. My aim in this book is to sweep all of this aside, to argue that there is a perfectly coherent, philosophically respectable notion of mathematical intuition according to which intuition is a condition necessary for mathemati cal knowledge. I shall argue that mathematical intuition is not any special or mysterious kind of faculty, and that it is possible to make progress in the philosophical analysis of this notion. This kind of undertaking has a precedent in the philosophy of Kant. While I shall be mostly developing ideas about intuition due to Edmund Husser there will be a kind of Kantian argument underlying the entire book."
All students taking laboratory courses within the physical sciences and engineering will benefit from this book, whilst researchers will find it an invaluable reference. This concise, practical guide brings the reader up-to-speed on the proper handling and presentation of scientific data and its inaccuracies. It covers all the vital topics with practical guidelines, computer programs (in Python), and recipes for handling experimental errors and reporting experimental data. In addition to the essentials, it also provides further background material for advanced readers who want to understand how the methods work. Plenty of examples, exercises and solutions are provided to aid and test understanding, whilst useful data, tables and formulas are compiled in a handy section for easy reference.
Intended for researchers and graduate students in theoretical computer science and mathematical logic, this volume contains accessible surveys by leading researchers from areas of current work in logical aspects of computer science, where both finite and infinite model-theoretic methods play an important role. Notably, the articles in this collection emphasize points of contact and connections between finite and infinite model theory in computer science that may suggest new directions for interaction. Among the topics discussed are: algorithmic model theory, descriptive complexity theory, finite model theory, finite variable logic, model checking, model theory for restricted classes of finite structures, and spatial databases. The chapters all include extensive bibliographies facilitating deeper exploration of the literature and further research.
During 1996-97 MSRI held a full academic-year program on combinatorics, with special emphasis on its connections to other branches of mathematics, such as algebraic geometry, topology, commutative algebra, representation theory, and convex geometry. The rich combinatorial problems arising from the study of various algebraic structures are the subject of this book, which features work done or presented at the program's seminars. The text contains contributions on matroid bundles, combinatorial representation theory, lattice points in polyhedra, bilinear forms, combinatorial differential topology and geometry, Macdonald polynomials and geometry, enumeration of matchings, the generalized Baues problem, and Littlewood-Richardson semigroups. These expository articles, written by some of the most respected researchers in the field, present the state of the art to graduate students and researchers in combinatorics as well as in algebra, geometry, and topology.
An understanding of emergent computation requires a profound revision of the most fundamental ideas. A noticeable attempt of such a rethinking is a world view in which natural systems are seen not as separate entities but as integrated parts of a unified whole. The book for the first time presents such a mathematical structure, which remarkably is based on integers as the single concept. As integers are considered to be the most fundamental entities irreducible to something simpler, this makes the mathematical structure a final theory, and thus we do not have to look for its explanation in terms of deeper concepts. The book is not only applicable to models of computation and optimization but also has scientific consequences, as it contributes to a rethinking of the most fundamental ideas about nature. Audience: The book is written at a level suitable for advanced undergraduate students and graduate students as well as research workers and practitioners in computer science information technology, mathematics and physics. The book is suitable as a reference or as supplementary reading material for an advanced graduate course. Only a basic knowledge of calculus is required.
Every mathematician agrees that every mathematician must know some set theory; the disagreement begins in trying to decide how much is some. This book contains my answer to that question. The purpose of the book is to tell the beginning student of advanced mathematics the basic set theoretic facts of life, and to do so with the minimum of philosophical discourse and logical formalism. The point of view throughout is that of a prospective mathematician anxious to study groups, or integrals, or manifolds. From this point of view the concepts and methods of this book are merely some of the standard mathematical tools; the expert specialist will find nothing new here. Scholarly bibliographical credits and references are out of place in a purely expository book such as this one. The student who gets interested in set theory for its own sake should know, however, that there is much more to the subject than there is in this book. One of the most beautiful sources of set-theoretic wisdom is still Hausdorff's Set theory. A recent and highly readable addition to the literature, with an extensive and up-to-date bibliography, is Axiomatic set theory by Suppes."
Fuzzy geometric programming was originated by the author in the Proceed ing of the second IFSA conferences, 1987(Tokyo) 14 years ago. Later, the paper was invited for formal publication in the International Journal of Fuzzy Sets and Systems. From then on, more and more papers have been written by scholars all over the world who have been interested in its research. So this programming method has been acknowledged by experts and has gradually formed a new branch of fuzzy mathematics. lnspired by Zadeh's fuzzy sets theory, fuzzy geometric programming emerges from the combination of fuzzy sets theory with geometric programming, where models are built in the fuzzy posynomial and the reverse geometric program ming. The present book is intended to discuss fuzziness of objective function and constraint conditions, a variety of fuzzy numbers in coefficients and vari ables and problems about multi-objective fuzzy geometric programming. It establishes and rounds out an entire theory system, showing that there exist conditions of fuzzy optimal or most satisfactory solutions in fuzzy geometric ptogramming, and it develops some effective algorithms. In order to introduce this new branch, the book aims at the exposition of three points: encompassing ideas and conception, theory and methods, and diffusion and application. lt lays more emphasis on the second point than the first one, and less on the third. Besides, it introduces some knowledge of classical geometric programming and of fuzzy sets theory and application examples of fuzzy geometric programming in electric power systems as weil."
The theory presented in this book is developed constructively, is based on a few axioms encapsulating the notion of objects (points and sets) being apart, and encompasses both point-set topology and the theory of uniform spaces. While the classical-logic-based theory of proximity spaces provides some guidance for the theory of apartness, the notion of nearness/proximity does not embody enough algorithmic information for a deep constructive development. The use of constructive (intuitionistic) logic in this book requires much more technical ingenuity than one finds in classical proximity theory -- algorithmic information does not come cheaply -- but it often reveals distinctions that are rendered invisible by classical logic. In the first chapter the authors outline informal constructive logic and set theory, and, briefly, the basic notions and notations for metric and topological spaces. In the second they introduce axioms for a point-set apartness and then explore some of the consequences of those axioms. In particular, they examine a natural topology associated with an apartness space, and relations between various types of continuity of mappings. In the third chapter the authors extend the notion of point-set (pre-)apartness axiomatically to one of (pre-)apartness between subsets of an inhabited set. They then provide axioms for a quasiuniform space, perhaps the most important type of set-set apartness space. Quasiuniform spaces play a major role in the remainder of the chapter, which covers such topics as the connection between uniform and strong continuity (arguably the most technically difficult part of the book), apartness and convergence in function spaces, types of completeness, and neat compactness. Each chapter has a Notes section, in which are found comments on the definitions, results, and proofs, as well as occasional pointers to future work. The book ends with a Postlude that refers to other constructive approaches to topology, with emphasis on the relation between apartness spaces and formal topology. Largely an exposition of the authors' own research, this is the first book dealing with the apartness approach to constructive topology, and is a valuable addition to the literature on constructive mathematics and on topology in computer science. It is aimed at graduate students and advanced researchers in theoretical computer science, mathematics, and logic who are interested in constructive/algorithmic aspects of topology.
The book presents a thoroughly elaborated logical theory of generalized truth-values understood as subsets of some established set of (basic) truth values. After elucidating the importance of the very notion of a truth value in logic and philosophy, we examine some possible ways of generalizing this notion. The useful four-valued logic of first-degree entailment by Nuel Belnap and the notion of a bilattice (a lattice of truth values with two ordering relations) constitute the basis for further generalizations. By doing so we elaborate the idea of a multilattice, and most notably, a trilattice of truth values - a specific algebraic structure with information ordering and two distinct logical orderings, one for truth and another for falsity. Each logical order not only induces its own logical vocabulary, but determines also its own entailment relation. We consider both semantic and syntactic ways of formalizing these relations and construct various logical calculi.
L.E.J. Brouwer (1881-1966) is best known for his revolutionary ideas on topology and foundations of mathematics (intuitionism). The present collection contains a mixture of letters; university and faculty correspondence has been included, some of which shed light on the student years, and in particular on the exchange of letters with his PhD adviser, Korteweg. Acting as the natural sequel to the publication of Brouwer's biography, this book provides instrumental reading for those wishing to gain a deeper understanding of Brouwer and his role in the twentieth century. Striking a good balance of biographical and scientific information, the latter deals with innovations in topology (Cantor-Schoenflies style and the new topology) and foundations. The topological period in his research is well represented in correspondence with Hilbert, Schoenflies, Poincare, Blumenthal, Lebesgue, Baire, Koebe, and foundational topics are discussed in letters exchanged with Weyl, Fraenkel, Heyting, van Dantzig and others. There is also a large part of correspondence on matters related to the interbellum scientific politics. This book will appeal to both graduate students and researchers with an interest in topology, the history of mathematics, the foundations of mathematics, philosophy and general science.
Originally published in 1981, this book forms volume 15 of the Encyclopedia of Mathematics and its Applications. The text provides a clear and thorough treatment of its subject, adhering to a clean exposition of the mathematical content of serious formulations of rational physical alternatives of quantum theory as elaborated in the influential works of the period, to which the authors made a significant contribution. The treatment falls into three distinct, logical parts: in the first part, the modern version of accumulated wisdom is presented, avoiding as far as possible the traditional language of classical physics for its interpretational character; in the second part, the individual structural elements for the logical content of the theory are laid out; in part three, the results of section two are used to reconstruct the usual Hilbert space formulation of quantum mechanics in a novel way.
This book grew out of my confusion. If logic is objective how can there be so many logics? Is there one right logic, or many right ones? Is there some underlying unity that connects them? What is the significance of the mathematical theorems about logic which I've learned if they have no connection to our everyday reasoning? The answers I propose revolve around the perception that what one pays attention to in reasoning determines which logic is appropriate. The act of abstracting from our reasoning in our usual language is the stepping stone from reasoned argument to logic. We cannot take this step alone, for we reason together: logic is reasoning which has some objective value. For you to understand my answers, or perhaps better, conjectures, I have retraced my steps: from the concrete to the abstract, from examples, to general theory, to further confirming examples, to reflections on the significance of the work.
In recent years, an impetuous development of new, unconventional theories, methods, techniques and technologies in computer and information sciences, systems analysis, decision-making and control, expert systems, data modelling, engineering, etc. , resulted in a considerable increase of interest in adequate mathematical description and analysis of objects, phenomena, and processes which are vague or imprecise by their very nature. Classical two-valued logic and the related notion of a set, together with its mathematical consequences, are then often inadequate or insufficient formal tools, and can even become useless for applications because of their (too) categorical character: 'true - false', 'belongs - does not belong', 'is - is not', 'black - white', '0 - 1', etc. This is why one replaces classical logic by various types of many-valued logics and, on the other hand, more general notions are introduced instead of or beside that of a set. Let us mention, for instance, fuzzy sets and derivative concepts, flou sets and twofold fuzzy sets, which have been created for different purposes as well as using distinct formal and informal motivations. A kind of numerical information concerning of 'how many' elements those objects are composed seems to be one of the simplest and more important types of information about them. To get it, one needs a suitable notion of cardinality and, moreover, a possibility to calculate with such cardinalities. Unfortunately, neither fuzzy sets nor the other nonclassical concepts have been equipped with a satisfactory (nonclassical) cardinality theory.
The primary purpose of this book is to present information about selected topics on the interactions and applications of fuzzy + neural. Most of the discussion centers around our own research in these areas. Fuzzy + neural can mean many things: (1) approximations between fuzzy systems and neu ral nets (Chapter 4); (2) building hybrid neural nets to equal fuzzy systems (Chapter 5); (3) using neura.l nets to solve fuzzy problems (Chapter 6); (4) approximations between fuzzy neural nets and other fuzzy systems (Chap ter 8); (5) constructing hybrid fuzzy neural nets for certain fuzzy systems (Chapters 9, 10); or (6) computing with words (Chapter 11). This book is not intend to be used primarily as a text book for a course in fuzzy + neural because we have not included problems at the end of each chapter, we have omitted most proofs (given in the references), and we have given very few references. We wanted to keep the mathematical prerequisites to a minimum so all longer, involved, proofs were omitted. Elementary dif ferential calculus is the only prerequisite needed since we do mention partial derivatives once or twice."
The impact and influence of Jean-Pierre Serre's work have been notable ever since his doctoral thesis on homotopy groups. The abundance of significant results and deep insight contained in his research and survey papers ranging through topology, several complex variables, and algebraic geometry to number theory, group theory, commutative algebra and modular forms, continues to provide inspiring reading for mathematicians working in these areas, in their research and their teaching. Characteristic of Serre's publications are the many open questions he formulated suggesting further research directions. Four volumes specify how he has provided comments on and corrections to most articles, and described the present status of the open questions with reference to later results. Jean-Pierre Serre is one of a few mathematicians to have won the Fields medal, the Abel prize, and the Wolf prize.
This book explains the first published consistency proof of PA. It contains the original Gentzen's proof, but it uses modern terminology and examples to illustrate the essential notions. The author comments on Gentzen's steps which are supplemented with exact calculations and parts of formal derivations. A notable aspect of the proof is the representation of ordinal numbers that was developed by Gentzen. This representation is analysed and connection to set-theoretical representation is found, namely an algorithm for translating Gentzen's notation into Cantor normal form. The topic should interest researchers and students who work on proof theory, history of proof theory or Hilbert's program and who do not mind reading mathematical texts. "
This monograph provides the first up-to-date and self-contained presentation of a recently discovered mathematical structure the Schrodinger-Virasoro algebra. Just as Poincare invariance or conformal (Virasoro) invariance play a key role in understanding, respectively, elementary particles and two-dimensional equilibrium statistical physics, this algebra of non-relativistic conformal symmetries may be expected to apply itself naturally to the study of some models of non-equilibrium statistical physics, or more specifically in the context of recent developments related to the non-relativistic AdS/CFT correspondence. The study of the structure of this infinite-dimensional Lie algebra touches upon topics as various as statistical physics, vertex algebras, Poisson geometry, integrable systems and supergeometry as well as representation theory, the cohomology of infinite-dimensional Lie algebras, and the spectral theory of Schrodinger operators."
Fuzzy theory is an interesting name for a method that has been highly effective in a wide variety of significant, real-world applications. A few examples make this readily apparent. As the result of a faulty design the method of computer-programmed trading, the biggest stock market crash in history was triggered by a small fraction of a percent change in the interest rate in a Western European country. A fuzzy theory ap proach would have weighed a number of relevant variables and the ranges of values for each of these variables. Another example, which is rather simple but pervasive, is that of an electronic thermostat that turns on heat or air conditioning at a specific temperature setting. In fact, actual comfort level involves other variables such as humidity and the location of the sun with respect to windows in a home, among others. Because of its great applied significance, fuzzy theory has generated widespread activity internationally. In fact, institutions devoted to research in this area have come into being. As the above examples suggest, Fuzzy Systems Theory is of fundamen tal importance for the analysis and design of a wide variety of dynamic systems. This clearly manifests the fundamental importance of time con siderations in the Fuzzy Systems design approach in dynamic systems. This textbook by Prof. Dr. Jernej Virant provides what is evidently a uniquely significant and comprehensive treatment of this subject on the international scene." |
You may like...
Primary Maths for Scotland Textbook 2A…
Craig Lowther, Antoinette Irwin, …
Paperback
Arnon Avron on Semantics and Proof…
Ofer Arieli, Anna Zamansky
Hardcover
R3,638
Discovery Miles 36 380
The High School Arithmetic - for Use in…
W. H. Ballard, A. C. McKay, …
Hardcover
R956
Discovery Miles 9 560
The New Method Arithmetic [microform]
P (Phineas) McIntosh, C a (Carl Adolph) B 1879 Norman
Hardcover
R897
Discovery Miles 8 970
The Public School Arithmetic - Based on…
J a (James Alexander) 18 McLellan, A F (Albert Flintoft) Ames
Hardcover
R896
Discovery Miles 8 960
|