![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Mathematical foundations > General
Originally published in 1981, this book forms volume 15 of the Encyclopedia of Mathematics and its Applications. The text provides a clear and thorough treatment of its subject, adhering to a clean exposition of the mathematical content of serious formulations of rational physical alternatives of quantum theory as elaborated in the influential works of the period, to which the authors made a significant contribution. The treatment falls into three distinct, logical parts: in the first part, the modern version of accumulated wisdom is presented, avoiding as far as possible the traditional language of classical physics for its interpretational character; in the second part, the individual structural elements for the logical content of the theory are laid out; in part three, the results of section two are used to reconstruct the usual Hilbert space formulation of quantum mechanics in a novel way.
Graph theory meets number theory in this stimulating book. Ihara zeta functions of finite graphs are reciprocals of polynomials, sometimes in several variables. Analogies abound with number-theoretic functions such as Riemann/Dedekind zeta functions. For example, there is a Riemann hypothesis (which may be false) and prime number theorem for graphs. Explicit constructions of graph coverings use Galois theory to generalize Cayley and Schreier graphs. Then non-isomorphic simple graphs with the same zeta are produced, showing you cannot hear the shape of a graph. The spectra of matrices such as the adjacency and edge adjacency matrices of a graph are essential to the plot of this book, which makes connections with quantum chaos and random matrix theory, plus expander/Ramanujan graphs of interest in computer science. Created for beginning graduate students, the book will also appeal to researchers. Many well-chosen illustrations and exercises, both theoretical and computer-based, are included throughout.
This volume contains the accounts of papers delivered at the Nato Advanced Study Institute on Finite and Infinite Combinatorics in Sets and Logic held at the Banff Centre, Alberta, Canada from April 21 to May 4, 1991. As the title suggests the meeting brought together workers interested in the interplay between finite and infinite combinatorics, set theory, graph theory and logic. It used to be that infinite set theory, finite combinatorics and logic could be viewed as quite separate and independent subjects. But more and more those disciplines grow together and become interdependent of each other with ever more problems and results appearing which concern all of those disciplines. I appreciate the financial support which was provided by the N. A. T. O. Advanced Study Institute programme, the Natural Sciences and Engineering Research Council of Canada and the Department of Mathematics and Statistics of the University of Calgary. 11l'te meeting on Finite and Infinite Combinatorics in Sets and Logic followed two other meetings on discrete mathematics held in Banff, the Symposium on Ordered Sets in 1981 and the Symposium on Graphs and Order in 1984. The growing inter-relation between the different areas in discrete mathematics is maybe best illustrated by the fact that many of the participants who were present at the previous meetings also attended this meeting on Finite and Infinite Combinatorics in Sets and Logic.
This volume offers comprehensive coverage of intelligent systems, including fundamental aspects, software-, sensors-, and hardware-related issues. Moreover, the contributors to this volume provide, beyond a systematic overview of intelligent interfaces and systems, deep, practical knowledge in building and using intelligent systems in various applications. Special emphasis is placed on specific aspects and requirements in applications.
Knowledge discovery is an area of computer science that attempts to uncover interesting and useful patterns in data that permit a computer to perform a task autonomously or assist a human in performing a task more efficiently. Soft Computing for Knowledge Discovery provides a self-contained and systematic exposition of the key theory and algorithms that form the core of knowledge discovery from a soft computing perspective. It focuses on knowledge representation, machine learning, and the key methodologies that make up the fabric of soft computing - fuzzy set theory, fuzzy logic, evolutionary computing, and various theories of probability (e.g. naive Bayes and Bayesian networks, Dempster-Shafer theory, mass assignment theory, and others). In addition to describing many state-of-the-art soft computing approaches to knowledge discovery, the author introduces Cartesian granule features and their corresponding learning algorithms as an intuitive approach to knowledge discovery. This new approach embraces the synergistic spirit of soft computing and exploits uncertainty in order to achieve tractability, transparency and generalization. Parallels are drawn between this approach and other well known approaches (such as naive Bayes and decision trees) leading to equivalences under certain conditions. The approaches presented are further illustrated in a battery of both artificial and real-world problems. Knowledge discovery in real-world problems, such as object recognition in outdoor scenes, medical diagnosis and control, is described in detail. These case studies provide further examples of how to apply the presented concepts and algorithms to practical problems. The author provides web page access to an online bibliography, datasets, source codes for several algorithms described in the book, and other information. Soft Computing for Knowledge Discovery is for advanced undergraduates, professionals and researchers in computer science, engineering and business information systems who work or have an interest in the dynamic fields of knowledge discovery and soft computing.
Fuzzy Set Theory and Advanced Mathematical Applications contains contributions by many of the leading experts in the field, including coverage of the mathematical foundations of the theory, decision making and systems science, and recent developments in fuzzy neural control. The book supplies a readable, practical toolkit with a clear introduction to fuzzy set theory and its evolution in mathematics and new results on foundations of fuzzy set theory, decision making and systems science, and fuzzy control and neural systems. Each chapter is self-contained, providing up-to-date coverage of its subject. Audience: An important reference work for university students, and researchers and engineers working in both industrial and academic settings.
Advances in Computational Intelligence and Learning: Methods and Applications presents new developments and applications in the area of Computational Intelligence, which essentially describes methods and approaches that mimic biologically intelligent behavior in order to solve problems that have been difficult to solve by classical mathematics. Generally Fuzzy Technology, Artificial Neural Nets and Evolutionary Computing are considered to be such approaches. The Editors have assembled new contributions in the areas of fuzzy sets, neural sets and machine learning, as well as combinations of them (so called hybrid methods) in the first part of the book. The second part of the book is dedicated to applications in the areas that are considered to be most relevant to Computational Intelligence.
This book is about Granular Computing (GC) - an emerging conceptual and of information processing. As the name suggests, GC concerns computing paradigm processing of complex information entities - information granules. In essence, information granules arise in the process of abstraction of data and derivation of knowledge from information. Information granules are everywhere. We commonly use granules of time (seconds, months, years). We granulate images; millions of pixels manipulated individually by computers appear to us as granules representing physical objects. In natural language, we operate on the basis of word-granules that become crucial entities used to realize interaction and communication between humans. Intuitively, we sense that information granules are at the heart of all our perceptual activities. In the past, several formal frameworks and tools, geared for processing specific information granules, have been proposed. Interval analysis, rough sets, fuzzy sets have all played important role in knowledge representation and processing. Subsequently, information granulation and information granules arose in numerous application domains. Well-known ideas of rule-based systems dwell inherently on information granules. Qualitative modeling, being one of the leading threads of AI, operates on a level of information granules. Multi-tier architectures and hierarchical systems (such as those encountered in control engineering), planning and scheduling systems all exploit information granularity. We also utilize information granules when it comes to functionality granulation, reusability of information and efficient ways of developing underlying information infrastructures.
Since the introduction of genetic algorithms in the 1970s, an enormous number of articles together with several significant monographs and books have been published on this methodology. As a result, genetic algorithms have made a major contribution to optimization, adaptation, and learning in a wide variety of unexpected fields. Over the years, many excellent books in genetic algorithm optimization have been published; however, they focus mainly on single-objective discrete or other hard optimization problems under certainty. There appears to be no book that is designed to present genetic algorithms for solving not only single-objective but also fuzzy and multiobjective optimization problems in a unified way. Genetic Algorithms And Fuzzy Multiobjective Optimization introduces the latest advances in the field of genetic algorithm optimization for 0-1 programming, integer programming, nonconvex programming, and job-shop scheduling problems under multiobjectiveness and fuzziness. In addition, the book treats a wide range of actual real world applications. The theoretical material and applications place special stress on interactive decision-making aspects of fuzzy multiobjective optimization for human-centered systems in most realistic situations when dealing with fuzziness. The intended readers of this book are senior undergraduate students, graduate students, researchers, and practitioners in the fields of operations research, computer science, industrial engineering, management science, systems engineering, and other engineering disciplines that deal with the subjects of multiobjective programming for discrete or other hard optimization problems under fuzziness. Real world research applications are used throughout the book to illustrate the presentation. These applications are drawn from complex problems. Examples include flexible scheduling in a machine center, operation planning of district heating and cooling plants, and coal purchase planning in an actual electric power plant.
The theory of finite automata on finite stings, infinite strings, and trees has had a dis tinguished history. First, automata were introduced to represent idealized switching circuits augmented by unit delays. This was the period of Shannon, McCullouch and Pitts, and Howard Aiken, ending about 1950. Then in the 1950s there was the work of Kleene on representable events, of Myhill and Nerode on finite coset congruence relations on strings, of Rabin and Scott on power set automata. In the 1960s, there was the work of Btichi on automata on infinite strings and the second order theory of one successor, then Rabin's 1968 result on automata on infinite trees and the second order theory of two successors. The latter was a mystery until the introduction of forgetful determinacy games by Gurevich and Harrington in 1982. Each of these developments has successful and prospective applications in computer science. They should all be part of every computer scientist's toolbox. Suppose that we take a computer scientist's point of view. One can think of finite automata as the mathematical representation of programs that run us ing fixed finite resources. Then Btichi's SIS can be thought of as a theory of programs which run forever (like operating systems or banking systems) and are deterministic. Finally, Rabin's S2S is a theory of programs which run forever and are nondeterministic. Indeed many questions of verification can be decided in the decidable theories of these automata.
The significance of foundational debate in mathematics that took place in the 1920s seems to have been recognized only in circles of mathematicians and philosophers. A period in the history of mathematics when mathematics and philosophy, usually so far away from each other, seemed to meet. The foundational debate is presented with all its brilliant contributions and its shortcomings, its new ideas and its misunderstandings.
Uncertainty has been of concern to engineers, managers and . scientists for many centuries. In management sciences there have existed definitions of uncertainty in a rather narrow sense since the beginning of this century. In engineering and uncertainty has for a long time been considered as in sciences, however, synonymous with random, stochastic, statistic, or probabilistic. Only since the early sixties views on uncertainty have ~ecome more heterogeneous and more tools to model uncertainty than statistics have been proposed by several scientists. The problem of modeling uncertainty adequately has become more important the more complex systems have become, the faster the scientific and engineering world develops, and the more important, but also more difficult, forecasting of future states of systems have become. The first question one should probably ask is whether uncertainty is a phenomenon, a feature of real world systems, a state of mind or a label for a situation in which a human being wants to make statements about phenomena, i. e. , reality, models, and theories, respectively. One cart also ask whether uncertainty is an objective fact or just a subjective impression which is closely related to individual persons. Whether uncertainty is an objective feature of physical real systems seems to be a philosophical question. This shall not be answered in this volume.
This book contains the lectures given at the NATO ASI 910820 "Cellular Automata and Cooperative Systems" Meeting which was held at the Centre de Physique des Houches, France, from June 22 to July 2, 1992. This workshop brought together mathematical physicists, theoretical physicists and mathe maticians working in fields related to local interacting systems, cellular and probabilistic automata, statistical physics, and complexity theory, as well as applications of these fields. We would like to thank our sponsors and supporters whose interest and help was essential for the success of the meeting: the NATO Scientific Affairs Division, the DRET (Direction des Recherches, Etudes et Techniques), the Ministere des Affaires Etrangeres, the National Science Foundation. We would also like to thank all the secretaries who helped us during the preparation of the meeting, in particular Maryse Cohen-Solal (CPT, Marseille) and Janice Nowinski (Courant Institute, New York). We are grateful for the fine work of Mrs. Gladys Cavallone in preparing this volume."
Fuzzy Sets in Decision Analysis, Operations Research and Statistics includes chapters on fuzzy preference modeling, multiple criteria analysis, ranking and sorting methods, group decision-making and fuzzy game theory. It also presents optimization techniques such as fuzzy linear and non-linear programming, applications to graph problems and fuzzy combinatorial methods such as fuzzy dynamic programming. In addition, the book also accounts for advances in fuzzy data analysis, fuzzy statistics, and applications to reliability analysis. These topics are covered within four parts: * Decision Making, * Mathematical Programming, * Statistics and Data Analysis, and * Reliability, Maintenance and Replacement. The scope and content of the book has resulted from multiple interactions between the editor of the volume, the series editors, the series advisory board, and experts in each chapter area. Each chapter was written by a well-known researcher on the topic and reviewed by other experts in the area. These expert reviewers sometimes became co-authors because of the extent of their contribution to the chapter.As a result, twenty-five authors from twelve countries and four continents were involved in the creation of the 13 chapters, which enhances the international character of the project and gives an idea of how carefully the Handbook has been developed.
One of the characteristics of modern algebra is the development of new tools and concepts for exploring classes of algebraic systems, whereas the research on individual algebraic systems (e. g. , groups, rings, Lie algebras, etc. ) continues along traditional lines. The early work on classes of alge bras was concerned with showing that one class X of algebraic systems is actually contained in another class F. Modern research into the theory of classes was initiated in the 1930's by Birkhoff's work [1] on general varieties of algebras, and Neumann's work [1] on varieties of groups. A. I. Mal'cev made fundamental contributions to this modern development. ln his re ports [1, 3] of 1963 and 1966 to The Fourth All-Union Mathematics Con ference and to another international mathematics congress, striking the ories of classes of algebraic systems were presented. These were later included in his book [5]. International interest in the theory of formations of finite groups was aroused, and rapidly heated up, during this time, thanks to the work of Gaschiitz [8] in 1963, and the work of Carter and Hawkes [1] in 1967. The major topics considered were saturated formations, Fitting classes, and Schunck classes. A class of groups is called a formation if it is closed with respect to homomorphic images and subdirect products. A formation is called saturated provided that G E F whenever Gjip(G) E F.
The 20th Century brought the rise of General Topology. It arose from the effort to establish a solid base for Analysis and it is intimately related to the success of set theory. Many Valued Topology and Its Applications seeks to extend the field by taking the monadic axioms of general topology seriously and continuing the theory of topological spaces as topological space objects within an almost completely ordered monad in a given base category C. The richness of this theory is shown by the fundamental fact that the category of topological space objects in a complete and cocomplete (epi, extremal mono)-category C is topological over C in the sense of J. Adamek, H. Herrlich, and G.E. Strecker. Moreover, a careful, categorical study of the most important topological notions and concepts is given - e.g., density, closedness of extremal subobjects, Hausdorff's separation axiom, regularity, and compactness. An interpretation of these structures, not only by the ordinary filter monad, but also by many valued filter monads, underlines the richness of the explained theory and gives rise to new concrete concepts of topological spaces - so-called many valued topological spaces. Hence, many valued topological spaces play a significant role in various fields of mathematics - e.g., in the theory of locales, convergence spaces, stochastic processes, and smooth Borel probability measures. In its first part, the book develops the necessary categorical basis for general topology. In the second part, the previously given categorical concepts are applied to monadic settings determined by many valued filter monads. The third part comprises various applications of many valued topologies to probability theory and statistics as well as to non-classical model theory. These applications illustrate the significance of many valued topology for further research work in these important fields.
Fuzzy Logic and Soft Computing contains contributions from world-leading experts from both the academic and industrial communities. The first part of the volume consists of invited papers by international authors describing possibilistic logic in decision analysis, fuzzy dynamic programming in optimization, linguistic modifiers for word computation, and theoretical treatments and applications of fuzzy reasoning. The second part is composed of eleven contributions from Chinese authors focusing on some of the key issues in the fields: stable adaptive fuzzy control systems, partial evaluations and fuzzy reasoning, fuzzy wavelet neural networks, analysis and applications of genetic algorithms, partial repeatability, rough set reduction for data enriching, limits of agents in process calculus, medium logic and its evolution, and factor spaces canes. These contributions are not only theoretically sound and well-formulated, but are also coupled with applicability implications and/or implementation treatments. The domains of applications realized or implied are: decision analysis, word computation, databases and knowledge discovery, power systems, control systems, and multi-destinational routing. Furthermore, the articles contain materials that are an outgrowth of recently conducted research, addressing fundamental and important issues of fuzzy logic and soft computing.
Nonstandard Methods of Analysis is concerned with the main trends in this field; infinitesimal analysis and Boolean-valued analysis. The methods that have been developed in the last twenty-five years are explained in detail, and are collected in book form for the first time. Special attention is paid to general principles and fundamentals of formalisms for infinitesimals as well as to the technique of descents and ascents in a Boolean-valued universe. The book also includes various novel applications of nonstandard methods to ordered algebraic systems, vector lattices, subdifferentials, convex programming etc. that have been developed in recent years. For graduate students, postgraduates and all researchers interested in applying nonstandard methods in their work.
In decision theory there are basically two appr hes to the modeling of individual choice: one is based on an absolute representation of preferences leading to a ntDnerical expression of preference intensity. This is utility theory. Another approach is based on binary relations that encode pairwise preference. While the former has mainly blossomed in the Anglo-Saxon academic world, the latter is mostly advocated in continental Europe, including Russia. The advantage of the utility theory approach is that it integrates uncertainty about the state of nature, that may affect the consequences of decision. Then, the problems of choice and ranking from the knowledge of preferences become trivial once the utility function is known. In the case of the relational approach, the model does not explicitly accounts for uncertainty, hence it looks less sophisticated. On the other hand it is more descriptive than normative in the first stand because it takes the pairwise preference pattern expressed by the decision-maker as it is and tries to make the best out of it. Especially the preference relation is not supposed to have any property. The main problem with the utility theory approach is the gap between what decision-makers are and can express, and what the theory would like them to be and to be capable of expressing. With the relational approach this gap does not exist, but the main difficulty is now to build up convincing choice rules and ranking rules that may help the decision process.
Non-Classical Logics and their Applications to Fuzzy Subsets is the first major work devoted to a careful study of various relations between non-classical logics and fuzzy sets. This volume is indispensable for all those who are interested in a deeper understanding of the mathematical foundations of fuzzy set theory, particularly in intuitionistic logic, Lukasiewicz logic, monoidal logic, fuzzy logic and topos-like categories. The tutorial nature of the longer chapters, the comprehensive bibliography and index make it suitable as a valuable and important reference for graduate students as well as research workers in the field of non-classical logics. The book is arranged in three parts: Part A presents the most recent developments in the theory of Heyting algebras, MV-algebras, quantales and GL-monoids. Part B gives a coherent and current account of topos-like categories for fuzzy set theory based on Heyting algebra valued sets, quantal sets of M-valued sets. Part C addresses general aspects of non-classical logics including epistemological problems as well as recursive properties of fuzzy logic.
The book consists of articles at the frontier of current research in Algebraic Topology. It presents recent results by top notch experts, and is intended primarily for researchers and graduate students working in the field of algebraic topology. Included is an important article by Cohen, Johnes and Yan on the homology of the space of smooth loops on a manifold M, endowed with the Chas-Sullivan intersection product, as well as an article by Goerss, Henn and Mahowald on stable homotopy groups of spheres, which uses the cutting edge technology of "topological modular forms."
Hybrid Intelligent Systems summarizes the strengths and weaknesses of five intelligent technologies: fuzzy logic, genetic algorithms, case-based reasoning, neural networks and expert systems, reviewing the status and significance of research into their integration. Engineering and scientific examples and case studies are used to illustrate principles and application development techniques. The reader will gain a clear idea of the current status of hybrid intelligent systems and discover how to choose and develop appropriate applications. The book is based on a thorough literature search of recent publications on research and development in hybrid intelligent systems; the resulting 50-page reference section of the book is invaluable. The book starts with a summary of the five major intelligent technologies and of the issues in and current status of research into them. Each subsequent chapter presents a detailed discussion of a different combination of intelligent technologies, along with examples and case studies. Four chapters contain detailed case studies of working hybrid systems.The book enables the reader to: * Describe the important concepts, strengths and limitations of each technology; * Recognize and analyze potential problems with the application of hybrid systems; * Choose appropriate hybrid intelligent solutions; * Understand how applications are designed with any of the approaches covered; * Choose appropriate commercial development shells or tools. An invaluable reference source for those who wish to apply intelligent systems techniques to their own problems.
This monograph compiles, rearranges, and refines recent research results in the complex G-L theory with or without immediate applications to the theory of superconductivity. An authoritative reference for applied mathematicians, theoretical physicists and engineers interested in the quantitative description of superconductivity using Ginzburg-Landau theory.
We live, unfortunately, in turbulent and difficult times plagued by various political, economic, and social problems, as well as by natural disasters worldwide. Systems become more and more complicated, and this concerns all levels, exemplified first by global political alliances, groups of countries, regions, etc., and secondly, by multinational (global) corporations and companies of all sizes. These same concerns affect all social groups. This all makes decision processes very complicated. In virtually all decision processes in these complicated systems, there are various actors (decision makers) who represent individual subjects (persons, countries, companies, etc.) and their respective interest groups. To reach a meaningful (good) decision, opinions of all such actors must be taken into account or a given decision may be rejected and not implemented. Ideally, a decision would be made after a consensus between the parties involved had been attained. So, consensus is a very desirable situation. In most real-world cases there is considerable uncertainty concerning all aspects of the decision making process. Moreover, opinions, goals, constraints, etc. are usually imprecisely known. This makes the decision making process difficult as one cannot employ conventional "hard" tools.
The analysis and control of complex systems have been the main motivation for the emergence of fuzzy set theory since its inception. It is also a major research field where many applications, especially industrial ones, have made fuzzy logic famous. This unique handbook is devoted to an extensive, organized, and up-to-date presentation of fuzzy systems engineering methods. The book includes detailed material and extensive bibliographies, written by leading experts in the field, on topics such as: Use of fuzzy logic in various control systems. Fuzzy rule-based modeling and its universal approximation properties. Learning and tuning techniques for fuzzy models, using neural networks and genetic algorithms. Fuzzy control methods, including issues such as stability analysis and design techniques, as well as the relationship with traditional linear control. Fuzzy sets relation to the study of chaotic systems, and the fuzzy extension of set-valued approaches to systems modeling through the use of differential inclusions. Fuzzy Systems: Modeling and Control is part of The Handbooks of Fuzzy Sets Series. The series provides a complete picture of contemporary fuzzy set theory and its applications. This volume is a key reference for systems engineers and scientists seeking a guide to the vast amount of literature in fuzzy logic modeling and control. |
You may like...
The High School Arithmetic - for Use in…
W. H. Ballard, A. C. McKay, …
Hardcover
R981
Discovery Miles 9 810
The New Method Arithmetic [microform]
P (Phineas) McIntosh, C a (Carl Adolph) B 1879 Norman
Hardcover
R921
Discovery Miles 9 210
|