![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Mathematical foundations > General
This work provides a posteriori error analysis for mathematical idealizations in modeling boundary value problems, especially those arising in mechanical applications, and for numerical approximations of numerous nonlinear var- tional problems. An error estimate is called a posteriori if the computed solution is used in assessing its accuracy. A posteriori error estimation is central to m- suring, controlling and minimizing errors in modeling and numerical appr- imations. In this book, the main mathematical tool for the developments of a posteriori error estimates is the duality theory of convex analysis, documented in the well-known book by Ekeland and Temam ( 49]). The duality theory has been found useful in mathematical programming, mechanics, numerical analysis, etc. The book is divided into six chapters. The first chapter reviews some basic notions and results from functional analysis, boundary value problems, elliptic variational inequalities, and finite element approximations. The most relevant part of the duality theory and convex analysis is briefly reviewed in Chapter 2.
This book provides a broad introduction to some of the most fascinating and beautiful areas of discrete mathematical structures. It starts with a chapter on sets and goes on to provide examples in logic, applications of the principle of inclusion and exclusion and finally the pigeonhole principal. Computational techniques including the principle of mathematical introduction are provided, as well as a study on elementary properties of graphs, trees and lattices. Some basic results on groups, rings, fields and vector spaces are also given, the treatment of which is intentionally simple since such results are fundamental as a foundation for students of discrete mathematics. In addition, some results on solutions of systems of linear equations are discussed.
This book provides a broad introduction to some of the most fascinating and beautiful areas of discrete mathematical structures. It starts with a chapter on sets and goes on to provide examples in logic, applications of the principle of inclusion and exclusion and finally the pigeonhole principal. Computational techniques including the principle of mathematical introduction are provided, as well as a study on elementary properties of graphs, trees and lattices. Some basic results on groups, rings, fields and vector spaces are also given, the treatment of which is intentionally simple since such results are fundamental as a foundation for students of discrete mathematics. In addition, some results on solutions of systems of linear equations are discussed.
One of the masters in the differential equations community, the late F.V. Atkinson contributed seminal research to multiparameter spectral theory and Sturm-Liouville theory. His ideas and techniques have long inspired researchers and continue to stimulate discussion. With the help of co-author Angelo B. Mingarelli, Multiparameter Eigenvalue Problems: Sturm-Liouville Theory reflects much of Dr. Atkinson's final work. After covering standard multiparameter problems, the book investigates the conditions for eigenvalues to be real and form a discrete set. It gives results on the determinants of functions, presents oscillation methods for Sturm-Liouville systems and other multiparameter systems, and offers an alternative approach to multiparameter Sturm-Liouville problems in the case of two equations and two parameters. In addition to discussing the distribution of eigenvalues and infinite limit-points of the set of eigenvalues, the text focuses on proofs of the completeness of the eigenfunctions of a multiparameter Sturm-Liouville problem involving finite intervals. It also explores the limit-point, limit-circle classification as well as eigenfunction expansions. A lasting tribute to Dr. Atkinson's contributions that spanned more than 40 years, this book covers the full multiparameter theory as applied to second-order linear equations. It considers the spectral theory of multiparameter problems in detail for both regular and singular cases.
Handbook of Sinc Numerical Methods presents an ideal road map for handling general numeric problems. Reflecting the author's advances with Sinc since 1995, the text most notably provides a detailed exposition of the Sinc separation of variables method for numerically solving the full range of partial differential equations (PDEs) of interest to scientists and engineers. This new theory, which combines Sinc convolution with the boundary integral equation (IE) approach, makes for exponentially faster convergence to solutions of differential equations. The basis for the approach is the Sinc method of approximating almost every type of operation stemming from calculus via easily computed matrices of very low dimension. The downloadable resources of this handbook contain roughly 450 MATLAB (R) programs corresponding to exponentially convergent numerical algorithms for solving nearly every computational problem of science and engineering. While the book makes Sinc methods accessible to users wanting to bypass the complete theory, it also offers sufficient theoretical details for readers who do want a full working understanding of this exciting area of numerical analysis.
Mathematical Applications and Modelling is the second in the series of the yearbooks of the Association of Mathematics Educators in Singapore. The book is unique as it addresses a focused theme on mathematics education. The objective is to illustrate the diversity within the theme and present research that translates into classroom pedagogies. The book, comprising of 17 chapters, illuminates how application and modelling tasks may help develop the capacity of students to use mathematics in their present and future lives. Several renowned international researchers in the field of mathematical modelling have published their work in the book. The chapters are comprehensive and laden with evidence-based examples for both mathematics educators and classroom teachers. The book is an invaluable contribution towards the emerging field of research in mathematical applications and modelling. It is a must-read for graduate research students and mathematics educators.
This edited collection casts light on central issues within contemporary philosophy of mathematics such as the realism/anti-realism dispute; the relationship between logic and metaphysics; and the question of whether mathematics is a science of objects or structures. The discussions offered in the papers involve an in-depth investigation of, among other things, the notions of mathematical truth, proof, and grounding; and, often, a special emphasis is placed on considerations relating to mathematical practice. A distinguishing feature of the book is the multicultural nature of the community that has produced it. Philosophers, logicians, and mathematicians have all contributed high-quality articles which will prove valuable to researchers and students alike.
New to the Second Edition New Foreword by Joseph Clinton, life-long Buckminster Fuller collaborator A new chapter by Chris Kitrick on the mathematical techniques for developing optimal single-edge hexagonal tessellations, of varying density, with the smallest edge possible for a particular topology, suggesting ways of comparing their levels of optimization An expanded history of the evolution of spherical subdivision New applications of spherical design in science, product design, architecture and entertainment New geodesic algorithms for grid optimization New full-color spherical illustrations created using DisplaySphere to aid readers in visualizing and comparing the various tessellations presented in the book. Updated Bibliography with references to the most recent advancements in spherical subdivision methods.
This book presents a collection of invited articles by distinguished Mathematicians on the occasion of the Platinum Jubilee Celebrations of the Indian Statistical Institute, during the year 2007. These articles provide a current perspective of different areas of research, emphasizing the major challenging issues. Given the very significant record of the Institute in research in the areas of Statistics, Probability and Mathematics, distinguished authors have very admirably responded to the invitation. Some of the articles are written keeping students and potential new entrants to an area of mathematics in mind. This volume is thus very unique and gives a perspective of several important aspects of mathematics.
This monograph began life as a series of papers documenting five years of research into the logical foundations of Categorial Grammar, a grammatical paradigm which has close analogies with Lambda Calculus and Type Theory. The technical theory presented here stems from the interface between Logic and Linguistics and, in particular, the theory of generalized quantification. A categorical framework with lambda calculus-oriented semantics is a convenient vehicle for generalizing semantic insights (obtained in various corners of natural language) into one coherent theory.
Through revealing photographs and accompanying text, this book offers an enchanting and beautiful glimpse into the inner life of the Institut des Hautes Etudes Scientifiques (IHES). The IHES in France is an institute of advanced research in mathematics and theoretical physics with an interest in epistemology and the history of science. It provides exceptionally gifted scientists with a place where they can devote themselves entirely to their research, free of teaching and administrative constraints, and offers them the opportunity to invite visitors with whom they wish to work.
Features Provides a uniquely historical perspective on the mathematical underpinnings of a comprehensive list of games Suitable for a broad audience of differing mathematical levels. Anyone with a passion for games, game theory, and mathematics will enjoy this book, whether they be students, academics, or game enthusiasts Covers a wide selection of topics at a level that can be appreciated on a historical, recreational, and mathematical level.
This work presents the research results of students of the Graduiertenkolleg "Communication-Based Systems" to an international community. To stimulate the scientific discussion, experts have been invited to give their views on the following research areas: formal specification and mathematical foundations of distributed systems using process algebra, graph transformations, process calculi and temporal logics; performance evaluation, dependability modelling and analysis of real-time systems with different kinds of timed Petri-nets; specification and analysis of communication protocols; reliability, security and dependability in distributed systems; object orientation in distributed systems architecture; software development and concepts for distributed applications; computer network architecture and management; and language concepts for distributed systems.
Computational Intelligence Assisted Design framework mobilises computational resources, makes use of multiple Computational Intelligence (CI) algorithms and reduces computational costs. This book provides examples of real-world applications of technology. Case studies have been used to show the integration of services, cloud, big data technology and space missions. It focuses on computational modelling of biological and natural intelligent systems, encompassing swarm intelligence, fuzzy systems, artificial neutral networks, artificial immune systems and evolutionary computation. This book provides readers with wide-scale information on CI paradigms and algorithms, inviting readers to implement and problem solve real-world, complex problems within the CI development framework. This implementation framework will enable readers to tackle new problems without difficulty through a few tested MATLAB source codes
"The Art of Proof" is designed for a one-semester or two-quarter course. A typical student will have studied calculus (perhaps also linear algebra) with reasonable success. With an artful mixture of chatty style and interesting examples, the student's previous intuitive knowledge is placed on solid intellectual ground. The topics covered include: integers, induction, algorithms, real numbers, rational numbers, modular arithmetic, limits, and uncountable sets. Methods, such as axiom, theorem and proof, are taught while discussing the mathematics rather than in abstract isolation. The book ends with short essays on further topics suitable for seminar-style presentation by small teams of students, either in class or in a mathematics club setting. These include: continuity, cryptography, groups, complex numbers, ordinal number, and generating functions.
Residue number systems (RNSs) and arithmetic are useful for several reasons. First, a great deal of computing now takes place in embedded processors, such as those found in mobile devices, for which high speed and low-power consumption are critical; the absence of carry propagation facilitates the realization of high-speed, low-power arithmetic. Second, computer chips are now getting to be so dense that full testing will no longer be possible; so fault tolerance and the general area of computational integrity have become more important. RNSs are extremely good for applications such as digital signal processing, communications engineering, computer security (cryptography), image processing, speech processing, and transforms, all of which are extremely important in computing today.This book provides an up-to-date account of RNSs and arithmetic. It covers the underlying mathematical concepts of RNSs; the conversion between conventional number systems and RNSs; the implementation of arithmetic operations; various related applications are also introduced. In addition, numerous detailed examples and analysis of different implementations are provided.
This book creates a conceptual schema that acts as a correlation between Epistemology and Epistemic Logic. It connects both fields and offers a proper theoretical foundation for the contemporary developments of Epistemic Logic regarding the dynamics of information. It builds a bridge between the view of Awareness Justification Internalism, and a dynamic approach to Awareness Logic. The book starts with an introduction to the main topics in Epistemic Logic and Epistemology and reviews the disconnection between the two fields. It analyses three core notions representing the basic structure of the conceptual schema: "Epistemic Awareness", "Knowledge" and "Justification". Next, it presents the Explicit Aware Knowledge (EAK) Schema, using a diagram of three ellipses to illustrate the schema, and a formal model based on a neighbourhood-model structure, that shows one concrete application of the EAK-Schema into a logical structure. The book ends by presenting conclusions and final remarks about the uses and applications of the EAK-Schema. It shows that the most important feature of the schema is that it serves both as a theoretical correlate to the dynamic extensions of Awareness Logic, providing it with a philosophical background, and as an abstract conceptual structure for a re-interpretation of Epistemology.
"Knot theory is a fascinating mathematical subject, with multiple links to theoretical physics. This enyclopedia is filled with valuable information on a rich and fascinating subject." - Ed Witten, Recipient of the Fields Medal "I spent a pleasant afternoon perusing the Encyclopedia of Knot Theory. It's a comprehensive compilation of clear introductions to both classical and very modern developments in the field. It will be a terrific resource for the accomplished researcher, and will also be an excellent way to lure students, both graduate and undergraduate, into the field." - Abigail Thompson, Distinguished Professor of Mathematics at University of California, Davis Knot theory has proven to be a fascinating area of mathematical research, dating back about 150 years. Encyclopedia of Knot Theory provides short, interconnected articles on a variety of active areas in knot theory, and includes beautiful pictures, deep mathematical connections, and critical applications. Many of the articles in this book are accessible to undergraduates who are working on research or taking an advanced undergraduate course in knot theory. More advanced articles will be useful to graduate students working on a related thesis topic, to researchers in another area of topology who are interested in current results in knot theory, and to scientists who study the topology and geometry of biopolymers. Features Provides material that is useful and accessible to undergraduates, postgraduates, and full-time researchers Topics discussed provide an excellent catalyst for students to explore meaningful research and gain confidence and commitment to pursuing advanced degrees Edited and contributed by top researchers in the field of knot theory
In addition to explaining and modeling unexplored phenomena in nature and society, chaos uses vital parts of nonlinear dynamical systems theory and established chaotic theory to open new frontiers and fields of study. Handbook of Applications of Chaos Theory covers the main parts of chaos theory along with various applications to diverse areas. Expert contributors from around the world show how chaos theory is used to model unexplored cases and stimulate new applications. Accessible to scientists, engineers, and practitioners in a variety of fields, the book discusses the intermittency route to chaos, evolutionary dynamics and deterministic chaos, and the transition to phase synchronization chaos. It presents important contributions on strange attractors, self-exciting and hidden attractors, stability theory, Lyapunov exponents, and chaotic analysis. It explores the state of the art of chaos in plasma physics, plasma harmonics, and overtone coupling. It also describes flows and turbulence, chaotic interference versus decoherence, and an application of microwave networks to the simulation of quantum graphs. The book proceeds to give a detailed presentation of the chaotic, rogue, and noisy optical dissipative solitons; parhelic-like circle and chaotic light scattering; and interesting forms of the hyperbolic prism, the Poincare disc, and foams. It also covers numerous application areas, from the analysis of blood pressure data and clinical digital pathology to chaotic pattern recognition to economics to musical arts and research.
This workbook, which accompanies The Cryptoclub, provides students with problems related to each section to help them master the concepts introduced throughout the book. A PDF version is available at no charge. This file can be found under our Downloads and Updates tab. The teacher manual can be requested from the publisher by contacting the Academic Sales Manager, Susie Carlisle
Since techniques from topology and category theory have been used increasingly by theoretical computer scientists in recent years, it was decided during the Oxford Topology Symposium to hold a special session which would be devoted to the application of these topics in computer science. By holding this session in the context of the topology symposium, the organizers hoped to achieve a cross-fertilization between the communities they brought together - providing mathematicians with a course of new problems with a more practical flavour, and computer scientists with a source of solutions and ideas.
This is the first book to comprehensively cover chromatic polynomials of graphs. It includes most of the known results and unsolved problems in the area of chromatic polynomials. Dividing the book into three main parts, the authors take readers from the rudiments of chromatic polynomials to more complex topics: the chromatic equivalence classes of graphs and the zeros and inequalities of chromatic polynomials. The early material is well suited to a graduate level course while the latter parts will be an invaluable resource for postgraduate students and researchers in combinatorics and graph theory.
This is the first book to comprehensively cover chromatic polynomials of graphs. It includes most of the known results and unsolved problems in the area of chromatic polynomials. Dividing the book into three main parts, the authors take readers from the rudiments of chromatic polynomials to more complex topics: the chromatic equivalence classes of graphs and the zeros and inequalities of chromatic polynomials. The early material is well suited to a graduate level course while the latter parts will be an invaluable resource for postgraduate students and researchers in combinatorics and graph theory.
Extremal Optimization: Fundamentals, Algorithms, and Applications introduces state-of-the-art extremal optimization (EO) and modified EO (MEO) solutions from fundamentals, methodologies, and algorithms to applications based on numerous classic publications and the authors' recent original research results. It promotes the movement of EO from academic study to practical applications. The book covers four aspects, beginning with a general review of real-world optimization problems and popular solutions with a focus on computational complexity, such as "NP-hard" and the "phase transitions" occurring on the search landscape. Next, it introduces computational extremal dynamics and its applications in EO from principles, mechanisms, and algorithms to the experiments on some benchmark problems such as TSP, spin glass, Max-SAT (maximum satisfiability), and graph partition. It then presents studies on the fundamental features of search dynamics and mechanisms in EO with a focus on self-organized optimization, evolutionary probability distribution, and structure features (e.g., backbones), which are based on the authors' recent research results. Finally, it discusses applications of EO and MEO in multiobjective optimization, systems modeling, intelligent control, and production scheduling. The authors present the advanced features of EO in solving NP-hard problems through problem formulation, algorithms, and simulation studies on popular benchmarks and industrial applications. They also focus on the development of MEO and its applications. This book can be used as a reference for graduate students, research developers, and practical engineers who work on developing optimization solutions for those complex systems with hardness that cannot be solved with mathematical optimization or other computational intelligence, such as evolutionary computations.
Conveniently grouping methods by techniques, such as chi-squared and empirical distributionfunction, and also collecting methods of testing for specific famous distributions, this useful reference is the first comprehensive review of the extensive literature on the subject. It surveysthe leading methods of testing fit . .. provides tables to make the tests available . .. assessesthe comparative merits of different test procedures . .. and supplies numerical examples to aidin understanding these techniques.Goodness-of-Fit Techniques shows how to apply the techniques . .. emphasizes testing for thethree major distributions, normal, exponential, and uniform . .. discusses the handling of censoreddata .. . and contains over 650 bibliographic citations that cover the field.Illustrated with tables and drawings, this volume is an ideal reference for mathematical andapplied statisticians, and biostatisticians; professionals in applied science fields, including psychologists,biometricians , physicians, and quality control and reliability engineers; advancedundergraduate- and graduate-level courses on goodness-of-fit techniques; and professional seminarsand symposia on applied statistics, quality control, and reliability. |
You may like...
Genetic Programming Theory and Practice
Rick Riolo, Bill Worzel
Hardcover
R4,188
Discovery Miles 41 880
Local Fractional Integral Transforms and…
Xiaojun Yang, Dumitru Baleanu, …
Hardcover
R1,806
Discovery Miles 18 060
Crowdsourcing of Sensor Cloud Services
Azadeh Ghari Neiat, Athman Bouguettaya
Hardcover
Applications of Functional Analysis and…
V. Hutson, J Pym, …
Hardcover
R6,141
Discovery Miles 61 410
Research Anthology on Blockchain…
Information Reso Management Association
Hardcover
R9,775
Discovery Miles 97 750
Artificial Intelligence Technologies and…
Tomayess Issa, Pedro Isaias
Hardcover
R5,697
Discovery Miles 56 970
|