Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Mathematical foundations > General
This textbook presents the basics of philosophy that are necessary for the student and researcher in science in order to better understand scientific work. The approach is not historical but formative: tools for semantical analysis, ontology of science, epistemology, and scientific ethics are presented in a formal and direct way. The book has two parts: one with the general theory and a second part with application to some problems such as the interpretation of quantum mechanics, the nature of mathematics, and the ontology of spacetime. The book addresses questions such as "What is meaning?", "What is truth?", "What are truth criteria in science?", "What is a theory?", "What is a model?" "What is a datum?", "What is information?", "What does it mean to understand something?", "What is space?", "What is time?", "How are these concepts articulated in science?" "What are values?" "What are the limits of science?", and many more. The philosophical views presented are "scientific" in the sense that they are informed by current science, they are relevant for scientific research, and the method adopted uses the hypothetical-deductive approach that is characteristic of science. The results and conclusions, as any scientific conclusion, are open to revision in the light of future advances. Hence, this philosophical approach opposes to dogmatic philosophy. Supported by end-of-chapter summaries and a list of special symbols used, the material will be of interest for students and researchers in both science and philosophy. The second part will appeal to physicists and mathematicians.
Wearing Gauss's Jersey focuses on "Gauss problems," problems that can be very tedious and time consuming when tackled in a traditional, straightforward way but if approached in a more insightful fashion, can yield the solution much more easily and elegantly. The book shows how mathematical problem solving can be fun and how students can improve their mathematical insight, regardless of their initial level of knowledge. Illustrating the underlying unity in mathematics, it also explores how problems seemingly unrelated on the surface are actually extremely connected to each other. Each chapter starts with easy problems that demonstrate the simple insight/mathematical tools necessary to solve problems more efficiently. The text then uses these simple tools to solve more difficult problems, such as Olympiad-level problems, and develop more complex mathematical tools. The longest chapters investigate combinatorics as well as sequences and series, which are some of the most well-known Gauss problems. These topics would be very tedious to handle in a straightforward way but the book shows that there are easier ways of tackling them.
This accessible book helps readers to see the bigger picture of advanced mathematics. The book contains carefully selected, challenging problems in an easy-to-follow, step-by-step process. Neither prior preparation nor any mathematical sophistication is required. The authors guide the reader to "train their brain" to think and express themselves in a rigorous, mathematical way, and to extract facts, analyze the problem, and identify main challenges. A firm foundation in a diverse range of topics is presented. Moreover, the authors show how to draw appropriate, true conclusions. Computer support is used to better intuition into discussed problems. The book is designed for self-study. It can be used to bridge the gap between introductory calculus/linear algebra courses and more advanced courses offered at universities. It improves the ability to read, write, and think in a rigorous, mature mathematical fashion. The reader will develop a deeper understanding in preparation to succeed in more advanced course work. Features *The authors employ a six-step process: 1.SOURCE 2.PROBLEM 3.THEORY 4.SOLUTION 5.REMARK 6.EXERCISES *An Appendix introduces programming in Julia This book is also suitable for high school students that are interested in competing in math competitions or simply for people of all ages and backgrounds who want to expand their knowledge and to challenge themselves with interesting questions.
An Introduction to Mathematical Proofs presents fundamental material on logic, proof methods, set theory, number theory, relations, functions, cardinality, and the real number system. The text uses a methodical, detailed, and highly structured approach to proof techniques and related topics. No prerequisites are needed beyond high-school algebra. New material is presented in small chunks that are easy for beginners to digest. The author offers a friendly style without sacrificing mathematical rigor. Ideas are developed through motivating examples, precise definitions, carefully stated theorems, clear proofs, and a continual review of preceding topics. Features Study aids including section summaries and over 1100 exercises Careful coverage of individual proof-writing skills Proof annotations and structural outlines clarify tricky steps in proofs Thorough treatment of multiple quantifiers and their role in proofs Unified explanation of recursive definitions and induction proofs, with applications to greatest common divisors and prime factorizations About the Author: Nicholas A. Loehr is an associate professor of mathematics at Virginia Technical University. He has taught at College of William and Mary, United States Naval Academy, and University of Pennsylvania. He has won many teaching awards at three different schools. He has published over 50 journal articles. He also authored three other books for CRC Press, including Combinatorics, Second Edition, and Advanced Linear Algebra.
Representation Theory of Symmetric Groups is the most up-to-date abstract algebra book on the subject of symmetric groups and representation theory. Utilizing new research and results, this book can be studied from a combinatorial, algorithmic or algebraic viewpoint. This book is an excellent way of introducing today's students to representation theory of the symmetric groups, namely classical theory. From there, the book explains how the theory can be extended to other related combinatorial algebras like the Iwahori-Hecke algebra. In a clear and concise manner, the author presents the case that most calculations on symmetric group can be performed by utilizing appropriate algebras of functions. Thus, the book explains how some Hopf algebras (symmetric functions and generalizations) can be used to encode most of the combinatorial properties of the representations of symmetric groups. Overall, the book is an innovative introduction to representation theory of symmetric groups for graduate students and researchers seeking new ways of thought.
A general class of powerful and flexible modeling techniques, spline smoothing has attracted a great deal of research attention in recent years and has been widely used in many application areas, from medicine to economics. Smoothing Splines: Methods and Applications covers basic smoothing spline models, including polynomial, periodic, spherical, thin-plate, L-, and partial splines, as well as more advanced models, such as smoothing spline ANOVA, extended and generalized smoothing spline ANOVA, vector spline, nonparametric nonlinear regression, semiparametric regression, and semiparametric mixed-effects models. It also presents methods for model selection and inference. The book provides unified frameworks for estimation, inference, and software implementation by using the general forms of nonparametric/semiparametric, linear/nonlinear, and fixed/mixed smoothing spline models. The theory of reproducing kernel Hilbert space (RKHS) is used to present various smoothing spline models in a unified fashion. Although this approach can be technical and difficult, the author makes the advanced smoothing spline methodology based on RKHS accessible to practitioners and students. He offers a gentle introduction to RKHS, keeps theory at a minimum level, and explains how RKHS can be used to construct spline models. Smoothing Splines offers a balanced mix of methodology, computation, implementation, software, and applications. It uses R to perform all data analyses and includes a host of real data examples from astronomy, economics, medicine, and meteorology. The codes for all examples, along with related developments, can be found on the book's web page.
The aim of this book is to introduce a range of combinatorial methods for those who want to apply these methods in the solution of practical and theoretical problems. Various tricks and techniques are taught by means of exercises. Hints are given in a separate section and a third section contains all solutions in detail. A dictionary section gives definitions of the combinatorial notions occurring in the book. "Combinatorial Problems and Exercises" was first published in 1979. This revised edition has the same basic structure but has been brought up to date with a series of exercises on random walks on graphs and their relations to eigenvalues, expansion properties and electrical resistance. In various chapters the author found lines of thought that have been extended in a natural and significant way in recent years. About 60 new exercises (more counting sub-problems) have been added and several solutions have been simplified.
Mathematical Puzzle Tales from Mount Olympus uses fascinating tales from Greek Mythology as the background for introducing mathematics puzzles to the general public. A background in high school mathematics will be ample preparation for using this book, and it should appeal to anyone who enjoys puzzles and recreational mathematics. Features: Combines the arts and science, and emphasizes the fact that mathematics straddles both domains. Great resource for students preparing for mathematics competitions, and the trainers of such students.
"Knot theory is a fascinating mathematical subject, with multiple links to theoretical physics. This enyclopedia is filled with valuable information on a rich and fascinating subject." - Ed Witten, Recipient of the Fields Medal "I spent a pleasant afternoon perusing the Encyclopedia of Knot Theory. It's a comprehensive compilation of clear introductions to both classical and very modern developments in the field. It will be a terrific resource for the accomplished researcher, and will also be an excellent way to lure students, both graduate and undergraduate, into the field." - Abigail Thompson, Distinguished Professor of Mathematics at University of California, Davis Knot theory has proven to be a fascinating area of mathematical research, dating back about 150 years. Encyclopedia of Knot Theory provides short, interconnected articles on a variety of active areas in knot theory, and includes beautiful pictures, deep mathematical connections, and critical applications. Many of the articles in this book are accessible to undergraduates who are working on research or taking an advanced undergraduate course in knot theory. More advanced articles will be useful to graduate students working on a related thesis topic, to researchers in another area of topology who are interested in current results in knot theory, and to scientists who study the topology and geometry of biopolymers. Features Provides material that is useful and accessible to undergraduates, postgraduates, and full-time researchers Topics discussed provide an excellent catalyst for students to explore meaningful research and gain confidence and commitment to pursuing advanced degrees Edited and contributed by top researchers in the field of knot theory
Originally published in 1995, Large Deviations for Performance Analysis consists of two synergistic parts. The first half develops the theory of large deviations from the beginning, through recent results on the theory for processes with boundaries, keeping to a very narrow path: continuous-time, discrete-state processes. By developing only what is needed for the applications, the theory is kept to a manageable level, both in terms of length and in terms of difficulty. Within its scope, the treatment is detailed, comprehensive and self-contained. As the book shows, there are sufficiently many interesting applications of jump Markov processes to warrant a special treatment. The second half is a collection of applications developed at Bell Laboratories. The applications cover large areas of the theory of communication networks: circuit switched transmission, packet transmission, multiple access channels, and the M/M/1 queue. Aspects of parallel computation are covered as well including, basics of job allocation, rollback-based parallel simulation, assorted priority queueing models that might be used in performance models of various computer architectures, and asymptotic coupling of processors. These applications are thoroughly analysed using the tools developed in the first half of the book.
The numerous publications on spline theory during recent decades show the importance of its development on modern applied mathematics. The purpose of this text is to give an approach to the theory of spline functions, from the introduction of the phrase "spline" by I.J. Schoenbergin 1946 to the newest theories of spline-wavelets or spline-fractals, emphasizing the significance of the relationship between the general theory and its applications. In addition, this volume provides material on spline function theory, as well as an examination of basic methods in spline functions. The authors have complemented the work with a reference section to stimulate further study.
This textbook prepares graduate students for research in numerical analysis/computational mathematics by giving to them a mathematical framework embedded in functional analysis and focused on numerical analysis. This helps the student to move rapidly into a research program. The text covers basic results of functional analysis, approximation theory, Fourier analysis and wavelets, iteration methods for nonlinear equations, finite difference methods, Sobolev spaces and weak formulations of boundary value problems, finite element methods, elliptic variational inequalities and their numerical solution, numerical methods for solving integral equations of the second kind, and boundary integral equations for planar regions. The presentation of each topic is meant to be an introduction with certain degree of depth. Comprehensive references on a particular topic are listed at the end of each chapter for further reading and study. Because of the relevance in solving real world problems, multivariable polynomials are playing an ever more important role in research and applications. In this third editon, a new chapter on this topic has been included and some major changes are made on two chapters from the previous edition. In addition, there are numerous minor changes throughout the entire text and new exercises are added. Review of earlier edition: ..".the book is clearly written, quite pleasant to read, and contains a lot of important material; and the authors have done an excellent job at balancing theoretical developments, interesting examples and exercises, numerical experiments, and bibliographical references." R. Glowinski, SIAM Review, 2003
Praise for William Dunhams Journey Through Genius The Great Theorems of Mathematics "Dunham deftly guides the reader through the verbal and logical intricacies of major mathematical questions and proofs, conveying a splendid sense of how the greatest mathematicians from ancient to modern times presented their arguments." Ivars Peterson Author, The Mathematical Tourist Mathematics and Physics Editor, Science News "It is mathematics presented as a series of works of art; a fascinating lingering over individual examples of ingenuity and insight. It is mathematics by lightning flash." Isaac Asimov "It is a captivating collection of essays of major mathematical achievements brought to life by the personal and historical anecdotes which the author has skillfully woven into the text. This is a book which should find its place on the bookshelf of anyone interested in science and the scientists who create it." R. L. Graham, AT&T Bell Laboratories "Come on a time-machine tour through 2,300 years in which Dunham drops in on some of the greatest mathematicians in history. Almost as if we chat over tea and crumpets, we get to know them and their ideasideas that ring with eternity and that offer glimpses into the often veiled beauty of mathematics and logic. And all the while we marvel, hoping that the tour will not stop." Jearl Walker, Physics Department, Cleveland State University Author of The Flying Circus of Physics
In this volume, world-leading puzzle designers, puzzle collectors, mathematicians, and magicians continue the tradition of honoring Martin Gardner, who inspired them to enter mathematics, to enter magic, to bring magic into their mathematics, or to bring mathematics into their magic. This edited collection contains a variety of articles connected to puzzles, magic, and/or mathematics, including the history behind given puzzles, solitaire puzzles, two-person games, and mathematically interesting objects. Topics include tangrams, peg solitaire, sodoku, coin-weighing problems, anamorphoses, and more!
This book gathers together a colorful set of problems on classical Mathematical Logic, selected from over 30 years of teaching. The initial chapters start with problems from supporting fields, like set theory (ultrafilter constructions), full-information game theory (strategies), automata, and recursion theory (decidability, Kleene's theorems). The work then advances toward propositional logic (compactness and completeness, resolution method), followed by first-order logic, including quantifier elimination and the Ehrenfeucht- Fraisse game; ultraproducts; and examples for axiomatizability and non-axiomatizability. The Arithmetic part covers Robinson's theory, Peano's axiom system, and Goedel's incompleteness theorems. Finally, the book touches universal graphs, tournaments, and the zero-one law in Mathematical Logic. Instructors teaching Mathematical Logic, as well as students who want to understand its concepts and methods, can greatly benefit from this work. The style and topics have been specially chosen so that readers interested in the mathematical content and methodology could follow the problems and prove the main theorems themselves, including Goedel's famous completeness and incompleteness theorems. Examples of applications on axiomatizability and decidability of numerous mathematical theories enrich this volume.
In the 21st century, digitalization is a global challenge of mankind. Even for the public, it is obvious that our world is increasingly dominated by powerful algorithms and big data. But, how computable is our world? Some people believe that successful problem solving in science, technology, and economies only depends on fast algorithms and data mining. Chances and risks are often not understood, because the foundations of algorithms and information systems are not studied rigorously. Actually, they are deeply rooted in logics, mathematics, computer science and philosophy.Therefore, this book studies the foundations of mathematics, computer science, and philosophy, in order to guarantee security and reliability of the knowledge by constructive proofs, proof mining and program extraction. We start with the basics of computability theory, proof theory, and information theory. In a second step, we introduce new concepts of information and computing systems, in order to overcome the gap between the digital world of logical programming and the analog world of real computing in mathematics and science. The book also considers consequences for digital and analog physics, computational neuroscience, financial mathematics, and the Internet of Things (IoT).
Many people start the day with physical exercise but few seem to be so concerned with exercising the most human of organs-the brain. This book provides you with entertaining and challenging mental exercises for every week of the year. Whether you are a high school student eager to sharpen your brain, or someone older who would like to retain your mental agility, you will find your brain getting sharper and more agile as you solve the puzzles in this book. Read a few puzzles every week, think about them, solve them, and you will see the results. And on the way to a sharper mind, you will enjoy every step.
From the reviews: "This is a very interesting book containing material for a comprehensive study of the cyclid homological theory of algebras, cyclic sets and S1-spaces. Lie algebras and algebraic K-theory and an introduction to Connes'work and recent results on the Novikov conjecture. The book requires a knowledge of homological algebra and Lie algebra theory as well as basic technics coming from algebraic topology. The bibliographic comments at the end of each chapter offer good suggestions for further reading and research. The book can be strongly recommended to anybody interested in noncommutative geometry, contemporary algebraic topology and related topics." European Mathematical Society Newsletter In this second edition the authors have added a chapter 13 on MacLane (co)homology.
We live in a world that is not quite "right." The central tenet of statistical inquiry is that Observation = Truth + Error because even the most careful of scientific investigations have always been bedeviled by uncertainty. Our attempts to measure things are plagued with small errors. Our attempts to understand our world are blocked by blunders. And, unfortunately, in some cases, people have been known to lie. In this long-awaited follow-up to his well-regarded bestseller, The Lady Tasting Tea, David Salsburg opens a door to the amazing widespread use of statistical methods by looking at historical examples of errors, blunders and lies from areas as diverse as archeology, law, economics, medicine, psychology, sociology, Biblical studies, history, and war-time espionage. In doing so, he shows how, upon closer statistical investigation, errors and blunders often lead to useful information. And how statistical methods have been used to uncover falsified data. Beginning with Edmund Halley's examination of the Transit of Venus and ending with a discussion of how many tanks Rommel had during the Second World War, the author invites the reader to come along on this easily accessible and fascinating journey of how to identify the nature of errors, minimize the effects of blunders, and figure out who the liars are.
This book casts the theory of periods of algebraic varieties in the natural setting of Madhav Nori's abelian category of mixed motives. It develops Nori's approach to mixed motives from scratch, thereby filling an important gap in the literature, and then explains the connection of mixed motives to periods, including a detailed account of the theory of period numbers in the sense of Kontsevich-Zagier and their structural properties. Period numbers are central to number theory and algebraic geometry, and also play an important role in other fields such as mathematical physics. There are long-standing conjectures about their transcendence properties, best understood in the language of cohomology of algebraic varieties or, more generally, motives. Readers of this book will discover that Nori's unconditional construction of an abelian category of motives (over fields embeddable into the complex numbers) is particularly well suited for this purpose. Notably, Kontsevich's formal period algebra represents a torsor under the motivic Galois group in Nori's sense, and the period conjecture of Kontsevich and Zagier can be recast in this setting. Periods and Nori Motives is highly informative and will appeal to graduate students interested in algebraic geometry and number theory as well as researchers working in related fields. Containing relevant background material on topics such as singular cohomology, algebraic de Rham cohomology, diagram categories and rigid tensor categories, as well as many interesting examples, the overall presentation of this book is self-contained.
Dirk van Dalen's biography studies the fascinating life of the famous Dutch mathematician and philosopher Luitzen Egbertus Jan Brouwer. Brouwer belonged to a special class of genius; complex and often controversial and gifted with a deep intuition, he had an unparalleled access to the secrets and intricacies of mathematics. Most mathematicians remember L.E.J. Brouwer from his scientific breakthroughs in the young subject of topology and for the famous Brouwer fixed point theorem. Brouwer's main interest, however, was in the foundation of mathematics which led him to introduce, and then consolidate, constructive methods under the name 'intuitionism'. This made him one of the main protagonists in the 'foundation crisis' of mathematics. As a confirmed internationalist, he also got entangled in the interbellum struggle for the ending of the boycott of German and Austrian scientists. This time during the twentieth century was turbulent; nationalist resentment and friction between formalism and intuitionism led to the Mathematische Annalen conflict ('The war of the frogs and the mice'). It was here that Brouwer played a pivotal role. The present biography is an updated revision of the earlier two volume biography in one single book. It appeals to mathematicians and anybody interested in the history of mathematics in the first half of the twentieth century.
Applicable to any problem that requires a finite number of solutions, finite state-based models (also called finite state machines or finite state automata) have found wide use in various areas of computer science and engineering. Handbook of Finite State Based Models and Applications provides a complete collection of introductory materials on finite state theories, algorithms, and the latest domain applications. For beginners, the book is a handy reference for quickly looking up model details. For more experienced researchers, it is suitable as a source of in-depth study in this area. The book first introduces the fundamentals of automata theory, including regular expressions, as well as widely used automata, such as transducers, tree automata, quantum automata, and timed automata. It then presents algorithms for the minimization and incremental construction of finite automata and describes Esterel, an automata-based synchronous programming language for embedded system software development. Moving on to applications, the book explores regular path queries on graph-structured data, timed automata in model checking security protocols, pattern matching, compiler design, and XML processing. It also covers other finite state-based modeling approaches and applications, including Petri nets, statecharts, temporal logic, and UML state machine diagrams.
Compactly supported smooth piecewise polynomial functions provide an efficient tool for the approximation of curves and surfaces and other smooth functions of one and several arguments. Since they are locally polynomial, they are easy to evaluate. Since they are smooth, they can be used when smoothness is required, as in the numerical solution of partial differential equations (in the Finite Element method) or the modeling of smooth sur faces (in Computer Aided Geometric Design). Since they are compactly supported, their linear span has the needed flexibility to approximate at all, and the systems to be solved in the construction of approximations are 'banded'. The construction of compactly supported smooth piecewise polynomials becomes ever more difficult as the dimension, s, of their domain G ~ IRs, i. e. , the number of arguments, increases. In the univariate case, there is only one kind of cell in any useful partition, namely, an interval, and its boundary consists of two separated points, across which polynomial pieces would have to be matched as one constructs a smooth piecewise polynomial function. This can be done easily, with the only limitation that the num ber of smoothness conditions across such a breakpoint should not exceed the polynomial degree (since that would force the two joining polynomial pieces to coincide). In particular, on any partition, there are (nontrivial) compactly supported piecewise polynomials of degree ~ k and in C(k-l), of which the univariate B-spline is the most useful example. |
You may like...
The New Method Arithmetic [microform]
P (Phineas) McIntosh, C a (Carl Adolph) B 1879 Norman
Hardcover
R897
Discovery Miles 8 970
Key to Advanced Arithmetic for Canadian…
Barnard 1817-1876 Smith, Archibald McMurchy
Hardcover
R857
Discovery Miles 8 570
Groups, Invariants, Integrals, and…
Maria Ulan, Stanislav Hronek
Hardcover
R3,264
Discovery Miles 32 640
Primary Maths for Scotland Textbook 2A…
Craig Lowther, Antoinette Irwin, …
Paperback
|