![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Mathematical foundations > General
The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level. The series de Gruyter Studies in Mathematics was founded ca. 35 years ago by the late Professor Heinz Bauer and Professor Peter Gabriel with the aim to establish a series of monographs and textbooks of high standard, written by scholars with an international reputation presenting current fields of research in pure and applied mathematics. While the editorial board of the Studies has changed with the years, the aspirations of the Studies are unchanged. In times of rapid growth of mathematical knowledge carefully written monographs and textbooks written by experts are needed more than ever, not least to pave the way for the next generation of mathematicians. In this sense the editorial board and the publisher of the Studies are devoted to continue the Studies as a service to the mathematical community. Please submit any book proposals to Niels Jacob. Titles in planning include Flavia Smarazzo and Alberto Tesei, Measure Theory: Radon Measures, Young Measures, and Applications to Parabolic Problems (2019) Elena Cordero and Luigi Rodino, Time-Frequency Analysis of Operators (2019) Mark M. Meerschaert, Alla Sikorskii, and Mohsen Zayernouri, Stochastic and Computational Models for Fractional Calculus, second edition (2020) Mariusz Lemanczyk, Ergodic Theory: Spectral Theory, Joinings, and Their Applications (2020) Marco Abate, Holomorphic Dynamics on Hyperbolic Complex Manifolds (2021) Miroslava Antic, Joeri Van der Veken, and Luc Vrancken, Differential Geometry of Submanifolds: Submanifolds of Almost Complex Spaces and Almost Product Spaces (2021) Kai Liu, Ilpo Laine, and Lianzhong Yang, Complex Differential-Difference Equations (2021) Rajendra Vasant Gurjar, Kayo Masuda, and Masayoshi Miyanishi, Affine Space Fibrations (2022)
Mathematics plays a key role in computer science, some researchers would consider computers as nothing but the physical embodiment of mathematical systems. And whether you are designing a digital circuit, a computer program or a new programming language, you need mathematics to be able to reason about the design -- its correctness, robustness and dependability. This book covers the foundational mathematics necessary for courses in computer science. The common approach to presenting mathematical concepts and operators is to define them in terms of properties they satisfy, and then based on these definitions develop ways of computing the result of applying the operators and prove them correct. This book is mainly written for computer science students, so here the author takes a different approach: he starts by defining ways of calculating the results of applying the operators and then proves that they satisfy various properties. After justifying his underlying approach the author offers detailed chapters covering propositional logic, predicate calculus, sets, relations, discrete structures, structured types, numbers, and reasoning about programs. The book contains chapter and section summaries, detailed proofs and many end-of-section exercises -- key to the learning process. The book is suitable for undergraduate and graduate students, and although the treatment focuses on areas with frequent applications in computer science, the book is also suitable for students of mathematics and engineering.
Compactly supported smooth piecewise polynomial functions provide an efficient tool for the approximation of curves and surfaces and other smooth functions of one and several arguments. Since they are locally polynomial, they are easy to evaluate. Since they are smooth, they can be used when smoothness is required, as in the numerical solution of partial differential equations (in the Finite Element method) or the modeling of smooth sur faces (in Computer Aided Geometric Design). Since they are compactly supported, their linear span has the needed flexibility to approximate at all, and the systems to be solved in the construction of approximations are 'banded'. The construction of compactly supported smooth piecewise polynomials becomes ever more difficult as the dimension, s, of their domain G ~ IRs, i. e. , the number of arguments, increases. In the univariate case, there is only one kind of cell in any useful partition, namely, an interval, and its boundary consists of two separated points, across which polynomial pieces would have to be matched as one constructs a smooth piecewise polynomial function. This can be done easily, with the only limitation that the num ber of smoothness conditions across such a breakpoint should not exceed the polynomial degree (since that would force the two joining polynomial pieces to coincide). In particular, on any partition, there are (nontrivial) compactly supported piecewise polynomials of degree ~ k and in C(k-l), of which the univariate B-spline is the most useful example.
Many people start the day with physical exercise but few seem to be so concerned with exercising the most human of organs-the brain. This book provides you with entertaining and challenging mental exercises for every week of the year. Whether you are a high school student eager to sharpen your brain, or someone older who would like to retain your mental agility, you will find your brain getting sharper and more agile as you solve the puzzles in this book. Read a few puzzles every week, think about them, solve them, and you will see the results. And on the way to a sharper mind, you will enjoy every step.
Project Origami: Activities for Exploring Mathematics, Second Edition presents a flexible, discovery-based approach to learning origami-math topics. It helps readers see how origami intersects a variety of mathematical topics, from the more obvious realm of geometry to the fields of algebra, number theory, and combinatorics. With over 100 new pages, this updated and expanded edition now includes 30 activities and offers better solutions and teaching tips for all activities. The book contains detailed plans for 30 hands-on, scalable origami activities. Each activity lists courses in which the activity might fit, includes handouts for classroom use, and provides notes for instructors on solutions, how the handouts can be used, and other pedagogical suggestions. The handouts are also available on the book's CRC Press web page. Reflecting feedback from teachers and students who have used the book, this classroom-tested text provides an easy and entertaining way for teachers to incorporate origami into a range of college and advanced high school math courses. Visit the author's website for more information.
Easily Create Origami with Curved Folds and Surfaces Origami making shapes only through folding reveals a fascinating area of geometry woven with a variety of representations. The world of origami has progressed dramatically since the advent of computer programs to perform the necessary computations for origami design. 3D Origami Art presents the design methods underlying 3D creations derived from computation. It includes numerous photos and design drawings called crease patterns, which are available for download on the author's website. Through the book's clear figures and descriptions, readers can easily create geometric 3D structures out of a set of lines and curves drawn on a 2D plane. The author uses various shapes of sheets such as rectangles and regular polygons, instead of square paper, to create the origami. Many of the origami creations have a 3D structure composed of curved surfaces, and some of them have complicated forms. However, the background theory underlying all the creations is very simple. The author shows how different origami forms are designed from a common theory.
Iterative Splitting Methods for Differential Equations explains how to solve evolution equations via novel iterative-based splitting methods that efficiently use computational and memory resources. It focuses on systems of parabolic and hyperbolic equations, including convection-diffusion-reaction equations, heat equations, and wave equations. In the theoretical part of the book, the author discusses the main theorems and results of the stability and consistency analysis for ordinary differential equations. He then presents extensions of the iterative splitting methods to partial differential equations and spatial- and time-dependent differential equations. The practical part of the text applies the methods to benchmark and real-life problems, such as waste disposal, elastics wave propagation, and complex flow phenomena. The book also examines the benefits of equation decomposition. It concludes with a discussion on several useful software packages, including r3t and FIDOS. Covering a wide range of theoretical and practical issues in multiphysics and multiscale problems, this book explores the benefits of using iterative splitting schemes to solve physical problems. It illustrates how iterative operator splitting methods are excellent decomposition methods for obtaining higher-order accuracy.
This valuable resource provides an overview of recent research and strategies in developing and applying modelling to promote practice-based research in STEM education. In doing so, it bridges barriers across academic disciplines by suggesting activities that promote integration of qualitative science concepts with the tools of mathematics and engineering. The volume's three parts offer a comprehensive review, by 1) Presenting a conceptual background of how scientific inquiry can be induced in mathematics classes considering recommendations of prior research, 2) Collecting case studies that were designed using scientific inquiry process designed for math classes, and 3) Exploring future possibilities and directions for the research included within. Among the topics discussed: * STEM education: A platform for multidisciplinary learning. * Teaching and learning representations in STEM. * Formulating conceptual framework for multidisciplinary STEM modeling. * Exploring function continuity in context. * Exploring function transformations using a dynamic system. Scientific Inquiry in Mathematics - Theory and Practice delivers hands-on and concrete strategies for effective STEM teaching in practice to educators within the fields of mathematics, science, and technology. It will be of interest to practicing and future mathematics teachers at all levels, as well as teacher educators, mathematics education researchers, and undergraduate and graduate mathematics students interested in research based methods for integrating inquiry-based learning into STEM classrooms.
We live in a world that is not quite "right." The central tenet of statistical inquiry is that Observation = Truth + Error because even the most careful of scientific investigations have always been bedeviled by uncertainty. Our attempts to measure things are plagued with small errors. Our attempts to understand our world are blocked by blunders. And, unfortunately, in some cases, people have been known to lie. In this long-awaited follow-up to his well-regarded bestseller, The Lady Tasting Tea, David Salsburg opens a door to the amazing widespread use of statistical methods by looking at historical examples of errors, blunders and lies from areas as diverse as archeology, law, economics, medicine, psychology, sociology, Biblical studies, history, and war-time espionage. In doing so, he shows how, upon closer statistical investigation, errors and blunders often lead to useful information. And how statistical methods have been used to uncover falsified data. Beginning with Edmund Halley's examination of the Transit of Venus and ending with a discussion of how many tanks Rommel had during the Second World War, the author invites the reader to come along on this easily accessible and fascinating journey of how to identify the nature of errors, minimize the effects of blunders, and figure out who the liars are.
This careful selection of participant contributions reflects the focus of the 14th International Conference on Operator Theory, held in Timisoara (Romania) in June 1992, centering on the problems of extensions of operators and their connections with interpolation of analytic functions and with the spectral theory of differential operators. Other topics concern operator inequalities, spectral theory in general spaces and operator theory in Krein spaces.
This book deals with the determinants of linear operators in Euclidean, Hilbert and Banach spaces. Determinants of operators give us an important tool for solving linear equations and invertibility conditions for linear operators, enable us to describe the spectra, to evaluate the multiplicities of eigenvalues, etc. We derive upper and lower bounds, and perturbation results for determinants, and discuss applications of our theoretical results to spectrum perturbations, matrix equations, two parameter eigenvalue problems, as well as to differential, difference and functional-differential equations.
This book casts the theory of periods of algebraic varieties in the natural setting of Madhav Nori's abelian category of mixed motives. It develops Nori's approach to mixed motives from scratch, thereby filling an important gap in the literature, and then explains the connection of mixed motives to periods, including a detailed account of the theory of period numbers in the sense of Kontsevich-Zagier and their structural properties. Period numbers are central to number theory and algebraic geometry, and also play an important role in other fields such as mathematical physics. There are long-standing conjectures about their transcendence properties, best understood in the language of cohomology of algebraic varieties or, more generally, motives. Readers of this book will discover that Nori's unconditional construction of an abelian category of motives (over fields embeddable into the complex numbers) is particularly well suited for this purpose. Notably, Kontsevich's formal period algebra represents a torsor under the motivic Galois group in Nori's sense, and the period conjecture of Kontsevich and Zagier can be recast in this setting. Periods and Nori Motives is highly informative and will appeal to graduate students interested in algebraic geometry and number theory as well as researchers working in related fields. Containing relevant background material on topics such as singular cohomology, algebraic de Rham cohomology, diagram categories and rigid tensor categories, as well as many interesting examples, the overall presentation of this book is self-contained.
Applicable to any problem that requires a finite number of solutions, finite state-based models (also called finite state machines or finite state automata) have found wide use in various areas of computer science and engineering. Handbook of Finite State Based Models and Applications provides a complete collection of introductory materials on finite state theories, algorithms, and the latest domain applications. For beginners, the book is a handy reference for quickly looking up model details. For more experienced researchers, it is suitable as a source of in-depth study in this area. The book first introduces the fundamentals of automata theory, including regular expressions, as well as widely used automata, such as transducers, tree automata, quantum automata, and timed automata. It then presents algorithms for the minimization and incremental construction of finite automata and describes Esterel, an automata-based synchronous programming language for embedded system software development. Moving on to applications, the book explores regular path queries on graph-structured data, timed automata in model checking security protocols, pattern matching, compiler design, and XML processing. It also covers other finite state-based modeling approaches and applications, including Petri nets, statecharts, temporal logic, and UML state machine diagrams.
The Mathematics That Power Our World: How Is It Made? is an attempt to unveil the hidden mathematics behind the functioning of many of the devices we use on a daily basis. For the past years, discussions on the best approach in teaching and learning mathematics have shown how much the world is divided on this issue. The one reality we seem to agree on globally is the fact that our new generation is lacking interest and passion for the subject. One has the impression that the vast majority of young students finishing high school or in their early post-secondary studies are more and more divided into two main groups when it comes to the perception of mathematics. The first group looks at mathematics as a pure academic subject with little connection to the real world. The second group considers mathematics as a set of tools that a computer can be programmed to use and thus, a basic knowledge of the subject is sufficient. This book serves as a middle ground between these two views. Many of the elegant and seemingly theoretical concepts of mathematics are linked to state-of-the-art technologies. The topics of the book are selected carefully to make that link more relevant. They include: digital calculators, basics of data compression and the Huffman coding, the JPEG standard for data compression, the GPS system studied both from the receiver and the satellite ends, image processing and face recognition.This book is a great resource for mathematics educators in high schools, colleges and universities who want to engage their students in advanced readings that go beyond the classroom discussions. It is also a solid foundation for anyone thinking of pursuing a career in science or engineering. All efforts were made so that the exposition of each topic is as clear and self-contained as possible and thus, appealing to anyone trying to broaden his mathematical horizons.
This book gathers together a colorful set of problems on classical Mathematical Logic, selected from over 30 years of teaching. The initial chapters start with problems from supporting fields, like set theory (ultrafilter constructions), full-information game theory (strategies), automata, and recursion theory (decidability, Kleene's theorems). The work then advances toward propositional logic (compactness and completeness, resolution method), followed by first-order logic, including quantifier elimination and the Ehrenfeucht- Fraisse game; ultraproducts; and examples for axiomatizability and non-axiomatizability. The Arithmetic part covers Robinson's theory, Peano's axiom system, and Goedel's incompleteness theorems. Finally, the book touches universal graphs, tournaments, and the zero-one law in Mathematical Logic. Instructors teaching Mathematical Logic, as well as students who want to understand its concepts and methods, can greatly benefit from this work. The style and topics have been specially chosen so that readers interested in the mathematical content and methodology could follow the problems and prove the main theorems themselves, including Goedel's famous completeness and incompleteness theorems. Examples of applications on axiomatizability and decidability of numerous mathematical theories enrich this volume.
This book leads readers from a basic foundation to an advanced level understanding of algebra, logic and combinatorics. Perfect for graduate or PhD mathematical-science students looking for help in understanding the fundamentals of the topic, it also explores more specific areas such as invariant theory of finite groups, model theory, and enumerative combinatorics.Algebra, Logic and Combinatorics is the third volume of the LTCC Advanced Mathematics Series. This series is the first to provide advanced introductions to mathematical science topics to advanced students of mathematics. Edited by the three joint heads of the London Taught Course Centre for PhD Students in the Mathematical Sciences (LTCC), each book supports readers in broadening their mathematical knowledge outside of their immediate research disciplines while also covering specialized key areas.
This book leads readers from a basic foundation to an advanced level understanding of algebra, logic and combinatorics. Perfect for graduate or PhD mathematical-science students looking for help in understanding the fundamentals of the topic, it also explores more specific areas such as invariant theory of finite groups, model theory, and enumerative combinatorics.Algebra, Logic and Combinatorics is the third volume of the LTCC Advanced Mathematics Series. This series is the first to provide advanced introductions to mathematical science topics to advanced students of mathematics. Edited by the three joint heads of the London Taught Course Centre for PhD Students in the Mathematical Sciences (LTCC), each book supports readers in broadening their mathematical knowledge outside of their immediate research disciplines while also covering specialized key areas.
Continuous Issues in Numerical Cognition: How Many or How Much re-examines the widely accepted view that there exists a core numerical system within human beings and an innate ability to perceive and count discrete quantities. This core knowledge involves the brain's intraparietal sulcus, and a deficiency in this region has traditionally been thought to be the basis for arithmetic disability. However, new research findings suggest this wide agreement needs to be examined carefully and that perception of sizes and other non-countable amounts may be the true precursors of numerical ability. This cutting-edge book examines the possibility that perception and evaluation of non-countable dimensions may be involved in the development of numerical cognition. Discussions of the above and related issues are important for the achievement of a comprehensive understanding of numerical cognition, its brain basis, development, breakdown in brain-injured individuals, and failures to master mathematical skills.
Using basic category theory, this Element describes all the central concepts and proves the main theorems of theoretical computer science. Category theory, which works with functions, processes, and structures, is uniquely qualified to present the fundamental results of theoretical computer science. In this Element, readers will meet some of the deepest ideas and theorems of modern computers and mathematics, such as Turing machines, unsolvable problems, the P=NP question, Kurt Goedel's incompleteness theorem, intractable problems, cryptographic protocols, Alan Turing's Halting problem, and much more. The concepts come alive with many examples and exercises.
The Mathematics That Power Our World: How Is It Made? is an attempt to unveil the hidden mathematics behind the functioning of many of the devices we use on a daily basis. For the past years, discussions on the best approach in teaching and learning mathematics have shown how much the world is divided on this issue. The one reality we seem to agree on globally is the fact that our new generation is lacking interest and passion for the subject. One has the impression that the vast majority of young students finishing high school or in their early post-secondary studies are more and more divided into two main groups when it comes to the perception of mathematics. The first group looks at mathematics as a pure academic subject with little connection to the real world. The second group considers mathematics as a set of tools that a computer can be programmed to use and thus, a basic knowledge of the subject is sufficient. This book serves as a middle ground between these two views. Many of the elegant and seemingly theoretical concepts of mathematics are linked to state-of-the-art technologies. The topics of the book are selected carefully to make that link more relevant. They include: digital calculators, basics of data compression and the Huffman coding, the JPEG standard for data compression, the GPS system studied both from the receiver and the satellite ends, image processing and face recognition.This book is a great resource for mathematics educators in high schools, colleges and universities who want to engage their students in advanced readings that go beyond the classroom discussions. It is also a solid foundation for anyone thinking of pursuing a career in science or engineering. All efforts were made so that the exposition of each topic is as clear and self-contained as possible and thus, appealing to anyone trying to broaden his mathematical horizons.
The Joy of Finite Mathematics: The Language and Art of Math teaches students basic finite mathematics through a foundational understanding of the underlying symbolic language and its many dialects, including logic, set theory, combinatorics (counting), probability, statistics, geometry, algebra, and finance. Through detailed explanations of the concepts, step-by-step procedures, and clearly defined formulae, readers learn to apply math to subjects ranging from reason (logic) to finance (personal budget), making this interactive and engaging book appropriate for non-science, undergraduate students in the liberal arts, social sciences, finance, economics, and other humanities areas. The authors utilize important historical facts, pose interesting and relevant questions, and reference real-world events to challenge, inspire, and motivate students to learn the subject of mathematical thinking and its relevance. The book is based on the authors' experience teaching Liberal Arts Math and other courses to students of various backgrounds and majors, and is also appropriate for preparing students for Florida's CLAST exam or similar core requirements.
The Only Undergraduate Textbook to Teach Both Classical and Virtual Knot Theory An Invitation to Knot Theory: Virtual and Classical gives advanced undergraduate students a gentle introduction to the field of virtual knot theory and mathematical research. It provides the foundation for students to research knot theory and read journal articles on their own. Each chapter includes numerous examples, problems, projects, and suggested readings from research papers. The proofs are written as simply as possible using combinatorial approaches, equivalence classes, and linear algebra. The text begins with an introduction to virtual knots and counted invariants. It then covers the normalized f-polynomial (Jones polynomial) and other skein invariants before discussing algebraic invariants, such as the quandle and biquandle. The book concludes with two applications of virtual knots: textiles and quantum computation.
This volume focuses on the important mathematical idea of functions that, with the technology of computers and calculators, can be dynamically represented in ways that have not been possible previously. The book's editors contend that as result of recent technological developments combined with the integrated knowledge available from research on teaching, instruction, students' thinking, and assessment, curriculum developers, researchers, and teacher educators are faced with an unprecedented opportunity for making dramatic changes. The book presents content considerations that occur when the mathematics of graphs and functions relate to curriculum. It also examines content in a carefully considered integration of research that conveys where the field stands and where it might go. Drawing heavily on their own work, the chapter authors reconceptualize research in their specific areas so that this knowledge is integrated with the others' strands. This model for synthesizing research can serve as a paradigm for how research in mathematics education can -- and probably should -- proceed.
Representation Theory of Symmetric Groups is the most up-to-date abstract algebra book on the subject of symmetric groups and representation theory. Utilizing new research and results, this book can be studied from a combinatorial, algorithmic or algebraic viewpoint. This book is an excellent way of introducing today's students to representation theory of the symmetric groups, namely classical theory. From there, the book explains how the theory can be extended to other related combinatorial algebras like the Iwahori-Hecke algebra. In a clear and concise manner, the author presents the case that most calculations on symmetric group can be performed by utilizing appropriate algebras of functions. Thus, the book explains how some Hopf algebras (symmetric functions and generalizations) can be used to encode most of the combinatorial properties of the representations of symmetric groups. Overall, the book is an innovative introduction to representation theory of symmetric groups for graduate students and researchers seeking new ways of thought.
Proceedings of the NATO Advanced Study Institute, Calgary, Canada, August 26-September 2, 1978 |
You may like...
The New Method Arithmetic [microform]
P (Phineas) McIntosh, C a (Carl Adolph) B 1879 Norman
Hardcover
R921
Discovery Miles 9 210
The High School Arithmetic - for Use in…
W. H. Ballard, A. C. McKay, …
Hardcover
R981
Discovery Miles 9 810
|