![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Mathematical foundations > General
This monograph considers several well-known mathematical theorems and asks the question, "Why prove it again?" while examining alternative proofs. It explores the different rationales mathematicians may have for pursuing and presenting new proofs of previously established results, as well as how they judge whether two proofs of a given result are different. While a number of books have examined alternative proofs of individual theorems, this is the first that presents comparative case studies of other methods for a variety of different theorems. The author begins by laying out the criteria for distinguishing among proofs and enumerates reasons why new proofs have, for so long, played a prominent role in mathematical practice. He then outlines various purposes that alternative proofs may serve. Each chapter that follows provides a detailed case study of alternative proofs for particular theorems, including the Pythagorean Theorem, the Fundamental Theorem of Arithmetic, Desargues' Theorem, the Prime Number Theorem, and the proof of the irreducibility of cyclotomic polynomials. Why Prove It Again? will appeal to a broad range of readers, including historians and philosophers of mathematics, students, and practicing mathematicians. Additionally, teachers will find it to be a useful source of alternative methods of presenting material to their students.
This book presents the entire body of thought of Norbert Wiener (1894-1964), knowledge of which is essential if one wishes to understand and correctly interpret the age in which we live. The focus is in particular on the philosophical and sociological aspects of Wiener's thought, but these aspects are carefully framed within the context of his scientific journey. Important biographical events, including some that were previously unknown, are also highlighted, but while the book has a biographical structure, it is not only a biography. The book is divided into four chronological sections, the first two of which explore Wiener's development as a philosopher and logician and his brilliant interwar career as a mathematician, supported by his philosophical background. The third section considers his research during World War II, which drew upon his previous scientific work and reflections and led to the birth of cybernetics. Finally, the radical post-war shift in Wiener's intellectual path is considered, examining how he came to abandon computer science projects and commenced ceaseless public reflections on the new sciences and technologies of information, their social effects, and the need for responsibility in science.
Wallis's book on discrete mathematics is a resource for an introductory course in a subject fundamental to both mathematics and computer science, a course that is expected not only to cover certain specific topics but also to introduce students to important modes of thought specific to each discipline . . . Lower-division undergraduates through graduate students. -Choice reviews (Review of the First Edition) Very appropriately entitled as a 'beginner's guide', this textbook presents itself as the first exposure to discrete mathematics and rigorous proof for the mathematics or computer science student. -Zentralblatt Math (Review of the First Edition) This second edition of A Beginner's Guide to Discrete Mathematics presents a detailed guide to discrete mathematics and its relationship to other mathematical subjects including set theory, probability, cryptography, graph theory, and number theory. This textbook has a distinctly applied orientation and explores a variety of applications. Key Features of the second edition: * Includes a new chapter on the theory of voting as well as numerous new examples and exercises throughout the book * Introduces functions, vectors, matrices, number systems, scientific notations, and the representation of numbers in computers * Provides examples which then lead into easy practice problems throughout the text and full exercise at the end of each chapter * Full solutions for practice problems are provided at the end of the book This text is intended for undergraduates in mathematics and computer science, however, featured special topics and applications may also interest graduate students.
Discusses in detail a World Formula, which is the unification of the greatest theories in physics, namely quantum theory and Einstein's general theory Demystifies David Hilbert's World Formula by simplifying the complex math involved in it Explains why nobody had realized Hilbert's immortal stroke of genius As a "Theory of Everything" approach, it automatically provides just the most holistic tools for each and every optimization, decision-making or solution-finding problem there can possibly be-be it in physics, social science, medicine, socioeconomy and politics, real or artificial intelligence or, rather generally, philosophy
This visionary and engaging book provides a mathematical perspective on the fundamental ideas of numbers, space, life, evolution, the brain and the mind. The author suggests how a development of mathematical concepts in the spirit of category theory may lead to unravelling the mystery of the human mind and the design of universal learning algorithms. The book is divided into two parts, the first of which describes the ideas of great mathematicians and scientists, those who saw sparks of light in the dark sea of unknown. The second part, Memorandum Ergo, reflects on how mathematics can contribute to the understanding of the mystery of thought. It argues that the core of the human mind is a structurally elaborated object that needs a creation of a broad mathematical context for its understanding. Readers will discover the main properties of the expected mathematical objects within this context, called ERGO-SYSTEMS, and readers will see how these "systems" may serve as prototypes for design of universal learning computer programs. This is a work of great, poetical insight and is richly illustrated. It is a highly attractive read for all those who welcome a mathematical and scientific way of thinking about the world.
This book is dedicated to the work of Alasdair Urquhart. The book starts out with an introduction to and an overview of Urquhart's work, and an autobiographical essay by Urquhart. This introductory section is followed by papers on algebraic logic and lattice theory, papers on the complexity of proofs, and papers on philosophical logic and history of logic. The final section of the book contains a response to the papers by Urquhart. Alasdair Urquhart has made extremely important contributions to a variety of fields in logic. He produced some of the earliest work on the semantics of relevant logic. He provided the undecidability of the logics R (of relevant implication) and E (of relevant entailment), as well as some of their close neighbors. He proved that interpolation fails in some of those systems. Urquhart has done very important work in complexity theory, both about the complexity of proofs in classical and some nonclassical logics. In pure algebra, he has produced a representation theorem for lattices and some rather beautiful duality theorems. In addition, he has done important work in the history of logic, especially on Bertrand Russell, including editing Volume four of Russell's Collected Papers.
1 2 Harald Atmanspacher and Hans Primas 1 Institute for Frontier Areas of Psychology, Freiburg, Germany, [email protected] 2 ETH Zurich, Switzerland, [email protected] Thenotionofrealityisofsupremesigni?canceforourunderstandingofnature, the world around us, and ourselves. As the history of philosophy shows, it has been under permanent discussion at all times. Traditional discourse about - ality covers the full range from basic metaphysical foundations to operational approaches concerning human kinds of gathering and utilizing knowledge, broadly speaking epistemic approaches. However, no period in time has ex- rienced a number of moves changing and, particularly, restraining traditional concepts of reality that is comparable to the 20th century. Early in the 20th century, quite an in?uential move of such a kind was due to the so-called Copenhagen interpretation of quantum mechanics, laid out essentially by Bohr, Heisenberg, and Pauli in the mid 1920s. Bohr's dictum, quoted by Petersen (1963, p.12), was that "it is wrong to think that the task of physics is to ?nd out how nature is. Physics concerns what we can say about nature." Although this standpoint was not left unopposed - Einstein, Schr] odinger, and others were convinced that it is the task of science to ?nd out about nature itself - epistemic, operational attitudes have set the fashion for many discussions in the philosophy of physics (and of science in general) until today."
With a never-before published paper by Lord Henry Cavendish, as well as a biography on him, this book offers a fascinating discourse on the rise of scientific attitudes and ways of knowing. A pioneering British physicist in the late 18th and early 19th centuries, Cavendish was widely considered to be the first full-time scientist in the modern sense. Through the lens of this unique thinker and writer, this book is about the birth of modern science.
Written by two well-known scholars in the field, Combinatorial Reasoning: An Introduction to the Art of Counting presents a clear and comprehensive introduction to the concepts and methodology of beginning combinatorics. Focusing on modern techniques and applications, the book develops a variety of effective approaches to solving counting problems. Balancing abstract ideas with specific topical coverage, the book utilizes real world examples with problems ranging from basic calculations that are designed to develop fundamental concepts to more challenging exercises that allow for a deeper exploration of complex combinatorial situations. Simple cases are treated first before moving on to general and more advanced cases. Additional features of the book include: Approximately 700 carefully structured problems designed for readers at multiple levels, many with hints and/or short answers Numerous examples that illustrate problem solving using both combinatorial reasoning and sophisticated algorithmic methods A novel approach to the study of recurrence sequences, which simplifies many proofs and calculations Concrete examples and diagrams interspersed throughout to further aid comprehension of abstract concepts A chapter-by-chapter review to clarify the most crucial concepts covered Combinatorial Reasoning: An Introduction to the Art of Counting is an excellent textbook for upper-undergraduate and beginning graduate-level courses on introductory combinatorics and discrete mathematics.
Nature-Inspired Optimization Algorithms, a comprehensive work on the most popular optimization algorithms based on nature, starts with an overview of optimization going from the classical to the latest swarm intelligence algorithm. Nature has a rich abundance of flora and fauna that inspired the development of optimization techniques, providing us with simple solutions to complex problems in an effective and adaptive manner. The study of the intelligent survival strategies of animals, birds, and insects in a hostile and ever-changing environment has led to the development of techniques emulating their behavior. This book is a lucid description of fifteen important existing optimization algorithms based on swarm intelligence and superior in performance. It is a valuable resource for engineers, researchers, faculty, and students who are devising optimum solutions to any type of problem ranging from computer science to economics and covering diverse areas that require maximizing output and minimizing resources. This is the crux of all optimization algorithms. Features: Detailed description of the algorithms along with pseudocode and flowchart Easy translation to program code that is also readily available in Mathworks website for some of the algorithms Simple examples demonstrating the optimization strategies are provided to enhance understanding Standard applications and benchmark datasets for testing and validating the algorithms are included This book is a reference for undergraduate and post-graduate students. It will be useful to faculty members teaching optimization. It is also a comprehensive guide for researchers who are looking for optimizing resources in attaining the best solution to a problem. The nature-inspired optimization algorithms are unconventional, and this makes them more efficient than their traditional counterparts.
The theory of Boolean algebras was created in 1847 by the English mat- matician George Boole. He conceived it as a calculus (or arithmetic) suitable for a mathematical analysis of logic. The form of his calculus was rather di?erent from the modern version, which came into being during the - riod 1864-1895 through the contributions of William Stanley Jevons, Aug- tus De Morgan, Charles Sanders Peirce, and Ernst Schr. oder. A foundation of the calculus as an abstract algebraic discipline, axiomatized by a set of equations, and admitting many di?erent interpretations, was carried out by Edward Huntington in 1904. Only with the work of Marshall Stone and Alfred Tarski in the 1930s, however, did Boolean algebra free itself completely from the bonds of logic and become a modern mathematical discipline, with deep theorems and - portantconnections toseveral otherbranchesofmathematics, includingal- bra,analysis, logic, measuretheory, probability andstatistics, settheory, and topology. For instance, in logic, beyond its close connection to propositional logic, Boolean algebra has found applications in such diverse areas as the proof of the completeness theorem for ?rst-order logic, the proof of the Lo ' s conjecture for countable ? rst-order theories categorical in power, and proofs of the independence of the axiom of choice and the continuum hypothesis ? in set theory. In analysis, Stone's discoveries of the Stone-Cech compac- ?cation and the Stone-Weierstrass approximation theorem were intimately connected to his study of Boolean algebras.
This revised edition of McEliece's classic is a self-contained introduction to all basic results in the theory of information and coding. This theory was developed to deal with the fundamental problem of communication, that of reproducing at one point, either exactly or approximately, a message selected at another point. There is a short and elementary overview introducing the reader to the concept of coding. Following the main results, the channel and source coding theorems is a study of specific coding schemes which can be used for channel and source coding. This volume can be used either for self-study, or for a graduate/undergraduate level course at university. It includes dozens of worked examples and several hundred problems for solution.
This book offers a defense against non-classical approaches to the paradoxes. The author argues that, despite appearances, the paradoxes give no reason at all to reject classical logic. In fact, he believes classical solutions fare better than non-classical ones with respect to key tests like Curry's Paradox, a Liar-like paradox that dialetheists are forced to solve in a way totally disjoint from their solution to the Liar. Graham Priest's In Contradiction was the first major work that advocated the use of non-classical approaches. Since then, these views have moved into the philosophical mainstream. Much of this movement is fueled by a widespread sense that these logically heterodox solutions get to the real nub of the issue. They lack the ad hoc feel of many other solutions to the paradoxes. The author believes that it's long past time for a response to these attacks against classical orthodoxy. He presents a non-logically-revisionary solution to the paradoxes. This title offers a literal way of cashing out the disquotation metaphor. While the details of the view are novel, the idea has a pre-history in the relevant literature. The author examines objections in detail. He rejects each in turn and concludes by comparing the virtues of his logically orthodox approach with those of the paraconsistent and paracomplete competition.
This collection brings together exciting new works that address today's key challenges for a feminist power-sensitive approach to knowledge and scientific practice. Taking up such issues as the role of contextualism in epistemology, democracy and dissent in knowledge practices, and epistemic agency under conditions of oppression, the essays build upon well-established work in feminist epistemology and philosophy of science such as standpoint theory and contextual empiricism, offering new interpretations and applications. Many contributions capture the current engagement of feminist epistemologists with the insights and programs of nonfeminist epistemologists, while others focus on the intersections between feminist epistemology and other fields of feminist inquiry such as feminist ethics and metaphysics. *see remarks below for remainder of text*
This book provides a detailed exposition of one of the most practical and popular methods of proving theorems in logic, called Natural Deduction. It is presented both historically and systematically. Also some combinations with other known proof methods are explored. The initial part of the book deals with Classical Logic, whereas the rest is concerned with systems for several forms of Modal Logics, one of the most important branches of modern logic, which has wide applicability.
This collection of surveys and research papers on recent topics of interest in combinatorics is dedicated to Paul Erdös, who attended the conference and who is represented by two articles in the collection, including one, unfinished, which he was writing on the eve of his sudden death. Erdös was one of the greatest mathematicians of his century and often the subject of anecdotes about his somewhat unusual lifestyle. A new preface, written by friends and colleagues, gives a flavor of his life, including many such stories, and also describes the broad outline and importance of his work in combinatorics and other related fields.
This completely revised and corrected version of the well-known Florence notes circulated by the authors together with E. Friedlander examines basic topology, emphasizing homotopy theory. Included is a discussion of Postnikov towers and rational homotopy theory. This is then followed by an in-depth look at differential forms and de Tham's theorem on simplicial complexes. In addition, Sullivan's results on computing the rational homotopy type from forms is presented. New to the Second Edition: *Fully-revised appendices including an expanded discussion of the Hirsch lemma *Presentation of a natural proof of a Serre spectral sequence result *Updated content throughout the book, reflecting advances in the area of homotopy theory With its modern approach and timely revisions, this second edition of Rational Homotopy Theory and Differential Forms will be a valuable resource for graduate students and researchers in algebraic topology, differential forms, and homotopy theory.
Introduction to the Theory of Optimization in Euclidean Space is intended to provide students with a robust introduction to optimization in Euclidean space, demonstrating the theoretical aspects of the subject whilst also providing clear proofs and applications. Students are taken progressively through the development of the proofs, where they have the occasion to practice tools of differentiation (Chain rule, Taylor formula) for functions of several variables in abstract situations. Throughout this book, students will learn the necessity of referring to important results established in advanced Algebra and Analysis courses. Features Rigorous and practical, offering proofs and applications of theorems Suitable as a textbook for advanced undergraduate students on mathematics or economics courses, or as reference for graduate-level readers Introduces complex principles in a clear, illustrative fashion
In this book, trigonometry is presented mainly through the solution of specific problems. The problems are meant to help the reader consolidate their knowledge of the subject. In addition, they serve to motivate and provide context for the concepts, definitions, and results as they are presented. In this way, it enables a more active mastery of the subject, directly linking the results of the theory with their applications. Some historical notes are also embedded in selected chapters.The problems in the book are selected from a variety of disciplines, such as physics, medicine, architecture, and so on. They include solving triangles, trigonometric equations, and their applications. Taken together, the problems cover the entirety of material contained in a standard trigonometry course which is studied in high school and college.We have also added some interesting, in our opinion, entertainment problems. To solve them, no special knowledge is required. While they are not directly related to the subject of the book, they reflect its spirit and contribute to a more lighthearted reading of the material.
Features Over sixty paper stars, all made without cutting, gluing or decorating using the modular origami technique Hundreds of clear step-by-step instructions show you how, based on the technique of folding a small number of simple units and joining them together as a satisfying puzzle Secrets tips to make new shapes just by varying a few lengths and angles Suitable for teaching and learning art, geometry and mathematics. Teachers will appreciate the practical advice to succeed in using origami for education.
The study of linear positive operators is an area of mathematical studies with significant relevance to studies of computer-aided geometric design, numerical analysis, and differential equations. This book focuses on the convergence of linear positive operators in real and complex domains. The theoretical aspects of these operators have been an active area of research over the past few decades. In this volume, authors Gupta and Agarwal explore new and more efficient methods of applying this research to studies in Optimization and Analysis. The text will be of interest to upper-level students seeking an introduction to the field and to researchers developing innovative approaches.
Features Over sixty paper stars, all made without cutting, gluing or decorating using the modular origami technique Hundreds of clear step-by-step instructions show you how, based on the technique of folding a small number of simple units and joining them together as a satisfying puzzle Secrets tips to make new shapes just by varying a few lengths and angles Suitable for teaching and learning art, geometry and mathematics. Teachers will appreciate the practical advice to succeed in using origami for education.
This new volume on logic follows a recognizable format that deals in turn with the topics of mathematical logic, moving from concepts, via definitions and inferences, to theories and axioms. However, this fresh work offers a key innovation in its 'pyramidal' graph system for the logical formalization of all these items. The author has developed this new methodology on the basis of original research, traditional logical instruments such as Porphyrian trees, and modern concepts of classification, in which pyramids are the central organizing concept. The pyramidal schema enables both the content of concepts and the relations between the concept positions in the pyramid to be read off from the graph. Logical connectors are analyzed in terms of the direction in which they connect within the pyramid. Additionally, the author shows that logical connectors are of fundamentally different types: only one sort generates propositions with truth values, while the other yields conceptual expressions or complex concepts. On this basis, strong arguments are developed against adopting the non-discriminating connector definitions implicit in Wittgensteinian truth-value tables. Special consideration is given to mathematical connectors so as to illuminate the formation of concepts in the natural sciences. To show what the pyramidal method can contribute to science, a pyramid of the number concepts prevalent in mathematics is constructed. The book also counters the logical dogma of 'false' contradictory propositions and sheds new light on the logical characteristics of probable propositions, as well as on syllogistic and other inferences.
This monograph on the homotopy theory of topologized diagrams of spaces and spectra gives an expert account of a subject at the foundation of motivic homotopy theory and the theory of topological modular forms in stable homotopy theory. Beginning with an introduction to the homotopy theory of simplicial sets and topos theory, the book covers core topics such as the unstable homotopy theory of simplicial presheaves and sheaves, localized theories, cocycles, descent theory, non-abelian cohomology, stacks, and local stable homotopy theory. A detailed treatment of the formalism of the subject is interwoven with explanations of the motivation, development, and nuances of ideas and results. The coherence of the abstract theory is elucidated through the use of widely applicable tools, such as Barr's theorem on Boolean localization, model structures on the category of simplicial presheaves on a site, and cocycle categories. A wealth of concrete examples convey the vitality and importance of the subject in topology, number theory, algebraic geometry, and algebraic K-theory. Assuming basic knowledge of algebraic geometry and homotopy theory, Local Homotopy Theory will appeal to researchers and advanced graduate students seeking to understand and advance the applications of homotopy theory in multiple areas of mathematics and the mathematical sciences. |
You may like...
An Elementary Arithmetic [microform]
By a Committee of Teachers Supervised
Hardcover
R807
Discovery Miles 8 070
National Arithmetic in Theory and…
John Herbert 1831-1904 Sangster
Hardcover
R983
Discovery Miles 9 830
The New Method Arithmetic [microform]
P (Phineas) McIntosh, C a (Carl Adolph) B 1879 Norman
Hardcover
R921
Discovery Miles 9 210
The Public School Arithmetic - Based on…
J a (James Alexander) 18 McLellan, A F (Albert Flintoft) Ames
Hardcover
R919
Discovery Miles 9 190
|