![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Mathematical foundations > General
This book covers work written by leading scholars from different schools within the research area of paraconsistency. The authors critically investigate how contemporary paraconsistent logics can be used to better understand human reasoning in science and mathematics. Offering a variety of perspectives, they shed a new light on the question of whether paraconsistent logics can function as the underlying logics of inconsistent but useful scientific and mathematical theories. The great variety of paraconsistent logics gives rise to various, interrelated questions, such as what are the desiderata a paraconsistent logic should satisfy, is there prospect of a universal approach to paraconsistent reasoning with axiomatic theories, and to what extent is reasoning about sets structurally analogous to reasoning about truth. Furthermore, the authors consider paraconsistent logic's status as either a normative or descriptive discipline (or one which falls in between) and which inconsistent but non-trivial axiomatic theories are well understood by which types of paraconsistent approaches. This volume addresses such questions from different perspectives in order to (i) obtain a representative overview of the state of the art in the philosophical debate on paraconsistency, (ii) come up with fresh ideas for the future of paraconsistency, and most importantly (iii) provide paraconsistent logic with a stronger philosophical foundation, taking into account the developments within the different schools of paraconsistency.
Problems in decision making and in other areas such as pattern recogni tion, control, structural engineering etc. involve numerous aspects of uncertainty. Additional vagueness is introduced as models become more complex but not necessarily more meaningful by the added details. During the last two decades one has become more and more aware of the fact that not all this uncertainty is of stochastic (random) cha racter and that, therefore, it can not be modelled appropriately by probability theory. This becomes the more obvious the more we want to represent formally human knowledge. As far as uncertain data are concerned, we have neither instru ments nor reasoning at our disposal as well defined and unquestionable as those used in the probability theory. This almost infallible do main is the result of a tremendous work by the whole scientific world. But when measures are dubious, bad or no longer possible and when we really have to make use of the richness of human reasoning in its variety, then the theories dealing with the treatment of uncertainty, some quite new and other ones older, provide the required complement, and fill in the gap left in the field of knowledge representation. Nowadays, various theories are widely used: fuzzy sets, belief function, the convenient associations between probability and fuzzines~ etc *** We are more and more in need of a wide range of instruments and theories to build models that are more and more adapted to the most complex systems.
This impressive volume is dedicated to Mel Nathanson, a leading authoritative expert for several decades in the area of combinatorial and additive number theory. For several decades, Mel Nathanson's seminal ideas and results in combinatorial and additive number theory have influenced graduate students and researchers alike. The invited survey articles in this volume reflect the work of distinguished mathematicians in number theory, and represent a wide range of important topics in current research.
The importance of having ef cient and effective methods for data mining and kn- ledge discovery (DM&KD), to which the present book is devoted, grows every day and numerous such methods have been developed in recent decades. There exists a great variety of different settings for the main problem studied by data mining and knowledge discovery, and it seems that a very popular one is formulated in terms of binary attributes. In this setting, states of nature of the application area under consideration are described by Boolean vectors de ned on some attributes. That is, by data points de ned in the Boolean space of the attributes. It is postulated that there exists a partition of this space into two classes, which should be inferred as patterns on the attributes when only several data points are known, the so-called positive and negative training examples. The main problem in DM&KD is de ned as nding rules for recognizing (cl- sifying) new data points of unknown class, i. e. , deciding which of them are positive and which are negative. In other words, to infer the binary value of one more attribute, called the goal or class attribute. To solve this problem, some methods have been suggested which construct a Boolean function separating the two given sets of positive and negative training data points.
This edited volume focuses on the work of Professor Larisa Maksimova, providing a comprehensive account of her outstanding contributions to different branches of non-classical logic. The book covers themes ranging from rigorous implication, relevance and algebraic logic, to interpolation, definability and recognizability in superintuitionistic and modal logics. It features both her scientific autobiography and original contributions from experts in the field of non-classical logics. Professor Larisa Maksimova's influential work involved combining methods of algebraic and relational semantics. Readers will be able to trace both influences on her work, and the ways in which her work has influenced other logicians. In the historical part of this book, it is possible to trace important milestones in Maksimova's career. Early on, she developed an algebraic semantics for relevance logics and relational semantics for the logic of entailment. Later, Maksimova discovered that among the continuum of superintuitionisitc logics there are exactly three pretabular logics. She went on to obtain results on the decidability of tabularity and local tabularity problems for superintuitionistic logics and for extensions of S4. Further investigations by Maksimova were aimed at the study of fundamental properties of logical systems (different versions of interpolation and definability, disjunction property, etc.) in big classes of logics, and on decidability and recognizability of such properties. To this end she determined a powerful combination of algebraic and semantic methods, which essentially determine the modern state of investigations in the area, as can be seen in the later chapters of this book authored by leading experts in non-classical logics. These original contributions bring the reader up to date on the very latest work in this field.
Th e vari a t i on al s p li ne t heo ry w h ic h orig i na t es from th e w ell-kn own p ap er b y J. e . Hollid a y ( 1957) i s t od a y a we ll- deve lo pe d fi eld in a p pr o x - mat i o n t he o ry . T he ge ne ra l d efinition of s p l i nes in t he Hilb er t s pace , - i st ence , uniquen e s s , and ch ar a c t eriz a tion t he o re ms w ere obt ain ed a b o ut 35 ye a r s ago b y M . A t t ei a , P . J . Laur en t , a n d P . M. An selon e , bu t in r e cent y e a r s important n e w r esult s h a v e b e en ob t ain ed in th e a bst ract va r i a t i o n a l s p l i ne theor y .
This monograph provides a theoretical treatment of the problems related to the embeddability of graphs. Among these problems are the planarity and planar embeddings of a graph, the Gaussian crossing problem, the isomorphisms of polyhedra, surface embeddability, problems concerning graphic and cographic matroids and the knot problem from topology to combinatorics are discussed. Rectilinear embeddability, and the net-embeddability of a graph, which appears from the VSLI circuit design and has been much improved by the author recently, is also illustrated. Furthermore, some optimization problems related to planar and rectilinear embeddings of graphs, including those of finding the shortest convex embedding with a boundary condition and the shortest triangulation for given points on the plane, the bend and the area minimizations of rectilinear embeddings, and several kinds of graph decompositions are specially described for conditions efficiently solvable. At the end of each chapter, the Notes Section sets out the progress of related problems, the background in theory and practice, and some historical remarks. Some open problems with suggestions for their solutions are mentioned for further research.
This book presents a collection of contributions from related logics to applied paraconsistency. Moreover, all of them are dedicated to Jair Minoro Abe,on the occasion of his sixtieth birthday. He is one of the experts in Paraconsistent Engineering, who developed the so-called annotated logics. The book includes important contributions on foundations and applications of paraconsistent logics in connection with engineering, mathematical logic, philosophical logic, computer science, physics, economics, and biology. It will be of interest to students and researchers, who are working on engineering and logic.
The main idea of statistical convergence is to demand convergence only for a majority of elements of a sequence. This method of convergence has been investigated in many fundamental areas of mathematics such as: measure theory, approximation theory, fuzzy logic theory, summability theory, and so on. In this monograph we consider this concept in approximating a function by linear operators, especially when the classical limit fails. The results of this book not only cover the classical and statistical approximation theory, but also are applied in the fuzzy logic via the fuzzy-valued operators. The authors in particular treat the important Korovkin approximation theory of positive linear operators in statistical and fuzzy sense. They also present various statistical approximation theorems for some specific real and complex-valued linear operators that are not positive. This is the first monograph in Statistical Approximation Theory and Fuzziness. The chapters are self-contained and several advanced courses can be taught. The research findings will be useful in various applications including applied and computational mathematics, stochastics, engineering, artificial intelligence, vision and machine learning. This monograph is directed to graduate students, researchers, practitioners and professors of all disciplines.
The NATO Advanced Study Institute "Axiomatic, enriched and rna tivic homotopy theory" took place at the Isaac Newton Institute of Mathematical Sciences, Cambridge, England during 9-20 September 2002. The Directors were J.P.C.Greenlees and I.Zhukov; the other or ganizers were P.G.Goerss, F.Morel, J.F.Jardine and V.P.Snaith. The title describes the content well, and both the event and the contents of the present volume reflect recent remarkable successes in model categor ies, structured ring spectra and homotopy theory of algebraic geometry. The ASI took the form of a series of 15 minicourses and a few extra lectures, and was designed to provide background, and to bring the par ticipants up to date with developments. The present volume is based on a number of the lectures given during the workshop. The ASI was the opening workshop of the four month programme "New Contexts for Stable Homotopy Theory" which explored several themes in greater depth. I am grateful to the Isaac Newton Institute for providing such an ideal venue, the NATO Science Committee for their funding, and to all the speakers at the conference, whether or not they were able to contribute to the present volume. All contributions were refereed, and I thank the authors and referees for their efforts to fit in with the tight schedule. Finally, I would like to thank my coorganizers and all the staff at the Institute for making the ASI run so smoothly. J.P.C.GREENLEES."
Absolute Space, Absolute Time, and Absolute Motion exist. These are shown to be facts through an investigation of the nature of infinitesimals. Knowledge of that nature also makes the irrational magnitudes within the unit comprehensible. The number line is shown to be cognitively superior to set theory; furthermore, non-Euclidean geometry is shown to be a mere manipulation of symbols and not an expression of a "parallel universe." Inside, the reader will also learn about a hitherto unknown number system locked within _-1. He will also discover in the infinitesimal calculus a hidden key to a level of reality beneath that of nano-technology.. The foundation of science is not some vague generality, but the exercise of reason as originating from the human sensorium. There is no difference between mathematical and ordinary inductive reasoning.
The present anthology has its origin in two international conferences that were arranged at Uppsala University in August 2004: "Logicism, Intuitionism and F- malism: What has become of them?" followed by "Symposium on Constructive Mathematics." The rst conference concerned the three major programmes in the foundations of mathematics during the classical period from Frege's Begrif- schrift in 1879 to the publication of Godel' ] s two incompleteness theorems in 1931: The logicism of Frege, Russell and Whitehead, the intuitionism of Brouwer, and Hilbert's formalist and proof-theoretic programme. The main purpose of the conf- ence was to assess the relevance of these foundational programmes to contemporary philosophy of mathematics. The second conference was announced as a satellite event to the rst, and was speci cally concerned with constructive mathematics-an activebranchofmathematicswheremathematicalstatements-existencestatements in particular-are interpreted in terms of what can be effectively constructed. C- structive mathematics may also be characterized as mathematics based on intuiti- isticlogicand, thus, beviewedasadirectdescendant ofBrouwer'sintuitionism. The two conferences were successful in bringing together a number of internationally renowned mathematicians and philosophers around common concerns. Once again it was con rmed that philosophers and mathematicians can work together and that real progress in the philosophy and foundations of mathematics is possible only if they do. Most of the papers in this collection originate from the two conferences, but a few additional papers of relevance to the issues discussed at the Uppsala c- ferences have been solicited especially for this volume."
This book presents a mathematically-based introduction into the fascinating topic of Fuzzy Sets and Fuzzy Logic and might be used as textbook at both undergraduate and graduate levels and also as reference guide for mathematician, scientists or engineers who would like to get an insight into Fuzzy Logic. Fuzzy Sets have been introduced by Lotfi Zadeh in 1965 and since then, they have been used in many applications. As a consequence, there is a vast literature on the practical applications of fuzzy sets, while theory has a more modest coverage. The main purpose of the present book is to reduce this gap by providing a theoretical introduction into Fuzzy Sets based on Mathematical Analysis and Approximation Theory. Well-known applications, as for example fuzzy control, are also discussed in this book and placed on new ground, a theoretical foundation. Moreover, a few advanced chapters and several new results are included. These comprise, among others, a new systematic and constructive approach for fuzzy inference systems of Mamdani and Takagi-Sugeno types, that investigates their approximation capability by providing new error estimates. "
This monograph presents a new theory for analysis, comparison and design of nonlinear smoothers, linking to established practices. Although a part of mathematical morphology, the special properties yield many simple, powerful and illuminating results leading to a novel nonlinear multiresolution analysis with pulses that may be as natural to vision as wavelet analysis is to acoustics. Similar to median transforms, they have the advantages of a supporting theory, computational simplicity, remarkable consistency, full trend preservation, and a Parceval-type identity. Although the perspective is new and unfamiliar to most, the
reader can verify all the ideas and results with simple simulations
on a computer at each stage. The framework developed turns out to
be a part of mathematical morphology, but the additional specific
structures and properties yield a heuristic understanding that is
easy to absorb for practitioners in the fields like signal- and
image processing.
This book is devoted primarily to topics in interpolation for scalar, matrix and operator valued functions. About half the papers are based on lectures which were delivered at a conference held at Leipzig University in August 1994 to commemorate the 80th anniversary of the birth of Vladimir Petrovich Potapov. The volume also contains the English translation of several important papers relatively unknown in the West, two expository papers written especially for this volume, and historical material based on reminiscences of former colleagues, students and associates of V.P. Potapov. Numerous examples of interpolation problems of the Nevanlinna-Pick and CarathA(c)odory-FejA(c)r type are included as well as moment problems and problems of integral representation in assorted settings. The major themes cover applications of the Potapov method of fundamental matrix inequalities, multiplicative decompositions of J-inner matrix valued functions, the abstract interpolation problem, canonical systems of differential equations and interpolation in spaces with an indefinite metric. This book should appeal to a wide range of readers: mathematicians specializing in pure and applied mathematics and engineers who work in systems theory and control. The book will be of use to graduate students and mathematicians interested in functional analysis.
This is a monograph that details the use of Siegel's method and the classical results of homotopy groups of spheres and Lie groups to determine some Gottlieb groups of projective spaces or to give the lower bounds of their orders. Making use of the properties of Whitehead products, the authors also determine some Whitehead center groups of projective spaces that are relevant and new within this monograph.
This book contains the proceedings of the International Symposium on Mathematical Morphology and its Applications to Image and Signal Processing IV, held June 3-5, 1998, in Amsterdam, The Netherlands. The purpose of the work is to provide the image analysis community with a sampling of recent developments in theoretical and practical aspects of mathematical morphology and its applications to image and signal processing. Among the areas covered are: digitization and connectivity, skeletonization, multivariate morphology, morphological segmentation, color image processing, filter design, gray-scale morphology, fuzzy morphology, decomposition of morphological operators, random sets and statistical inference, differential morphology and scale-space, morphological algorithms and applications. Audience: This volume will be of interest to research mathematicians and computer scientists whose work involves mathematical morphology, image and signal processing.
This second edition of "A Beginner's Guide to Finite Mathematics" takes a distinctly applied approach to finite mathematics at the freshman and sophomore level. Topics are presented sequentially: the book opens with a brief review of sets and numbers, followed by an introduction to data sets, histograms, means and medians. Counting techniques and the Binomial Theorem are covered, which provides the foundation for elementary probability theory; this, in turn, leads to basic statistics. This new edition includes chapters on game theory and financial mathematics. Requiring little mathematical background beyond high school algebra, the text will be especially useful for business and liberal arts majors.
Approximation Theory, Wavelets and Applications draws together the latest developments in the subject, provides directions for future research, and paves the way for collaborative research. The main topics covered include constructive multivariate approximation, theory of splines, spline wavelets, polynomial and trigonometric wavelets, interpolation theory, polynomial and rational approximation. Among the scientific applications were de-noising using wavelets, including the de-noising of speech and images, and signal and digital image processing. In the area of the approximation of functions the main topics include multivariate interpolation, quasi-interpolation, polynomial approximation with weights, knot removal for scattered data, convergence theorems in PadA(c) theory, Lyapunov theory in approximation, Neville elimination as applied to shape preserving presentation of curves, interpolating positive linear operators, interpolation from a convex subset of Hilbert space, and interpolation on the triangle and simplex. Wavelet theory is growing extremely rapidly and has applications which will interest readers in the physical, medical, engineering and social sciences.
This is the first book on cut-elimination in first-order predicate logic from an algorithmic point of view. Instead of just proving the existence of cut-free proofs, it focuses on the algorithmic methods transforming proofs with arbitrary cuts to proofs with only atomic cuts (atomic cut normal forms, so-called ACNFs). The first part investigates traditional reductive methods from the point of view of proof rewriting. Within this general framework, generalizations of Gentzen's and Sch\"utte-Tait's cut-elimination methods are defined and shown terminating with ACNFs of the original proof. Moreover, a complexity theoretic comparison of Gentzen's and Tait's methods is given. The core of the book centers around the cut-elimination method CERES (cut elimination by resolution) developed by the authors. CERES is based on the resolution calculus and radically differs from the reductive cut-elimination methods. The book shows that CERES asymptotically outperforms all reductive methods based on Gentzen's cut-reduction rules. It obtains this result by heavy use of subsumption theorems in clause logic. Moreover, several applications of CERES are given (to interpolation, complexity analysis of cut-elimination, generalization of proofs, and to the analysis of real mathematical proofs). Lastly, the book demonstrates that CERES can be extended to nonclassical logics, in particular to finitely-valued logics and to G\"odel logic.
In Western Civilization Mathematics and Music have a long and interesting history in common, with several interactions, traditionally associated with the name of Pythagoras but also with a significant number of other mathematicians, like Leibniz, for instance. Mathematical models can be found for almost all levels of musical activities from composition to sound production by traditional instruments or by digital means. Modern music theory has been incorporating more and more mathematical content during the last decades. This book offers a journey into recent work relating music and mathematics. It contains a large variety of articles, covering the historical aspects, the influence of logic and mathematical thought in composition, perception and understanding of music and the computational aspects of musical sound processing. The authors illustrate the rich and deep interactions that exist between Mathematics and Music.
This book presents an in-depth and critical reconstruction of Prawitz's epistemic grounding, and discusses it within the broader field of proof-theoretic semantics. The theory of grounds is also provided with a formal framework, through which several relevant results are proved. Investigating Prawitz's theory of grounds, this work answers one of the most fundamental questions in logic: why and how do some inferences have the epistemic power to compel us to accept their conclusion, if we have accepted their premises? Prawitz proposes an innovative description of inferential acts, as applications of constructive operations on grounds for the premises, yielding a ground for the conclusion. The book is divided into three parts. In the first, the author discusses the reasons that have led Prawitz to abandon his previous semantics of valid arguments and proofs. The second part presents Prawitz's grounding as found in his ground-theoretic papers. Finally, in the third part, a formal apparatus is developed, consisting of a class of languages whose terms are equipped with denotation functions associating them to operations and grounds, as well as of a class of systems where important properties of the terms can be proved.
The papers in this volume represent a selection of updated talks which were presented in an SDS sponsored International Workshop in Panporovo, Bulgaria, in September 1990. The aim of the text is to bring the reader up to date on research in set-valued analysis and differential inclusions. |
You may like...
The High School Arithmetic - for Use in…
W. H. Ballard, A. C. McKay, …
Hardcover
R981
Discovery Miles 9 810
The New Method Arithmetic [microform]
P (Phineas) McIntosh, C a (Carl Adolph) B 1879 Norman
Hardcover
R921
Discovery Miles 9 210
An Elementary Arithmetic [microform]
By a Committee of Teachers Supervised
Hardcover
R807
Discovery Miles 8 070
|