![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Mathematical foundations > General
This volume contains revised papers that were presented at the international workshop entitled Computational Methods for Algebraic Spline Surfaces ("COMPASS"), which was held from September 29 to October 3, 2003, at Schloss Weinberg, Kefermarkt (A- tria). The workshop was mainly devoted to approximate algebraic geometry and its - plications. The organizers wanted to emphasize the novel idea of approximate implici- zation, that has strengthened the existing link between CAD / CAGD (Computer Aided Geometric Design) and classical algebraic geometry. The existing methods for exact implicitization (i. e., for conversion from the parametric to an implicit representation of a curve or surface) require exact arithmetic and are too slow and too expensive for industrial use. Thus the duality of an implicit representation and a parametric repres- tation is only used for low degree algebraic surfaces such as planes, spheres, cylinders, cones and toroidal surfaces. On the other hand, this duality is a very useful tool for - veloping ef?cient algorithms. Approximate implicitization makes this duality available for general curves and surfaces. The traditional exact implicitization of parametric surfaces produce global rep- sentations, which are exact everywhere. The surface patches used in CAD, however, are always de?ned within a small box only; they are obtained for a bounded parameter domain (typically a rectangle, or - in the case of "trimmed" surface patches - a subset of a rectangle). Consequently, a globally exact representation is not really needed in practice."
The Bachelier Society for Mathematical Finance, founded in 1996, held its 1st World Congress in Paris on June 28 to July 1, 2000, thus coinciding in time with the centenary of the thesis defence of Louis Bachelier. In his thesis Bachelier introduced Brownian motion as a tool for the analysis of financial markets as well as the exact definition of options, and this is widely considered the keystone for the emergence of mathematical finance as a scientific discipline. The prestigious list of plenary speakers in Paris included 2 Nobel laureates, Paul Samuelson and Robert Merton. Over 130 further selected talks were given in 3 parallel sessions, all well attended by the over 500 participants who registered from all continents.
This monograph presents a comprehensive introduction to timed automata (TA) and time Petri nets (TPNs) which belong to the most widely used models of real-time systems. Some of the existing methods of translating time Petri nets to timed automata are presented, with a focus on the translations that correspond to the semantics of time Petri nets, associating clocks with various components of the nets.
Blending Approximations with Sine Functions.- Quasi-interpolation in the Absence of Polynomial Reproduction.- Estimating the Condition Number for Multivariate Interpolation Problems.- Wavelets on a Bounded Interval.- Quasi-Kernel Polynomials and Convergence Results for Quasi-Minimal Residual Iterations.- Rate of Approximation of Weighted Derivatives by Linear Combinations of SMD Operators.- Approximation by Multivariate Splines: an Application of Boolean Methods.- Lm, ?, s-Splines in ?d.- Constructive Multivariate Approximation via Sigmoidal Functions with Applications to Neural Networks.- Spline-Wavelets of Minimal Support.- Necessary Conditions for Local Best Chebyshev Approximations by Splines with Free Knots.- C1 Interpolation on Higher-Dimensional Analogs of the 4-Direction Mesh.- Tabulation of Thin Plate Splines on a Very Fine Two-Dimensional Grid.- The L2-Approximation Orders of Principal Shift-Invariant Spaces Generated by a Radial Basis Function.- A Multi-Parameter Method for Nonlinear Least-Squares Approximation.- Analog VLSI Networks.- Converse Theorems for Approximation on Discrete Sets II.- A Dual Method for Smoothing Histograms using Nonnegative C1-Splines.- Segment Approximation By Using Linear Functionals.- Construction of Monotone Extensions to Boundary Function
This volume gathers selected papers presented at the Fourth Asian Workshop on Philosophical Logic, held in Beijing in October 2018. The contributions cover a wide variety of topics in modal logic (epistemic logic, temporal logic and dynamic logic), proof theory, algebraic logic, game logics, and philosophical foundations of logic. They also reflect the interdisciplinary nature of logic - a subject that has been studied in fields as diverse as philosophy, linguistics, mathematics, computer science and artificial intelligence. More specifically. The book also presents the latest developments in logic both in Asia and beyond.
For courses in Prealgebra. The Martin-Gay principle: Every student can succeed Elayn Martin-Gay's student-centric approach is woven seamlessly throughout her texts and MyLab courses, giving students the optimal amount of support through effective video resources, an accessible writing style, and study skills support built into the program. Elayn's legacy of innovations that support student success include Chapter Test Prep videos and a Video Organizer note-taking guide. Expanded resources in the latest revision bring even more updates to her program, all shaped by her focus on the student - a perspective that has made her course materials beloved by students and instructors alike. The Martin-Gay series offers market-leading content written by a preeminent author-educator, tightly integrated with the #1 choice in digital learning: MyLab Math. Also available with MyLab Math By combining trusted author content with digital tools and a flexible platform, MyLab personalizes the learning experience and improves results for each student. Bringing Elayn Martin-Gay's voice and approach into the MyLab course - though video resources, study skills support, and exercises refined with each edition - gives students the support to be successful in math. Note: You are purchasing a standalone product; MyLab Math does not come packaged with this content. Students, if interested in purchasing this title with MyLab Math, ask your instructor to confirm the correct package ISBN and Course ID. Instructors, contact your Pearson representative for more information. If you would like to purchase both the physical text and MyLab Math, search for: 0134674189 / 9780134674186 Prealgebra Plus MyLab Math with Pearson eText -- Access Card Package, 6/e Package consists of: 0134707648 / 9780134707648 Prealgebra 0135115795 / 9780135115794 MyLab Math with Pearson eText - Standalone Access Card - for Prealgebra
This monograph provides a definitive overview of recent advances in the stability and oscillation of autonomous delay differential equations. Topics include linear and nonlinear delay and integrodifferential equations, which have potential applications to both biological and physical dynamic processes. Chapter 1 deals with an analysis of the dynamical characteristics of the delay logistic equation, and a number of techniques and results relating to stability, oscillation and comparison of scalar delay and integrodifferential equations are presented. Chapter 2 provides a tutorial-style introduction to the study of delay-induced Hopf bifurcation to periodicity and the related computations for the analysis of the stability of bifurcating periodic solutions. Chapter 3 is devoted to local analyses of nonlinear model systems and discusses many methods applicable to linear equations and their perturbations. Chapter 4 considers global convergence to equilibrium states of nonlinear systems, and includes oscillations of nonlinear systems about their equilibria. Qualitative analyses of both competitive and cooperative systems with time delays feature in both Chapters 3 and 4. Finally, Chapter 5 deals with recent developments in models of neutral differential equations and their applications to population dynamics. Each chapter concludes with a number of exercises and the overall exposition recommends this volume as a good supplementary text for graduate courses. For mathematicians whose work involves functional differential equations, and whose interest extends beyond the boundaries of linear stability analysis.
Self-contained, and collating for the first time material that has until now only been published in journals - often in Russian - this book will be of interest to functional analysts, especially those with interests in topological vector spaces, and to algebraists concerned with category theory. The closed graph theorem is one of the corner stones of functional analysis, both as a tool for applications and as an object for research. However, some of the spaces which arise in applications and for which one wants closed graph theorems are not of the type covered by the classical closed graph theorem of Banach or its immediate extensions. To remedy this, mathematicians such as Schwartz and De Wilde (in the West) and Rajkov (in the East) have introduced new ideas which have allowed them to establish closed graph theorems suitable for some of the desired applications. In this book, Professor Smirnov uses category theory to provide a very general framework, including the situations discussed by De Wilde, Rajkov and others. General properties of the spaces involved are discussed and applications are provided in measure theory, global analysis and differential equations.
This book has been designed to deal with the topics which are indispensable in the advanced age of computer science. The first three chapters cover mathematical logic, sets, relations and function. Next come the chapters on ordered sets, Boolean albegra and switching circuits and matrices. Finally there are individual chapters on combinatorics, discrete numeric functions, generating functinos, recurrence relations, algebraic structures and graph theory; Graphs are binary trees. The purpose of this book is to present principles and concepts of discrete structures as relevant to student learning. The matter has been presented in as simple and lucid manner as possible and a large number of solved examples to understand the concept and principle of the theory have been introduced.
2. The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3. Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ., . . . . 60 4. Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 A Simple Proof for a Result of Ollerenshaw on Steiner Trees . . . . . . . . . . 68 Xiufeng Du, Ding-Zhu Du, Biao Gao, and Lixue Qii 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 2. In the Euclidean Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3. In the Rectilinear Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4. Discussion . . . . . . . . . . . . -. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Optimization Algorithms for the Satisfiability (SAT) Problem . . . . . . . . . 72 Jun Gu 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 2. A Classification of SAT Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7:3 3. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV 4. Complete Algorithms and Incomplete Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5. Optimization: An Iterative Refinement Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 6. Local Search Algorithms for SAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 7. Global Optimization Algorithms for SAT Problem . . . . . . . . . . . . . . . . . . . . . . . . 106 8. Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 9. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 10. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 Ergodic Convergence in Proximal Point Algorithms with Bregman Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Osman Guier 1. Introduction . . .: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 2. Convergence for Function Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 3. Convergence for Arbitrary Maximal Monotone Operators . . . . . . . . . . . .
Since 1990 the German Research Society (Deutsche Forschungsgemeinschaft, DFG) has been funding PhD courses (Graduiertenkollegs) at selected universi- ties in the Federal Republic of Germany. TU Berlin has been one of the first universities joining that new funding program of DFG. The PhD courses have been funded over aperiod of 9 years. The grant for the nine years sums up to approximately 5 million DM. Our Grnduiertenkolleg on Communication-based Systems has been assigned to the Computer Science Department of TU Berlin although it is a joined effort of all three universities in Berlin, Technische Uni- versitat (TU), Freie Universitat (FU), and Humboldt Universitat (HU). The Graduiertenkolleg has been started its program in October 1991. The professors responsible for the program are: Hartmut Ehrig (TU), Gunter Hommel (TU), Stefan Jahnichen (TU), Peter Lohr (FU), Miroslaw Malek (RU), Peter Pep- per (TU), Radu Popescu-Zeletin (TU), Herbert Weber (TU), and Adam Wolisz (TU). The Graduiertenkolleg is a PhD program for highly qualified persons in the field of computer science. Twenty scholarships have been granted to fellows of the Graduiertenkolleg for a maximal period of three years. During this time the fellows take part in a selected educational program and work on their PhD thesis.
This volume was produced in conjunction with the Thematic Program in o-Minimal Structures and Real Analytic Geometry, held from January to June of 2009 at the Fields Institute. Five of the six contributions consist of notes from graduate courses associated with the program: Felipe Cano on a new proof of resolution of singularities for planar analytic vector fields; Chris Miller on o-minimality and Hardy fields; Jean-Philippe Rolin on the construction of o-minimal structures from quasianalytic classes; Fernando Sanz on non-oscillatory trajectories of vector fields; and Patrick Speissegger on pfaffian sets. The sixth contribution, by Antongiulio Fornasiero and Tamara Servi, is an adaptation to the nonstandard setting of A.J. Wilkie's construction of o-minimal structures from infinitely differentiable functions. Most of this material is either unavailable elsewhere or spread across many different sources such as research papers, conference proceedings and PhD theses. This book will be a useful tool for graduate students or researchers from related fields who want to learn about expansions of o-minimal structures by solutions, or images thereof, of definable systems of differential equations.
As is known, the book named "Multivariate spline functions and their applications" has been published by the Science Press in 1994. This book is an English edition based on the original book mentioned 1 above with many changes, including that of the structure of a cubic - interpolation in n-dimensional spline spaces, and more detail on triangu- lations have been added in this book. Special cases of multivariate spline functions (such as step functions, polygonal functions, and piecewise polynomials) have been examined math- ematically for a long time. I. J. Schoenberg (Contribution to the problem of application of equidistant data by analytic functions, Quart. Appl. Math., 4(1946), 45 - 99; 112 - 141) and W. Quade & L. Collatz (Zur Interpo- lations theories der reellen periodischen function, Press. Akad. Wiss. (PhysMath. KL), 30(1938), 383- 429) systematically established the the- ory of the spline functions. W. Quade & L. Collatz mainly discussed the periodic functions, while I. J. Schoenberg's work was systematic and com- plete. I. J. Schoenberg outlined three viewpoints for studing univariate splines: Fourier transformations, truncated polynomials and Taylor ex- pansions. Based on the first two viewpoints, I. J. Schoenberg deduced the B-spline function and its basic properties, especially the basis func- tions. Based on the latter viewpoint, he represented the spline functions in terms of truncated polynomials. These viewpoints and methods had significantly effected on the development of the spline functions.
We see numbers on automobile license plates, addresses, weather reports, and, of course, on our smartphones. Yet we look at these numbers for their role as descriptors, not as an entity in and unto themselves. Each number has its own history of meaning, usage, and connotation in the larger world. The Secret Lives of Numbers takes readers on a journey through integers, considering their numerological assignments as well as their significance beyond mathematics and in the realm of popular culture. Of course we all know that the number 13 carries a certain value of unluckiness with it. The phobia of the number is called Triskaidekaphobia; Franklin Delano Roosevelt was known to invite and disinvite guests to parties to avoid having 13 people in attendance; high-rise buildings often skip the 13th floor out of superstition. There are many explanations as to how the number 13 received this negative honor, but from a mathematical point of view, the number 13 is also the smallest prime number that when its digits are reversed is also a prime number. It is honored with a place among the Fibonacci numbers and integral Pythagorean triples, as well as many other interesting and lesser-known occurrences. In The Secret Lives of Numbers, popular mathematician Alfred S. Posamentier provides short and engaging mini-biographies of more than 100 numbers, starting with 1 and featuring some especially interesting numbers -like 6,174, a number with most unusual properties -to provide readers with a more comprehensive picture of the lives of numbers both mathematically and socially.
This essential companion volume to Chaitin's highly successful "The Limits of Mathematics", also published by Springer, gives a brilliant historical survey of the work of this century on the foundations of mathematics, in which the author was a major participant. The Unknowable is a very readable and concrete introduction to Chaitin's ideas, and it includes a detailed explanation of the programming language used by Chaitin in both volumes. It will enable computer users to interact with the author's proofs and discover for themselves how they work. The software for The Unknowable can be downloaded from the author's Web site.
This is a two-volume collection presenting the selected works of Herbert Busemann, one of the leading geometers of the twentieth century and one of the main founders of metric geometry, convexity theory and convexity in metric spaces. Busemann also did substantial work (probably the most important) on Hilbert's Problem IV. These collected works include Busemann's most important published articles on these topics. Volume I of the collection features Busemann's papers on the foundations of geodesic spaces and on the metric geometry of Finsler spaces. Volume II includes Busemann's papers on convexity and integral geometry, on Hilbert's Problem IV, and other papers on miscellaneous subjects. Each volume offers biographical documents and introductory essays on Busemann's work, documents from his correspondence and introductory essays written by leading specialists on Busemann's work. They are a valuable resource for researchers in synthetic and metric geometry, convexity theory and the foundations of geometry.
The expression of uncertainty in measurement poses a challenge since it involves physical, mathematical, and philosophical issues. This problem is intensified by the limitations of the probabilistic approach used by the current standard (the GUM Instrumentation Standard). This text presents an alternative approach. It makes full use of the mathematical theory of evidence to express the uncertainty in measurements. Coverage provides an overview of the current standard, then pinpoints and constructively resolves its limitations. Numerous examples throughout help explain the book 's unique approach.
Mathematics plays a key role in computer science, some researchers would consider computers as nothing but the physical embodiment of mathematical systems. And whether you are designing a digital circuit, a computer program or a new programming language, you need mathematics to be able to reason about the design -- its correctness, robustness and dependability. This book covers the foundational mathematics necessary for courses in computer science. The common approach to presenting mathematical concepts and operators is to define them in terms of properties they satisfy, and then based on these definitions develop ways of computing the result of applying the operators and prove them correct. This book is mainly written for computer science students, so here the author takes a different approach: he starts by defining ways of calculating the results of applying the operators and then proves that they satisfy various properties. After justifying his underlying approach the author offers detailed chapters covering propositional logic, predicate calculus, sets, relations, discrete structures, structured types, numbers, and reasoning about programs. The book contains chapter and section summaries, detailed proofs and many end-of-section exercises -- key to the learning process. The book is suitable for undergraduate and graduate students, and although the treatment focuses on areas with frequent applications in computer science, the book is also suitable for students of mathematics and engineering.
The purpose of the book is to advance in the understanding of brain function by defining a general framework for representation based on category theory. The idea is to bring this mathematical formalism into the domain of neural representation of physical spaces, setting the basis for a theory of mental representation, able to relate empirical findings, uniting them into a sound theoretical corpus. The innovative approach presented in the book provides a horizon of interdisciplinary collaboration that aims to set up a common agenda that synthesizes mathematical formalization and empirical procedures in a systemic way. Category theory has been successfully applied to qualitative analysis, mainly in theoretical computer science to deal with programming language semantics. Nevertheless, the potential of category theoretic tools for quantitative analysis of networks has not been tackled so far. Statistical methods to investigate graph structure typically rely on network parameters. Category theory can be seen as an abstraction of graph theory. Thus, new categorical properties can be added into network analysis and graph theoretic constructs can be accordingly extended in more fundamental basis. By generalizing networks using category theory we can address questions and elaborate answers in a more fundamental way without waiving graph theoretic tools. The vital issue is to establish a new framework for quantitative analysis of networks using the theory of categories, in which computational neuroscientists and network theorists may tackle in more efficient ways the dynamics of brain cognitive networks. The intended audience of the book is researchers who wish to explore the validity of mathematical principles in the understanding of cognitive systems. All the actors in cognitive science: philosophers, engineers, neurobiologists, cognitive psychologists, computer scientists etc. are akin to discover along its pages new unforeseen connections through the development of concepts and formal theories described in the book. Practitioners of both pure and applied mathematics e.g., network theorists, will be delighted with the mapping of abstract mathematical concepts in the terra incognita of cognition.
This valuable resource provides an overview of recent research and strategies in developing and applying modelling to promote practice-based research in STEM education. In doing so, it bridges barriers across academic disciplines by suggesting activities that promote integration of qualitative science concepts with the tools of mathematics and engineering. The volume's three parts offer a comprehensive review, by 1) Presenting a conceptual background of how scientific inquiry can be induced in mathematics classes considering recommendations of prior research, 2) Collecting case studies that were designed using scientific inquiry process designed for math classes, and 3) Exploring future possibilities and directions for the research included within. Among the topics discussed: * STEM education: A platform for multidisciplinary learning. * Teaching and learning representations in STEM. * Formulating conceptual framework for multidisciplinary STEM modeling. * Exploring function continuity in context. * Exploring function transformations using a dynamic system. Scientific Inquiry in Mathematics - Theory and Practice delivers hands-on and concrete strategies for effective STEM teaching in practice to educators within the fields of mathematics, science, and technology. It will be of interest to practicing and future mathematics teachers at all levels, as well as teacher educators, mathematics education researchers, and undergraduate and graduate mathematics students interested in research based methods for integrating inquiry-based learning into STEM classrooms.
The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level. The series de Gruyter Studies in Mathematics was founded ca. 35 years ago by the late Professor Heinz Bauer and Professor Peter Gabriel with the aim to establish a series of monographs and textbooks of high standard, written by scholars with an international reputation presenting current fields of research in pure and applied mathematics. While the editorial board of the Studies has changed with the years, the aspirations of the Studies are unchanged. In times of rapid growth of mathematical knowledge carefully written monographs and textbooks written by experts are needed more than ever, not least to pave the way for the next generation of mathematicians. In this sense the editorial board and the publisher of the Studies are devoted to continue the Studies as a service to the mathematical community. Please submit any book proposals to Niels Jacob. Titles in planning include Flavia Smarazzo and Alberto Tesei, Measure Theory: Radon Measures, Young Measures, and Applications to Parabolic Problems (2019) Elena Cordero and Luigi Rodino, Time-Frequency Analysis of Operators (2019) Mark M. Meerschaert, Alla Sikorskii, and Mohsen Zayernouri, Stochastic and Computational Models for Fractional Calculus, second edition (2020) Mariusz Lemanczyk, Ergodic Theory: Spectral Theory, Joinings, and Their Applications (2020) Marco Abate, Holomorphic Dynamics on Hyperbolic Complex Manifolds (2021) Miroslava Antic, Joeri Van der Veken, and Luc Vrancken, Differential Geometry of Submanifolds: Submanifolds of Almost Complex Spaces and Almost Product Spaces (2021) Kai Liu, Ilpo Laine, and Lianzhong Yang, Complex Differential-Difference Equations (2021) Rajendra Vasant Gurjar, Kayo Masuda, and Masayoshi Miyanishi, Affine Space Fibrations (2022)
The theory of constructive (recursive) models follows from works of Froehlich, Shepherdson, Mal'tsev, Kuznetsov, Rabin, and Vaught in the 50s. Within the framework of this theory, algorithmic properties of abstract models are investigated by constructing representations on the set of natural numbers and studying relations between algorithmic and structural properties of these models. This book is a very readable exposition of the modern theory of constructive models and describes methods and approaches developed by representatives of the Siberian school of algebra and logic and some other researchers (in particular, Nerode and his colleagues). The main themes are the existence of recursive models and applications to fields, algebras, and ordered sets (Ershov), the existence of decidable prime models (Goncharov, Harrington), the existence of decidable saturated models (Morley), the existence of decidable homogeneous models (Goncharov and Peretyat'kin), properties of the Ehrenfeucht theories (Millar, Ash, and Reed), the theory of algorithmic dimension and conditions of autostability (Goncharov, Ash, Shore, Khusainov, Ventsov, and others), and the theory of computable classes of models with various properties. Future perspectives of the theory of constructive models are also discussed. Most of the results in the book are presented in monograph form for the first time. The theory of constructive models serves as a basis for recursive mathematics. It is also useful in computer science, in particular, in the study of programming languages, higher level languages of specification, abstract data types, and problems of synthesis and verification of programs. Therefore, the book will be usefulfor not only specialists in mathematical logic and the theory of algorithms but also for scientists interested in the mathematical fundamentals of computer science. The authors are eminent specialists in mathematical logic. They have established fundamental results on elementary theories, model theory, the theory of algorithms, field theory, group theory, applied logic, computable numberings, the theory of constructive models, and the theoretical computer science.
Logic and Philosophy of Mathematics in the Early Husserl focuses on the first ten years of Edmund Husserl's work, from the publication of his Philosophy of Arithmetic (1891) to that of his Logical Investigations (1900/01), and aims to precisely locate his early work in the fields of logic, philosophy of logic and philosophy of mathematics. Unlike most phenomenologists, the author refrains from reading Husserl's early work as a more or less immature sketch of claims consolidated only in his later phenomenology, and unlike the majority of historians of logic she emphasizes the systematic strength and the originality of Husserl's logico-mathematical work. The book attempts to reconstruct the discussion between Husserl and those philosophers and mathematicians who contributed to new developments in logic, such as Leibniz, Bolzano, the logical algebraists (especially Boole and Schroder), Frege, and Hilbert and his school. It presents both a comprehensive critical examination of some of the major works produced by Husserl and his antagonists in the last decade of the 19th century and a formal reconstruction of many texts from Husserl's Nachlass that have not yet been the object of systematical scrutiny. This volume will be of particular interest to researchers working in the history, and in the philosophy, of logic and mathematics, and more generally, to analytical philosophers and phenomenologists with a background in standard logic." |
![]() ![]() You may like...
Exploring Roots of Inequality in Latin…
Feridoon Koohi-Kamali
Hardcover
R1,029
Discovery Miles 10 290
Computational Aerodynamics and…
Tapan K. Sengupta, Yogesh G. Bhumkar
Hardcover
R3,233
Discovery Miles 32 330
Advanced Topics on Computer Vision…
Osslan Osiris Vergara Villegas, Manuel Nandayapa, …
Hardcover
R4,605
Discovery Miles 46 050
Modeling of Column Apparatus Processes
Christo Boyadjiev, Maria Doichinova, …
Hardcover
|