![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Mathematical foundations > General
The two volumes in this advanced textbook present results, proof methods, and translations of motivational and philosophical considerations to formal constructions. In the associated Vol. I the author explains preferential structures and abstract size. In this Vol. II he presents chapters on theory revision and sums, defeasible inheritance theory, interpolation, neighbourhood semantics and deontic logic, abstract independence, and various aspects of nonmonotonic and other logics. In both volumes the text contains many exercises and some solutions, and the author limits the discussion of motivation and general context throughout, offering this only when it aids understanding of the formal material, in particular to illustrate the path from intuition to formalisation. Together these books are a suitable compendium for graduate students and researchers in the area of computer science and mathematical logic.
We humans are collectively driven by a powerful - yet not fully explained - instinct to understand. We would like to see everything established, proven, laid bare. The more important an issue, the more we desire to see it clarified, stripped of all secrets, all shades of gray. What could be more important than to understand the Universe and ourselves as a part of it? To find a window onto our origin and our destiny? This book examines how far our modern cosmological theories - with their sometimes audacious models, such as inflation, cyclic histories, quantum creation, parallel universes - can take us towards answering these questions. Can such theories lead us to ultimate truths, leaving nothing unexplained? Last, but not least, Heller addresses the thorny problem of why and whether we should expect to find theories with all-encompassing explicative power.
This volume presents the main results of the 4th International
Conference on Multivariate Approximation, which was held at
Witten-Bommerholz, September 24-29, 2000. Nineteen selected,
peer-reviewed contributions cover recent topics in constructive
approximation on varieties, approximation by solutions of partial
differential equations, application of Riesz bases and frames,
multiwavelets and subdivision.
Discusses in detail a World Formula, which is the unification of the greatest theories in physics, namely quantum theory and Einstein's general theory Demystifies David Hilbert's World Formula by simplifying the complex math involved in it Explains why nobody had realized Hilbert's immortal stroke of genius As a "Theory of Everything" approach, it automatically provides just the most holistic tools for each and every optimization, decision-making or solution-finding problem there can possibly be-be it in physics, social science, medicine, socioeconomy and politics, real or artificial intelligence or, rather generally, philosophy
The Mathematics That Power Our World: How Is It Made? is an attempt to unveil the hidden mathematics behind the functioning of many of the devices we use on a daily basis. For the past years, discussions on the best approach in teaching and learning mathematics have shown how much the world is divided on this issue. The one reality we seem to agree on globally is the fact that our new generation is lacking interest and passion for the subject. One has the impression that the vast majority of young students finishing high school or in their early post-secondary studies are more and more divided into two main groups when it comes to the perception of mathematics. The first group looks at mathematics as a pure academic subject with little connection to the real world. The second group considers mathematics as a set of tools that a computer can be programmed to use and thus, a basic knowledge of the subject is sufficient. This book serves as a middle ground between these two views. Many of the elegant and seemingly theoretical concepts of mathematics are linked to state-of-the-art technologies. The topics of the book are selected carefully to make that link more relevant. They include: digital calculators, basics of data compression and the Huffman coding, the JPEG standard for data compression, the GPS system studied both from the receiver and the satellite ends, image processing and face recognition.This book is a great resource for mathematics educators in high schools, colleges and universities who want to engage their students in advanced readings that go beyond the classroom discussions. It is also a solid foundation for anyone thinking of pursuing a career in science or engineering. All efforts were made so that the exposition of each topic is as clear and self-contained as possible and thus, appealing to anyone trying to broaden his mathematical horizons.
One of the greatest mathematicians in the world, Michael Atiyah has earned numerous honors, including a Fields Medal, the mathematical equivalent of the Nobel Prize. While the focus of his work has been in the areas of algebraic geometry and topology, he has also participated in research with theoretical physicists. For the first time, these volumes bring together Atiyah's collected papers--both monographs and collaborative works-- including those dealing with mathematical education and current topics of research such as K-theory and gauge theory. The volumes are organized thematically. They will be of great interest to research mathematicians, theoretical physicists, and graduate students in these areas.
Professor Atiyah is one of the greatest living mathematicians and is well known throughout the mathematical world. He is a recipient of the Fields Medal, the mathematical equivalent of the Nobel Prize, and is still at the peak of his career. His huge number of published papers, focusing on the areas of algebraic geometry and topology, have here been collected into six volumes, divided thematically for easy reference by individuals interested in a particular subject. From 1977 onwards his interest moved in the direction of gauge theories and the interaction between geometry and physics.
This book offers a defense against non-classical approaches to the paradoxes. The author argues that, despite appearances, the paradoxes give no reason at all to reject classical logic. In fact, he believes classical solutions fare better than non-classical ones with respect to key tests like Curry's Paradox, a Liar-like paradox that dialetheists are forced to solve in a way totally disjoint from their solution to the Liar. Graham Priest's In Contradiction was the first major work that advocated the use of non-classical approaches. Since then, these views have moved into the philosophical mainstream. Much of this movement is fueled by a widespread sense that these logically heterodox solutions get to the real nub of the issue. They lack the ad hoc feel of many other solutions to the paradoxes. The author believes that it's long past time for a response to these attacks against classical orthodoxy. He presents a non-logically-revisionary solution to the paradoxes. This title offers a literal way of cashing out the disquotation metaphor. While the details of the view are novel, the idea has a pre-history in the relevant literature. The author examines objections in detail. He rejects each in turn and concludes by comparing the virtues of his logically orthodox approach with those of the paraconsistent and paracomplete competition.
Introduction to the Theory of Optimization in Euclidean Space is intended to provide students with a robust introduction to optimization in Euclidean space, demonstrating the theoretical aspects of the subject whilst also providing clear proofs and applications. Students are taken progressively through the development of the proofs, where they have the occasion to practice tools of differentiation (Chain rule, Taylor formula) for functions of several variables in abstract situations. Throughout this book, students will learn the necessity of referring to important results established in advanced Algebra and Analysis courses. Features Rigorous and practical, offering proofs and applications of theorems Suitable as a textbook for advanced undergraduate students on mathematics or economics courses, or as reference for graduate-level readers Introduces complex principles in a clear, illustrative fashion
Decision Theory An Introduction to Dynamic Programming and
Sequential Decisions John Bather University of Sussex, UK
Mathematical induction, and its use in solving optimization
problems, is a topic of great interest with many applications. It
enables us to study multistage decision problems by proceeding
backwards in time, using a method called dynamic programming. All
the techniques needed to solve the various problems are explained,
and the author's fluent style will leave the reader with an avid
interest in the subject.
This monograph provides a modern introduction to the theory of quantales. First coined by C.J. Mulvey in 1986, quantales have since developed into a significant topic at the crossroads of algebra and logic, of notable interest to theoretical computer science. This book recasts the subject within the powerful framework of categorical algebra, showcasing its versatility through applications to C*- and MV-algebras, fuzzy sets and automata. With exercises and historical remarks at the end of each chapter, this self-contained book provides readers with a valuable source of references and hints for future research. This book will appeal to researchers across mathematics and computer science with an interest in category theory, lattice theory, and many-valued logic.
Features Over sixty paper stars, all made without cutting, gluing or decorating using the modular origami technique Hundreds of clear step-by-step instructions show you how, based on the technique of folding a small number of simple units and joining them together as a satisfying puzzle Secrets tips to make new shapes just by varying a few lengths and angles Suitable for teaching and learning art, geometry and mathematics. Teachers will appreciate the practical advice to succeed in using origami for education.
Wallis's book on discrete mathematics is a resource for an introductory course in a subject fundamental to both mathematics and computer science, a course that is expected not only to cover certain specific topics but also to introduce students to important modes of thought specific to each discipline . . . Lower-division undergraduates through graduate students. -Choice reviews (Review of the First Edition) Very appropriately entitled as a 'beginner's guide', this textbook presents itself as the first exposure to discrete mathematics and rigorous proof for the mathematics or computer science student. -Zentralblatt Math (Review of the First Edition) This second edition of A Beginner's Guide to Discrete Mathematics presents a detailed guide to discrete mathematics and its relationship to other mathematical subjects including set theory, probability, cryptography, graph theory, and number theory. This textbook has a distinctly applied orientation and explores a variety of applications. Key Features of the second edition: * Includes a new chapter on the theory of voting as well as numerous new examples and exercises throughout the book * Introduces functions, vectors, matrices, number systems, scientific notations, and the representation of numbers in computers * Provides examples which then lead into easy practice problems throughout the text and full exercise at the end of each chapter * Full solutions for practice problems are provided at the end of the book This text is intended for undergraduates in mathematics and computer science, however, featured special topics and applications may also interest graduate students.
Features Over sixty paper stars, all made without cutting, gluing or decorating using the modular origami technique Hundreds of clear step-by-step instructions show you how, based on the technique of folding a small number of simple units and joining them together as a satisfying puzzle Secrets tips to make new shapes just by varying a few lengths and angles Suitable for teaching and learning art, geometry and mathematics. Teachers will appreciate the practical advice to succeed in using origami for education.
This book offers a historical explanation of important philosophical problems in logic and mathematics, which have been neglected by the official history of modern logic. It offers extensive information on Gottlob Frege's logic, discussing which aspects of his logic can be considered truly innovative in its revolution against the Aristotelian logic. It presents the work of Hilbert and his associates and followers with the aim of understanding the revolutionary change in the axiomatic method. Moreover, it offers useful tools to understand Tarski's and Goedel's work, explaining why the problems they discussed are still unsolved. Finally, the book reports on some of the most influential positions in contemporary philosophy of mathematics, i.e., Maddy's mathematical naturalism and Shapiro's mathematical structuralism. Last but not least, the book introduces Biancani's Aristotelian philosophy of mathematics as this is considered important to understand current philosophical issue in the applications of mathematics. One of the main purposes of the book is to stimulate readers to reconsider the Aristotelian position, which disappeared almost completely from the scene in logic and mathematics in the early twentieth century.
1 2 Harald Atmanspacher and Hans Primas 1 Institute for Frontier Areas of Psychology, Freiburg, Germany, [email protected] 2 ETH Zurich, Switzerland, [email protected] Thenotionofrealityisofsupremesigni?canceforourunderstandingofnature, the world around us, and ourselves. As the history of philosophy shows, it has been under permanent discussion at all times. Traditional discourse about - ality covers the full range from basic metaphysical foundations to operational approaches concerning human kinds of gathering and utilizing knowledge, broadly speaking epistemic approaches. However, no period in time has ex- rienced a number of moves changing and, particularly, restraining traditional concepts of reality that is comparable to the 20th century. Early in the 20th century, quite an in?uential move of such a kind was due to the so-called Copenhagen interpretation of quantum mechanics, laid out essentially by Bohr, Heisenberg, and Pauli in the mid 1920s. Bohr's dictum, quoted by Petersen (1963, p.12), was that "it is wrong to think that the task of physics is to ?nd out how nature is. Physics concerns what we can say about nature." Although this standpoint was not left unopposed - Einstein, Schr] odinger, and others were convinced that it is the task of science to ?nd out about nature itself - epistemic, operational attitudes have set the fashion for many discussions in the philosophy of physics (and of science in general) until today."
The theory of Boolean algebras was created in 1847 by the English mat- matician George Boole. He conceived it as a calculus (or arithmetic) suitable for a mathematical analysis of logic. The form of his calculus was rather di?erent from the modern version, which came into being during the - riod 1864-1895 through the contributions of William Stanley Jevons, Aug- tus De Morgan, Charles Sanders Peirce, and Ernst Schr. oder. A foundation of the calculus as an abstract algebraic discipline, axiomatized by a set of equations, and admitting many di?erent interpretations, was carried out by Edward Huntington in 1904. Only with the work of Marshall Stone and Alfred Tarski in the 1930s, however, did Boolean algebra free itself completely from the bonds of logic and become a modern mathematical discipline, with deep theorems and - portantconnections toseveral otherbranchesofmathematics, includingal- bra,analysis, logic, measuretheory, probability andstatistics, settheory, and topology. For instance, in logic, beyond its close connection to propositional logic, Boolean algebra has found applications in such diverse areas as the proof of the completeness theorem for ?rst-order logic, the proof of the Lo ' s conjecture for countable ? rst-order theories categorical in power, and proofs of the independence of the axiom of choice and the continuum hypothesis ? in set theory. In analysis, Stone's discoveries of the Stone-Cech compac- ?cation and the Stone-Weierstrass approximation theorem were intimately connected to his study of Boolean algebras.
Project Origami: Activities for Exploring Mathematics, Second Edition presents a flexible, discovery-based approach to learning origami-math topics. It helps readers see how origami intersects a variety of mathematical topics, from the more obvious realm of geometry to the fields of algebra, number theory, and combinatorics. With over 100 new pages, this updated and expanded edition now includes 30 activities and offers better solutions and teaching tips for all activities. The book contains detailed plans for 30 hands-on, scalable origami activities. Each activity lists courses in which the activity might fit, includes handouts for classroom use, and provides notes for instructors on solutions, how the handouts can be used, and other pedagogical suggestions. The handouts are also available on the book's CRC Press web page. Reflecting feedback from teachers and students who have used the book, this classroom-tested text provides an easy and entertaining way for teachers to incorporate origami into a range of college and advanced high school math courses. Visit the author's website for more information.
Originally published in 1995, Large Deviations for Performance Analysis consists of two synergistic parts. The first half develops the theory of large deviations from the beginning, through recent results on the theory for processes with boundaries, keeping to a very narrow path: continuous-time, discrete-state processes. By developing only what is needed for the applications, the theory is kept to a manageable level, both in terms of length and in terms of difficulty. Within its scope, the treatment is detailed, comprehensive and self-contained. As the book shows, there are sufficiently many interesting applications of jump Markov processes to warrant a special treatment. The second half is a collection of applications developed at Bell Laboratories. The applications cover large areas of the theory of communication networks: circuit switched transmission, packet transmission, multiple access channels, and the M/M/1 queue. Aspects of parallel computation are covered as well including, basics of job allocation, rollback-based parallel simulation, assorted priority queueing models that might be used in performance models of various computer architectures, and asymptotic coupling of processors. These applications are thoroughly analysed using the tools developed in the first half of the book.
Written by two well-known scholars in the field, Combinatorial Reasoning: An Introduction to the Art of Counting presents a clear and comprehensive introduction to the concepts and methodology of beginning combinatorics. Focusing on modern techniques and applications, the book develops a variety of effective approaches to solving counting problems. Balancing abstract ideas with specific topical coverage, the book utilizes real world examples with problems ranging from basic calculations that are designed to develop fundamental concepts to more challenging exercises that allow for a deeper exploration of complex combinatorial situations. Simple cases are treated first before moving on to general and more advanced cases. Additional features of the book include: Approximately 700 carefully structured problems designed for readers at multiple levels, many with hints and/or short answers Numerous examples that illustrate problem solving using both combinatorial reasoning and sophisticated algorithmic methods A novel approach to the study of recurrence sequences, which simplifies many proofs and calculations Concrete examples and diagrams interspersed throughout to further aid comprehension of abstract concepts A chapter-by-chapter review to clarify the most crucial concepts covered Combinatorial Reasoning: An Introduction to the Art of Counting is an excellent textbook for upper-undergraduate and beginning graduate-level courses on introductory combinatorics and discrete mathematics.
This second volume of Research in Computational Topology is a celebration and promotion of research by women in applied and computational topology, containing the proceedings of the second workshop for Women in Computational Topology (WinCompTop) as well as papers solicited from the broader WinCompTop community. The multidisciplinary and international WinCompTop workshop provided an exciting and unique opportunity for women in diverse locations and research specializations to interact extensively and collectively contribute to new and active research directions in the field. The prestigious senior researchers that signed on to head projects at the workshop are global leaders in the discipline, and two of them were authors on some of the first papers in the field. Some of the featured topics include topological data analysis of power law structure in neural data; a nerve theorem for directional graph covers; topological or homotopical invariants for directed graphs encoding connections among a network of neurons; and the issue of approximation of objects by digital grids, including precise relations between the persistent homology of dual cubical complexes.
This collection brings together exciting new works that address today's key challenges for a feminist power-sensitive approach to knowledge and scientific practice. Taking up such issues as the role of contextualism in epistemology, democracy and dissent in knowledge practices, and epistemic agency under conditions of oppression, the essays build upon well-established work in feminist epistemology and philosophy of science such as standpoint theory and contextual empiricism, offering new interpretations and applications. Many contributions capture the current engagement of feminist epistemologists with the insights and programs of nonfeminist epistemologists, while others focus on the intersections between feminist epistemology and other fields of feminist inquiry such as feminist ethics and metaphysics. *see remarks below for remainder of text*
This book provides a broad introduction to some of the most fascinating and beautiful areas of discrete mathematical structures. It starts with a chapter on sets and goes on to provide examples in logic, applications of the principle of inclusion and exclusion and finally the pigeonhole principal. Computational techniques including the principle of mathematical introduction are provided, as well as a study on elementary properties of graphs, trees and lattices. Some basic results on groups, rings, fields and vector spaces are also given, the treatment of which is intentionally simple since such results are fundamental as a foundation for students of discrete mathematics. In addition, some results on solutions of systems of linear equations are discussed.
Iterative processes are the tools used to generate sequences approximating solutions of equations describing real life problems. Intended for researchers in computational sciences and as a reference book for advanced computational method in nonlinear analysis, this book is a collection of the recent results on the convergence analysis of numerical algorithms in both finite-dimensional and infinite-dimensional spaces and presents several applications and connections with fixed point theory. It contains an abundant and updated bibliography and provides comparisons between various investigations made in recent years in the field of computational nonlinear analysis. The book also provides recent advancements in the study of iterative procedures and can be used as a source to obtain the proper method to use in order to solve a problem. The book assumes a basic background in Mathematical Statistics, Linear Algebra and Numerical Analysis and may be used as a self-study reference or as a supplementary text for an advanced course in Biosciences or Applied Sciences. Moreover, the newest techniques used to study the dynamics of iterative methods are described and used in the book and they are compared with the classical ones.
This book contains fundamental concepts on discrete mathematical structures in an easy to understand style so that the reader can grasp the contents and explanation easily. The concepts of discrete mathematical structures have application to computer science, engineering and information technology including in coding techniques, switching circuits, pointers and linked allocation, error corrections, as well as in data networking, Chemistry, Biology and many other scientific areas. The book is for undergraduate and graduate levels learners and educators associated with various courses and progammes in Mathematics, Computer Science, Engineering and Information Technology. The book should serve as a text and reference guide to many undergraduate and graduate programmes offered by many institutions including colleges and universities. Readers will find solved examples and end of chapter exercises to enhance reader comprehension. Features Offers comprehensive coverage of basic ideas of Logic, Mathematical Induction, Graph Theory, Algebraic Structures and Lattices and Boolean Algebra Provides end of chapter solved examples and practice problems Delivers materials on valid arguments and rules of inference with illustrations Focuses on algebraic structures to enable the reader to work with discrete structures |
![]() ![]() You may like...
Elliptic Integrals, Elliptic Functions…
Johannes Blumlein, Carsten Schneider, …
Hardcover
R6,330
Discovery Miles 63 300
Stream-Tube Method - A Complex-Fluid…
Jean-Robert Clermont, Amine Ammar
Hardcover
R5,276
Discovery Miles 52 760
Advances in Dynamics, Optimization and…
Oliver Junge, Oliver Schutze, …
Hardcover
R4,412
Discovery Miles 44 120
Applications of Machine Learning
Prashant Johri, Jitendra Kumar Verma, …
Hardcover
R4,659
Discovery Miles 46 590
|