![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Mathematical foundations > General
This book features survey and research papers from The Abel Symposium 2011: Algebras, quivers and representations, held in Balestrand, Norway 2011. It examines a very active research area that has had a growing influence and profound impact in many other areas of mathematics like, commutative algebra, algebraic geometry, algebraic groups and combinatorics. This volume illustrates and extends such connections with algebraic geometry, cluster algebra theory, commutative algebra, dynamical systems and triangulated categories. In addition, it includes contributions on further developments in representation theory of quivers and algebras. "Algebras, Quivers and Representations" is targeted at researchers and graduate students in algebra, representation theory and triangulate categories. "
This meticulous critical assessment of the ground-breaking work of philosopher Stanislaw Le niewski focuses exclusively on primary texts and explores the full range of output by one of the master logicians of the Lvov-Warsaw school. The author's nuanced survey eschews secondary commentary, analyzing Le niewski's core philosophical views and evaluating the formulations that were to have such a profound influence on the evolution of mathematical logic. One of the undisputed leaders of the cohort of brilliant logicians that congregated in Poland in the early twentieth century, Le niewski was a guide and mentor to a generation of celebrated analytical philosophers (Alfred Tarski was his PhD student). His primary achievement was a system of foundational mathematical logic intended as an alternative to the Principia Mathematica of Alfred North Whitehead and Bertrand Russell. Its three strands-'protothetic', 'ontology', and 'mereology', are detailed in discrete sections of this volume, alongside a wealth other chapters grouped to provide the fullest possible coverage of Le niewski's academic output. With material on his early philosophical views, his contributions to set theory and his work on nominalism and higher-order quantification, this book offers a uniquely expansive critical commentary on one of analytical philosophy's great pioneers. "
This book deals with the problem of finding suitable languages that can represent specific classes of Petri nets, the most studied and widely accepted model for distributed systems. Hence, the contribution of this book amounts to the alphabetization of some classes of distributed systems. The book also suggests the need for a generalization of Turing computability theory. It is important for graduate students and researchers engaged with the concurrent semantics of distributed communicating systems. The author assumes some prior knowledge of formal languages and theoretical computer science.
The primary aim of this monograph is to achieve part of Beilinson's program on mixed motives using Voevodsky's theories of A1-homotopy and motivic complexes. Historically, this book is the first to give a complete construction of a triangulated category of mixed motives with rational coefficients satisfying the full Grothendieck six functors formalism as well as fulfilling Beilinson's program, in particular the interpretation of rational higher Chow groups as extension groups. Apart from Voevodsky's entire work and Grothendieck's SGA4, our main sources are Gabber's work on etale cohomology and Ayoub's solution to Voevodsky's cross functors theory. We also thoroughly develop the theory of motivic complexes with integral coefficients over general bases, along the lines of Suslin and Voevodsky. Besides this achievement, this volume provides a complete toolkit for the study of systems of coefficients satisfying Grothendieck' six functors formalism, including Grothendieck-Verdier duality. It gives a systematic account of cohomological descent theory with an emphasis on h-descent. It formalizes morphisms of coefficient systems with a view towards realization functors and comparison results. The latter allows to understand the polymorphic nature of rational mixed motives. They can be characterized by one of the following properties: existence of transfers, universality of rational algebraic K-theory, h-descent, etale descent, orientation theory. This monograph is a longstanding research work of the two authors. The first three parts are written in a self-contained manner and could be accessible to graduate students with a background in algebraic geometry and homotopy theory. It is designed to be a reference work and could also be useful outside motivic homotopy theory. The last part, containing the most innovative results, assumes some knowledge of motivic homotopy theory, although precise statements and references are given.
This book presents the entire body of thought of Norbert Wiener (1894-1964), knowledge of which is essential if one wishes to understand and correctly interpret the age in which we live. The focus is in particular on the philosophical and sociological aspects of Wiener's thought, but these aspects are carefully framed within the context of his scientific journey. Important biographical events, including some that were previously unknown, are also highlighted, but while the book has a biographical structure, it is not only a biography. The book is divided into four chronological sections, the first two of which explore Wiener's development as a philosopher and logician and his brilliant interwar career as a mathematician, supported by his philosophical background. The third section considers his research during World War II, which drew upon his previous scientific work and reflections and led to the birth of cybernetics. Finally, the radical post-war shift in Wiener's intellectual path is considered, examining how he came to abandon computer science projects and commenced ceaseless public reflections on the new sciences and technologies of information, their social effects, and the need for responsibility in science.
This visionary and engaging book provides a mathematical perspective on the fundamental ideas of numbers, space, life, evolution, the brain and the mind. The author suggests how a development of mathematical concepts in the spirit of category theory may lead to unravelling the mystery of the human mind and the design of universal learning algorithms. The book is divided into two parts, the first of which describes the ideas of great mathematicians and scientists, those who saw sparks of light in the dark sea of unknown. The second part, Memorandum Ergo, reflects on how mathematics can contribute to the understanding of the mystery of thought. It argues that the core of the human mind is a structurally elaborated object that needs a creation of a broad mathematical context for its understanding. Readers will discover the main properties of the expected mathematical objects within this context, called ERGO-SYSTEMS, and readers will see how these "systems" may serve as prototypes for design of universal learning computer programs. This is a work of great, poetical insight and is richly illustrated. It is a highly attractive read for all those who welcome a mathematical and scientific way of thinking about the world.
This monograph considers several well-known mathematical theorems and asks the question, "Why prove it again?" while examining alternative proofs. It explores the different rationales mathematicians may have for pursuing and presenting new proofs of previously established results, as well as how they judge whether two proofs of a given result are different. While a number of books have examined alternative proofs of individual theorems, this is the first that presents comparative case studies of other methods for a variety of different theorems. The author begins by laying out the criteria for distinguishing among proofs and enumerates reasons why new proofs have, for so long, played a prominent role in mathematical practice. He then outlines various purposes that alternative proofs may serve. Each chapter that follows provides a detailed case study of alternative proofs for particular theorems, including the Pythagorean Theorem, the Fundamental Theorem of Arithmetic, Desargues' Theorem, the Prime Number Theorem, and the proof of the irreducibility of cyclotomic polynomials. Why Prove It Again? will appeal to a broad range of readers, including historians and philosophers of mathematics, students, and practicing mathematicians. Additionally, teachers will find it to be a useful source of alternative methods of presenting material to their students.
An ontology is a formal description of concepts and relationships that can exist for a community of human and/or machine agents. The notion of ontologies is crucial for the purpose of enabling knowledge sharing and reuse. The Handbook on Ontologies provides a comprehensive overview of the current status and future prospectives of the field of ontologies considering ontology languages, ontology engineering methods, example ontologies, infrastructures and technologies for ontologies, and how to bring this all into ontology-based infrastructures and applications that are among the best of their kind. The field of ontologies has tremendously developed and grown in the five years since the first edition of the "Handbook on Ontologies." Therefore, its revision includes 21 completely new chapters as well as a major re-working of 15 chapters transferred to this second edition.
In his rich and varied career as a mathematician, computer scientist, and educator, Jacob T. Schwartz wrote seminal works in analysis, mathematical economics, programming languages, algorithmics, and computational geometry. In this volume of essays, his friends, students, and collaborators at the Courant Institute of Mathematical Sciences present recent results in some of the fields that Schwartz explored: quantum theory, the theory and practice of programming, program correctness and decision procedures, dextrous manipulation in Robotics, motion planning, and genomics. In addition to presenting recent results in these fields, these essays illuminate the astonishingly productive trajectory of a brilliant and original scientist and thinker.
This book offers an introduction to artificial adaptive systems and a general model of the relationships between the data and algorithms used to analyze them. It subsequently describes artificial neural networks as a subclass of artificial adaptive systems, and reports on the backpropagation algorithm, while also identifying an important connection between supervised and unsupervised artificial neural networks. The book's primary focus is on the auto contractive map, an unsupervised artificial neural network employing a fixed point method versus traditional energy minimization. This is a powerful tool for understanding, associating and transforming data, as demonstrated in the numerous examples presented here. A supervised version of the auto contracting map is also introduced as an outstanding method for recognizing digits and defects. In closing, the book walks the readers through the theory and examples of how the auto contracting map can be used in conjunction with another artificial neural network, the "spin-net," as a dynamic form of auto-associative memory.
This book offers an inspiring and naive view on language and reasoning. It presents a new approach to ordinary reasoning that follows the author's former work on fuzzy logic. Starting from a pragmatic scientific view on meaning as a quantity, and the common sense reasoning from a primitive notion of inference, which is shared by both laypeople and experts, the book shows how this can evolve, through the addition of more and more suppositions, into various formal and specialized modes of precise, imprecise, and approximate reasoning. The logos are intended here as a synonym for rationality, which is usually shown by the processes of questioning, guessing, telling, and computing. Written in a discursive style and without too many technicalities, the book presents a number of reflections on the study of reasoning, together with a new perspective on fuzzy logic and Zadeh's "computing with words" grounded in both language and reasoning. It also highlights some mathematical developments supporting this view. Lastly, it addresses a series of questions aimed at fostering new discussions and future research into this topic. All in all, this book represents an inspiring read for professors and researchers in computer science, and fuzzy logic in particular, as well as for psychologists, linguists and philosophers.
Since the birth of rational homotopy theory, the possibility of extending the Quillen approach - in terms of Lie algebras - to a more general category of spaces, including the non-simply connected case, has been a challenge for the algebraic topologist community. Despite the clear Eckmann-Hilton duality between Quillen and Sullivan treatments, the simplicity in the realization of algebraic structures in the latter contrasts with the complexity required by the Lie algebra version. In this book, the authors develop new tools to address these problems. Working with complete Lie algebras, they construct, in a combinatorial way, a cosimplicial Lie model for the standard simplices. This is a key object, which allows the definition of a new model and realization functors that turn out to be homotopically equivalent to the classical Quillen functors in the simply connected case. With this, the authors open new avenues for solving old problems and posing new questions. This monograph is the winner of the 2020 Ferran Sunyer i Balaguer Prize, a prestigious award for books of expository nature presenting the latest developments in an active area of research in mathematics.
Let's try to play the music and not the background. Ornette Coleman, liner notes of the LP "Free Jazz" 20] WhenIbegantocreateacourseonfreejazz, theriskofsuchanenterprise was immediately apparent: I knew that Cecil Taylor had failed to teach such a matter, and that for other, more academic instructors, the topic was still a sort of outlandish adventure. To be clear, we are not talking about tea- ing improvisation here-a di?erent, and also problematic, matter-rather, we wish to create a scholarly discourse about free jazz as a cultural achievement, and follow its genealogy from the American jazz tradition through its various outbranchings, suchastheEuropeanandJapanesejazzconceptionsandint- pretations. We also wish to discuss some of the underlying mechanisms that are extant in free improvisation, things that could be called technical aspects. Such a discourse bears the ?avor of a contradicto in adjecto: Teachingthe unteachable, the very negation of rules, above all those posited by white jazz theorists, and talking about the making of sounds without aiming at so-called factual results and all those intellectual sedimentations: is this not a suicidal topic? My own endeavors as a free jazz pianist have informed and advanced my conviction that this art has never been theorized in a satisfactory way, not even by Ekkehard Jost in his unequaled, phenomenologically precise p- neering book "Free Jazz" 57].
Logic networks and automata are facets of digital systems. The change of the design of logic networks from skills and art into a scientific discipline was possible by the development of the underlying mathematical theory called the Switching Theory. The fundamentals of this theory come from the attempts towards an algebraic description of laws of thoughts presented in the works by George J. Boole and the works on logic by Augustus De Morgan. As often the case in engineering, when the importance of a problem and the need for solving it reach certain limits, the solutions are searched by many scholars in different parts of the word, simultaneously or at about the same time, however, quite independently and often unaware of the work by other scholars. The formulation and rise of Switching Theory is such an example. This book presents a brief account of the developments of Switching Theory and highlights some less known facts in the history of it. The readers will find the book a fresh look into the development of the field revealing how difficult it has been to arrive at many of the concepts that we now consider obvious . Researchers in the history or philosophy of computing will find this book a valuable source of information that complements the standard presentations of the topic.
This open access book examines the many contributions of Paul Lorenzen, an outstanding philosopher from the latter half of the 20th century. It features papers focused on integrating Lorenzen's original approach into the history of logic and mathematics. The papers also explore how practitioners can implement Lorenzen's systematical ideas in today's debates on proof-theoretic semantics, databank management, and stochastics. Coverage details key contributions of Lorenzen to constructive mathematics, Lorenzen's work on lattice-groups and divisibility theory, and modern set theory and Lorenzen's critique of actual infinity. The contributors also look at the main problem of Grundlagenforschung and Lorenzen's consistency proof and Hilbert's larger program. In addition, the papers offer a constructive examination of a Russell-style Ramified Type Theory and a way out of the circularity puzzle within the operative justification of logic and mathematics. Paul Lorenzen's name is associated with the Erlangen School of Methodical Constructivism, of which the approach in linguistic philosophy and philosophy of science determined philosophical discussions especially in Germany in the 1960s and 1970s. This volume features 10 papers from a meeting that took place at the University of Konstanz.
This book provides a detailed exposition of one of the most practical and popular methods of proving theorems in logic, called Natural Deduction. It is presented both historically and systematically. Also some combinations with other known proof methods are explored. The initial part of the book deals with Classical Logic, whereas the rest is concerned with systems for several forms of Modal Logics, one of the most important branches of modern logic, which has wide applicability.
This book uncovers mathematical structures underlying natural intelligence and applies category theory as a modeling language for understanding human cognition, giving readers new insights into the nature of human thought. In this context, the book explores various topics and questions, such as the human representation of the number system, why our counting ability is different from that which is evident among non-human organisms, and why the idea of zero is so difficult to grasp. The book is organized into three parts: the first introduces the general reason for studying general structures underlying the human mind; the second part introduces category theory as a modeling language and use it for exposing the deep and fascinating structures underlying human cognition; and the third applies the general principles and ideas of the first two parts to reaching a better understanding of challenging aspects of the human mind such as our understanding of the number system, the metaphorical nature of our thinking and the logic of our unconscious dynamics.
This completely revised and corrected version of the well-known Florence notes circulated by the authors together with E. Friedlander examines basic topology, emphasizing homotopy theory. Included is a discussion of Postnikov towers and rational homotopy theory. This is then followed by an in-depth look at differential forms and de Tham's theorem on simplicial complexes. In addition, Sullivan's results on computing the rational homotopy type from forms is presented. New to the Second Edition: *Fully-revised appendices including an expanded discussion of the Hirsch lemma *Presentation of a natural proof of a Serre spectral sequence result *Updated content throughout the book, reflecting advances in the area of homotopy theory With its modern approach and timely revisions, this second edition of Rational Homotopy Theory and Differential Forms will be a valuable resource for graduate students and researchers in algebraic topology, differential forms, and homotopy theory.
Selected Topics in Approximation and Computation addresses the relationship between modern approximation theory and computational methods. The text is a combination of expositions of basic classical methods of approximation leading to popular splines and new explicit tools of computation, including Sinc methods, elliptic function methods, and positive operator approximation methods. It also provides an excellent summary of worst case analysis in information based complexity. It relates optimal computational methods with the theory of s-numbers and n-widths. It can serve as a text for senior-graduate courses in computer science and applied mathematics, and also as a reference for professionals.
Since their emergence, finite element methods have taken a place as one of the most versatile and powerful methodologies for the approximate numerical solution of Partial Differential Equations. These methods are used in incompressible fluid flow, heat, transfer, and other problems. This book provides researchers and practitioners with a concise guide to the theory and practice of least-square finite element methods, their strengths and weaknesses, established successes, and open problems.
The study of linear positive operators is an area of mathematical studies with significant relevance to studies of computer-aided geometric design, numerical analysis, and differential equations. This book focuses on the convergence of linear positive operators in real and complex domains. The theoretical aspects of these operators have been an active area of research over the past few decades. In this volume, authors Gupta and Agarwal explore new and more efficient methods of applying this research to studies in Optimization and Analysis. The text will be of interest to upper-level students seeking an introduction to the field and to researchers developing innovative approaches.
This work presents the research results of students of the Graduiertenkolleg "Communication-Based Systems" to an international community. To stimulate the scientific discussion, experts have been invited to give their views on the following research areas: formal specification and mathematical foundations of distributed systems using process algebra, graph transformations, process calculi and temporal logics; performance evaluation, dependability modelling and analysis of real-time systems with different kinds of timed Petri-nets; specification and analysis of communication protocols; reliability, security and dependability in distributed systems; object orientation in distributed systems architecture; software development and concepts for distributed applications; computer network architecture and management; and language concepts for distributed systems.
These two volumes cover the principal approaches to constructivism in mathematics. They present a thorough, up-to-date introduction to the metamathematics of constructive mathematics, paying special attention to Intuitionism, Markov's constructivism and Martin-Lof's type theory with its operational semantics. A detailed exposition of the basic features of constructive mathematics, with illustrations from analysis, algebra and topology, is provided, with due attention to the metamathematical aspects. Volume 1 is a self-contained introduction to the practice and foundations of constructivism, and does not require specialized knowledge beyond basic mathematical logic. Volume 2 contains mainly advanced topics of a proof-theoretical and semantical nature. |
![]() ![]() You may like...
Matheuristics - Algorithms and…
Vittorio Maniezzo, Marco Antonio Boschetti, …
Hardcover
R3,271
Discovery Miles 32 710
Viscous Flows - Stretching and Shrinking…
Ahmer Mehmood
Hardcover
Advanced Computing in Industrial…
Krassimir Georgiev, Michail Todorov, …
Hardcover
R3,101
Discovery Miles 31 010
Mathematical Modelling Education in East…
Frederick Koon-Shing Leung, Gloria Ann Stillman, …
Hardcover
R4,374
Discovery Miles 43 740
Transactions on Engineering Technologies…
Sio-Iong Ao, L. Engelman, …
Hardcover
R4,595
Discovery Miles 45 950
Analysis of Shells, Plates, and Beams…
Holm Altenbach, Natalia Chinchaladze, …
Hardcover
R5,445
Discovery Miles 54 450
|