![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Mathematical foundations > General
This book provides a broad introduction to some of the most fascinating and beautiful areas of discrete mathematical structures. It starts with a chapter on sets and goes on to provide examples in logic, applications of the principle of inclusion and exclusion and finally the pigeonhole principal. Computational techniques including the principle of mathematical introduction are provided, as well as a study on elementary properties of graphs, trees and lattices. Some basic results on groups, rings, fields and vector spaces are also given, the treatment of which is intentionally simple since such results are fundamental as a foundation for students of discrete mathematics. In addition, some results on solutions of systems of linear equations are discussed.
Metaheuristic optimization is a higher-level procedure or heuristic designed to find, generate, or select a heuristic (partial search algorithm) that may provide a sufficiently good solution to an optimization problem, especially with incomplete or imperfect information or limited computation capacity. This is usually applied when two or more objectives are to be optimized simultaneously. This book is presented with two major objectives. Firstly, it features chapters by eminent researchers in the field providing the readers about the current status of the subject. Secondly, algorithm-based optimization or advanced optimization techniques, which are applied to mostly non-engineering problems, are applied to engineering problems. This book will also serve as an aid to both research and industry. Usage of these methodologies would enable the improvement in engineering and manufacturing technology and support an organization in this era of low product life cycle. Features: Covers the application of recent and new algorithms Focuses on the development aspects such as including surrogate modeling, parallelization, game theory, and hybridization Presents the advances of engineering applications for both single-objective and multi-objective optimization problems Offers recent developments from a variety of engineering fields Discusses Optimization using Evolutionary Algorithms and Metaheuristics applications in engineering
This book contains fundamental concepts on discrete mathematical structures in an easy to understand style so that the reader can grasp the contents and explanation easily. The concepts of discrete mathematical structures have application to computer science, engineering and information technology including in coding techniques, switching circuits, pointers and linked allocation, error corrections, as well as in data networking, Chemistry, Biology and many other scientific areas. The book is for undergraduate and graduate levels learners and educators associated with various courses and progammes in Mathematics, Computer Science, Engineering and Information Technology. The book should serve as a text and reference guide to many undergraduate and graduate programmes offered by many institutions including colleges and universities. Readers will find solved examples and end of chapter exercises to enhance reader comprehension. Features Offers comprehensive coverage of basic ideas of Logic, Mathematical Induction, Graph Theory, Algebraic Structures and Lattices and Boolean Algebra Provides end of chapter solved examples and practice problems Delivers materials on valid arguments and rules of inference with illustrations Focuses on algebraic structures to enable the reader to work with discrete structures
Iterative processes are the tools used to generate sequences approximating solutions of equations describing real life problems. Intended for researchers in computational sciences and as a reference book for advanced computational method in nonlinear analysis, this book is a collection of the recent results on the convergence analysis of numerical algorithms in both finite-dimensional and infinite-dimensional spaces and presents several applications and connections with fixed point theory. It contains an abundant and updated bibliography and provides comparisons between various investigations made in recent years in the field of computational nonlinear analysis. The book also provides recent advancements in the study of iterative procedures and can be used as a source to obtain the proper method to use in order to solve a problem. The book assumes a basic background in Mathematical Statistics, Linear Algebra and Numerical Analysis and may be used as a self-study reference or as a supplementary text for an advanced course in Biosciences or Applied Sciences. Moreover, the newest techniques used to study the dynamics of iterative methods are described and used in the book and they are compared with the classical ones.
Scientific Computing with MATLAB (R), Second Edition improves students' ability to tackle mathematical problems. It helps students understand the mathematical background and find reliable and accurate solutions to mathematical problems with the use of MATLAB, avoiding the tedious and complex technical details of mathematics. This edition retains the structure of its predecessor while expanding and updating the content of each chapter. The book bridges the gap between problems and solutions through well-grouped topics and clear MATLAB example scripts and reproducible MATLAB-generated plots. Students can effortlessly experiment with the scripts for a deep, hands-on exploration. Each chapter also includes a set of problems to strengthen understanding of the material.
This monograph on the homotopy theory of topologized diagrams of spaces and spectra gives an expert account of a subject at the foundation of motivic homotopy theory and the theory of topological modular forms in stable homotopy theory. Beginning with an introduction to the homotopy theory of simplicial sets and topos theory, the book covers core topics such as the unstable homotopy theory of simplicial presheaves and sheaves, localized theories, cocycles, descent theory, non-abelian cohomology, stacks, and local stable homotopy theory. A detailed treatment of the formalism of the subject is interwoven with explanations of the motivation, development, and nuances of ideas and results. The coherence of the abstract theory is elucidated through the use of widely applicable tools, such as Barr's theorem on Boolean localization, model structures on the category of simplicial presheaves on a site, and cocycle categories. A wealth of concrete examples convey the vitality and importance of the subject in topology, number theory, algebraic geometry, and algebraic K-theory. Assuming basic knowledge of algebraic geometry and homotopy theory, Local Homotopy Theory will appeal to researchers and advanced graduate students seeking to understand and advance the applications of homotopy theory in multiple areas of mathematics and the mathematical sciences.
This accessible book helps readers to see the bigger picture of advanced mathematics. The book contains carefully selected, challenging problems in an easy-to-follow, step-by-step process. Neither prior preparation nor any mathematical sophistication is required. The authors guide the reader to "train their brain" to think and express themselves in a rigorous, mathematical way, and to extract facts, analyze the problem, and identify main challenges. A firm foundation in a diverse range of topics is presented. Moreover, the authors show how to draw appropriate, true conclusions. Computer support is used to better intuition into discussed problems. The book is designed for self-study. It can be used to bridge the gap between introductory calculus/linear algebra courses and more advanced courses offered at universities. It improves the ability to read, write, and think in a rigorous, mature mathematical fashion. The reader will develop a deeper understanding in preparation to succeed in more advanced course work. Features *The authors employ a six-step process: 1.SOURCE 2.PROBLEM 3.THEORY 4.SOLUTION 5.REMARK 6.EXERCISES *An Appendix introduces programming in Julia This book is also suitable for high school students that are interested in competing in math competitions or simply for people of all ages and backgrounds who want to expand their knowledge and to challenge themselves with interesting questions.
Research in mathematics is much more than solving puzzles, but most people will agree that solving puzzles is not just fun: it helps focus the mind and increases one's armory of techniques for doing mathematics. Mathematical Puzzles makes this connection explicit by isolating important mathematical methods, then using them to solve puzzles and prove a theorem. Features A collection of the world's best mathematical puzzles Each chapter features a technique for solving mathematical puzzles, examples, and finally a genuine theorem of mathematics that features that technique in its proof Puzzles that are entertaining, mystifying, paradoxical, and satisfying; they are not just exercises or contest problems.
This new volume on logic follows a recognizable format that deals in turn with the topics of mathematical logic, moving from concepts, via definitions and inferences, to theories and axioms. However, this fresh work offers a key innovation in its 'pyramidal' graph system for the logical formalization of all these items. The author has developed this new methodology on the basis of original research, traditional logical instruments such as Porphyrian trees, and modern concepts of classification, in which pyramids are the central organizing concept. The pyramidal schema enables both the content of concepts and the relations between the concept positions in the pyramid to be read off from the graph. Logical connectors are analyzed in terms of the direction in which they connect within the pyramid. Additionally, the author shows that logical connectors are of fundamentally different types: only one sort generates propositions with truth values, while the other yields conceptual expressions or complex concepts. On this basis, strong arguments are developed against adopting the non-discriminating connector definitions implicit in Wittgensteinian truth-value tables. Special consideration is given to mathematical connectors so as to illuminate the formation of concepts in the natural sciences. To show what the pyramidal method can contribute to science, a pyramid of the number concepts prevalent in mathematics is constructed. The book also counters the logical dogma of 'false' contradictory propositions and sheds new light on the logical characteristics of probable propositions, as well as on syllogistic and other inferences.
This is the first book to introduce Green-function-based multiscale theory and the corresponding finite element method, which are readily applicable to composites and random media. The methodology is considered to be the one that most effectively tackles the uncertainty of stress propagation in complex heterogeneities of random media, and which presents multiscale theory from distinctive scale separation and scale-coupling viewpoints. Deliberately taking a multiscale perspective, it covers scale separation and then scale coupling. Both micromechanics and novel scale-coupling mechanics are described in relation to variational principles and bounds, as well as in the emerging topics on percolation and scale-coupling computation. It gives detail on the different bounds encountered, covering classical second and third order, new fourth order, and innovative ellipsoidal variations. Green-function-based multiscale theory is addressed to applications in solid mechanics and transport of complex media ranging from micro- and nano-composites, polycrystals, soils, rocks, cementitious materials, to biological materials. It is useful as a graduate textbook in civil and mechanical engineering and as a reference.
Series Editor's Preface. Preface. A. Kaleidoscopic Excursion into numerical Calculations of Differential Equations; E. van Groesen. An Introduction to the Finite Element Method; J. van Kan. Coupling of Sound and Structural Vibrations; C. Kauffmann. Mathematical Modeling and Dimensional Analysis; J. Molenaar. About Difference Equations, Algebras and Discrete Events; G.J. Olsder. Acoustical Detection of Obstructions in a Pipe with a Temperature Gradient; S.W. Rienstra. Interior Point Approach to linear Programming: Theory, Algorithms and Parametric Analysis; C. Roos. Some Reflections on Newton's Method; F. Twilt. Recurrence and Induction in Computer Science; A.J. van Zanten.
Introduction to Recognition and Deciphering of Patterns is meant to acquaint STEM and non-STEM students with different patterns, as well as to where and when specific patterns arise. In addition, the book teaches students how to recognize patterns and distinguish the similarities and differences between them. Patterns, such as weather patterns, traffic patterns, behavioral patterns, geometric patterns, linguistic patterns, structural patterns, digital patterns, and the like, emerge on an everyday basis, . Recognizing patterns and studying their unique traits are essential for the development and enhancement of our intuitive skills and for strengthening our analytical skills. Mathematicians often apply patterns to get acquainted with new concepts--a technique that can be applied across many disciplines. Throughout this book we explore assorted patterns that emerge from various geometrical configurations of squares, circles, right triangles, and equilateral triangles that either repeat at the same scale or at different scales. The book also analytically examines linear patterns, geometric patterns, alternating patterns, piecewise patterns, summation-type patterns and factorial-type patterns. Deciphering the details of these distinct patterns leads to the proof by induction method, and the book will also render properties of Pascal's triangle and provide supplemental practice in deciphering specific patterns and verifying them. This book concludes with first-order recursive relations: describing sequences as recursive relations, obtaining the general solution by solving an initial value problem, and determining the periodic traits. Features * Readily accessible to a broad audience, including those with limited mathematical background * Especially useful for students in non-STEM disciplines, such as psychology, sociology, economics and business, as well as for liberal arts disciplines and art students.
This new book deals with the construction of finite-difference (FD) algorithms for three main types of equations: elliptic equations, heat equations, and gas dynamic equations in Lagrangian form. These methods can be applied to domains of arbitrary shapes. The construction of FD algorithms for all types of equations is done on the basis of the support-operators method (SOM). This method constructs the FD analogs of main invariant differential operators of first order such as the divergence, the gradient, and the curl. This book is unique because it is the first book not in Russian to present the support-operators ideas. Conservative Finite-Difference Methods on General Grids is completely self-contained, presenting all the background material necessary for understanding. The book provides the tools needed by scientists and engineers to solve a wide range of practical engineering problems. An abundance of tables and graphs support and explain methods. The book details all algorithms needed for implementation. A 3.5" IBM compatible computer diskette with the main algorithms in FORTRAN accompanies text for easy use.
Introduction to Recognition and Deciphering of Patterns is meant to acquaint STEM and non-STEM students with different patterns, as well as to where and when specific patterns arise. In addition, the book teaches students how to recognize patterns and distinguish the similarities and differences between them. Patterns, such as weather patterns, traffic patterns, behavioral patterns, geometric patterns, linguistic patterns, structural patterns, digital patterns, and the like, emerge on an everyday basis, . Recognizing patterns and studying their unique traits are essential for the development and enhancement of our intuitive skills and for strengthening our analytical skills. Mathematicians often apply patterns to get acquainted with new concepts--a technique that can be applied across many disciplines. Throughout this book we explore assorted patterns that emerge from various geometrical configurations of squares, circles, right triangles, and equilateral triangles that either repeat at the same scale or at different scales. The book also analytically examines linear patterns, geometric patterns, alternating patterns, piecewise patterns, summation-type patterns and factorial-type patterns. Deciphering the details of these distinct patterns leads to the proof by induction method, and the book will also render properties of Pascal's triangle and provide supplemental practice in deciphering specific patterns and verifying them. This book concludes with first-order recursive relations: describing sequences as recursive relations, obtaining the general solution by solving an initial value problem, and determining the periodic traits. Features * Readily accessible to a broad audience, including those with limited mathematical background * Especially useful for students in non-STEM disciplines, such as psychology, sociology, economics and business, as well as for liberal arts disciplines and art students.
Absolutely everything you need to get ready for Algebra Scared of square roots? Suspicious of powers of ten? You're not alone. Plenty of school-age students and adult learners don't care for math. But, with the right guide, you can make math basics "click" for you too! In Basic Math & Pre-Algebra All-in-One For Dummies, you'll find everything you need to be successful in your next math class and tackle basic math tasks in the real world. Whether you're trying to get a handle on pre-algebra before moving to the next grade or looking to get more comfortable with everyday math--such as tipping calculations or balancing your checkbook--this book walks you through every step--in plain English, and with clear explanations--to help you build a firm foundation in math. You'll also get: Practice quizzes at the end of each chapter to test your comprehension and understanding A bonus online quiz for each chapter, with answer choices presented in multiple choice format A ton of explanations, examples, and practice problems that prepare you to tackle more advanced algebraic concepts From the different categories of numbers to mathematical operations, fractions, percentages, roots and powers, and a short intro to algebraic expressions and equations, Basic Math & Pre-Algebra All-in-One For Dummies is an essential companion for anyone who wants to get a handle on the foundational math concepts that are the building blocks for Algebra and beyond.
Take the mystery out of basic math with the latest edition of BarCharts best-selling Math Review QuickStudy(r) guide. With updated content and an additional panel of information, Math Review includes hard-to-remember formulas and properties, along with numerous examples and illustrations to improve understanding. This comprehensive math guide will assist you way beyond your high school and college years. "
Geometry for the Artist is based on a course of the same name which started in the 1980s at Maharishi International University. It is aimed both at artists willing to dive deeper into geometry and at mathematicians open to learning about applications of mathematics in art. The book includes topics such as perspective, symmetry, topology, fractals, curves, surfaces, and more. A key part of the book's approach is the analysis of art from a geometric point of view-looking at examples of how artists use each new topic. In addition, exercises encourage students to experiment in their own work with the new ideas presented in each chapter. This book is an exceptional resource for students in a general-education mathematics course or teacher-education geometry course, and since many assignments involve writing about art, this text is ideal for a writing-intensive course. Moreover, this book will be enjoyed by anyone with an interest in connections between mathematics and art. Features Abundant examples of artwork displayed in full color. Suitable as a textbook for a general-education mathematics course or teacher-education geometry course. Designed to be enjoyed by both artists and mathematicians.
Data structures and tools from computational geometry help to solve problems in computer graphics; these methods have been widely adopted by the computer graphics community yielding elegant and efficient algorithms. This book focuses on algorithms and data structures that have proven to be versatile, efficient, fundamental, and easy to implement. The book familiarizes students, as well as practitioners in the field of computer graphics, with a wide range of data structures. The authors describe each data structure in detail, highlight fundamental properties, and present algorithms based on the data structure. A number of recent representative and useful algorithms from computer graphics are described in detail, illuminating the utilization of the data structure in a creative way.
This textbook presents the basics of philosophy that are necessary for the student and researcher in science in order to better understand scientific work. The approach is not historical but formative: tools for semantical analysis, ontology of science, epistemology, and scientific ethics are presented in a formal and direct way. The book has two parts: one with the general theory and a second part with application to some problems such as the interpretation of quantum mechanics, the nature of mathematics, and the ontology of spacetime. The book addresses questions such as "What is meaning?", "What is truth?", "What are truth criteria in science?", "What is a theory?", "What is a model?" "What is a datum?", "What is information?", "What does it mean to understand something?", "What is space?", "What is time?", "How are these concepts articulated in science?" "What are values?" "What are the limits of science?", and many more. The philosophical views presented are "scientific" in the sense that they are informed by current science, they are relevant for scientific research, and the method adopted uses the hypothetical-deductive approach that is characteristic of science. The results and conclusions, as any scientific conclusion, are open to revision in the light of future advances. Hence, this philosophical approach opposes to dogmatic philosophy. Supported by end-of-chapter summaries and a list of special symbols used, the material will be of interest for students and researchers in both science and philosophy. The second part will appeal to physicists and mathematicians.
Together with its compagnion volume this book presents a practical introduction to computing spline functions, the fundamental tools for fitting curves and surfaces in computer-aided design (CAD) and computer graphics.
These volumes present a practical introduction to computing spline functions, the fundamental tools for fitting curves and surfaces in computer-aided deisgn (CAD) and computer graphics.
Regression Analysis and Its Application: A Data-Oriented Approach answers the need for researchers and students who would like a better understanding of classical regression analysis. Useful either as a textbook or as a reference source, this book bridges the gap between the purely theoretical coverage of regression analysis and its practical application. The book presents regression analysis in the general context of data analysis. Using a teach-by-example format, it contains ten major data sets along with several smaller ones to illustrate the common characteristics of regression data and properties of statistics that are employed in regression analysis. The book covers model misspecification, residual analysis, multicollinearity, and biased regression estimators. It also focuses on data collection, model assumptions, and the interpretation of parameter estimates. Complete with an extensive bibliography, Regression Analysis and Its Application is suitable for statisticians, graduate and upper-level undergraduate students, and research scientists in biometry, business, ecology, economics, education, engineering, mathematics, physical sciences, psychology, and sociology. In addition, data collection agencies in the government and private sector will benefit from the book.
Wearing Gauss's Jersey focuses on "Gauss problems," problems that can be very tedious and time consuming when tackled in a traditional, straightforward way but if approached in a more insightful fashion, can yield the solution much more easily and elegantly. The book shows how mathematical problem solving can be fun and how students can improve their mathematical insight, regardless of their initial level of knowledge. Illustrating the underlying unity in mathematics, it also explores how problems seemingly unrelated on the surface are actually extremely connected to each other. Each chapter starts with easy problems that demonstrate the simple insight/mathematical tools necessary to solve problems more efficiently. The text then uses these simple tools to solve more difficult problems, such as Olympiad-level problems, and develop more complex mathematical tools. The longest chapters investigate combinatorics as well as sequences and series, which are some of the most well-known Gauss problems. These topics would be very tedious to handle in a straightforward way but the book shows that there are easier ways of tackling them.
The aim of this book is to introduce a range of combinatorial methods for those who want to apply these methods in the solution of practical and theoretical problems. Various tricks and techniques are taught by means of exercises. Hints are given in a separate section and a third section contains all solutions in detail. A dictionary section gives definitions of the combinatorial notions occurring in the book. "Combinatorial Problems and Exercises" was first published in 1979. This revised edition has the same basic structure but has been brought up to date with a series of exercises on random walks on graphs and their relations to eigenvalues, expansion properties and electrical resistance. In various chapters the author found lines of thought that have been extended in a natural and significant way in recent years. About 60 new exercises (more counting sub-problems) have been added and several solutions have been simplified.
This book introduces ten problem-solving strategies by first presenting the strategy and then applying it to problems in elementary mathematics. In doing so, first the common approach is shown, and then a more elegant strategy is provided. Elementary mathematics is used so that the reader can focus on the strategy and not be distracted by some more sophisticated mathematics. |
![]() ![]() You may like...
The High School Arithmetic - for Use in…
W. H. Ballard, A. C. McKay, …
Hardcover
R1,057
Discovery Miles 10 570
Primary Maths for Scotland Textbook 2A…
Craig Lowther, Antoinette Irwin, …
Paperback
|