![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Mathematical foundations > General
Introduction to Mathematical Modeling helps students master the processes used by scientists and engineers to model real-world problems, including the challenges posed by space exploration, climate change, energy sustainability, chaotic dynamical systems and random processes. Primarily intended for students with a working knowledge of calculus but minimal training in computer programming in a first course on modeling, the more advanced topics in the book are also useful for advanced undergraduate and graduate students seeking to get to grips with the analytical, numerical, and visual aspects of mathematical modeling, as well as the approximations and abstractions needed for the creation of a viable model.
While in classical (abelian) homological algebra additive functors from abelian (or additive) categories to abelian categories are investigated , non- abelian homological algebra deals with non-additive functors and their homological properties , in particular with functors having values in non-abelian categories. Such functors haveimportant applications in algebra, algebraic topology, functional analysis, algebraic geometry and other principal areas of mathematics. To study homological properties of non-additive functors it is necessary to define and investigate their derived functors and satellites. It will be the aim of this book based on the results of researchers of A. Razmadze Mathematical Institute of the Georgian Academy of Sciences devoted to non-abelian homological algebra. The most important considered cases will be functors from arbitrary categories to the category of modules, group valued functors and commutative semigroup valued functors. In Chapter I universal sequences of functors are defined and in- vestigated with respect to (co)presheaves of categories, extending in a natural way the satellites of additive functors to the non-additive case and generalizing the classical relative homological algebra in additive categories to arbitrary categories. Applications are given in the furth- coming chapters. Chapter II is devoted to the non-abelian derived functors of group valued functors with respect to projective classes using projective pseu- dosimplicial resolutions. Their functorial properties (exactness, Milnor exact sequence, relationship with cotriple derived functors, satellites and Grothendieck cohomology, spectral sequence of an epimorphism, degree of an arbitrary functor) are established and applications to ho- mology and cohomology of groups are given.
We dedicate this volume to Professor Parimala on the occasion of her 60th birthday. It contains a variety of papers related to the themes of her research. Parimala's rst striking result was a counterexample to a quadratic analogue of Serre's conjecture (Bulletin of the American Mathematical Society, 1976). Her in uence has cont- ued through her tenure at the Tata Institute of Fundamental Research in Mumbai (1976-2006),and now her time at Emory University in Atlanta (2005-present). A conference was held from 30 December 2008 to 4 January 2009, at the U- versity of Hyderabad, India, to celebrate Parimala's 60th birthday (see the conf- ence's Web site at http://mathstat.uohyd.ernet.in/conf/quadforms2008). The or- nizing committee consisted of J.-L. Colliot-Thel ' en ' e, Skip Garibaldi, R. Sujatha, and V. Suresh. The present volume is an outcome of this event. We would like to thank all the participants of the conference, the authors who have contributed to this volume, and the referees who carefully examined the s- mitted papers. We would also like to thank Springer-Verlag for readily accepting to publish the volume. In addition, the other three editors of the volume would like to place on record their deep appreciation of Skip Garibaldi's untiring efforts toward the nal publication.
Steiner's Problem concerns finding a shortest interconnecting network for a finite set of points in a metric space. A solution must be a tree, which is called a Steiner Minimal Tree (SMT), and may contain vertices different from the points which are to be connected. Steiner's Problem is one of the most famous combinatorial-geometrical problems, but unfortunately it is very difficult in terms of combinatorial structure as well as computational complexity. However, if only a Minimum Spanning Tree (MST) without additional vertices in the interconnecting network is sought, then it is simple to solve. So it is of interest to know what the error is if an MST is constructed instead of an SMT. The worst case for this ratio running over all finite sets is called the Steiner ratio of the space. The book concentrates on investigating the Steiner ratio. The goal is to determine, or at least estimate, the Steiner ratio for many different metric spaces. The author shows that the description of the Steiner ratio contains many questions from geometry, optimization, and graph theory. Audience: Researchers in network design, applied optimization, and design of algorithms.
British-Israeli recreational mathematician, communicator and educator, Yossi Elran explores in-depth six of the most ingenious math puzzles, exposing their long 'tails': the stories, trivia, quirks and oddities of their history and, of course, the math and mathematicians behind them. In his unique 'talmudic', associative way, Elran shows the hidden connections between Lewis Carroll's 'Cats and Rats' puzzle and the math of taxi driving, a number pyramid magic trick and Hollywood movie fractals, and even how packing puzzles are related to COVID-19!Elran has a great talent for explaining difficult topics - including quantum mechanics, a topic he relates to some original 'operator' puzzles - making the book very accessible for all audiences.With over 40 additional, original puzzles, and touching on dozens of hot math topics, this is a perfect book for math lovers, educators, kids and adults, and anyone who loves a great read.Yossi Elran is co-author of our bestselling The Paper Puzzle Book, and heads the Innovation Center at the Davidson Institute of Science Education, the educational arm of the world-renowned Weizmann Institute of Science in Israel.
Many experiments have shown the human brain generally has very serious problems dealing with probability and chance. A greater understanding of probability can help develop the intuition necessary to approach risk with the ability to make more informed (and better) decisions. The first four chapters offer the standard content for an introductory probability course, albeit presented in a much different way and order. The chapters afterward include some discussion of different games, different "ideas" that relate to the law of large numbers, and many more mathematical topics not typically seen in such a book. The use of games is meant to make the book (and course) feel like fun! Since many of the early games discussed are casino games, the study of those games, along with an understanding of the material in later chapters, should remind you that gambling is a bad idea; you should think of placing bets in a casino as paying for entertainment. Winning can, obviously, be a fun reward, but should not ever be expected. Changes for the Second Edition: New chapter on Game Theory New chapter on Sports Mathematics The chapter on Blackjack, which was Chapter 4 in the first edition, appears later in the book. Reorganization has been done to improve the flow of topics and learning. New sections on Arkham Horror, Uno, and Scrabble have been added. Even more exercises were added! The goal for this textbook is to complement the inquiry-based learning movement. In my mind, concepts and ideas will stick with the reader more when they are motivated in an interesting way. Here, we use questions about various games (not just casino games) to motivate the mathematics, and I would say that the writing emphasizes a "just-in-time" mathematics approach. Topics are presented mathematically as questions about the games themselves are posed. Table of Contents Preface 1. Mathematics and Probability 2. Roulette and Craps: Expected Value 3. Counting: Poker Hands 4. More Dice: Counting and Combinations, and Statistics 5. Game Theory: Poker Bluffing and Other Games 6. Probability/Stochastic Matrices: Board Game Movement 7. Sports Mathematics: Probability Meets Athletics 8. Blackjack: Previous Methods Revisited 9. A Mix of Other Games 10. Betting Systems: Can You Beat the System? 11. Potpourri: Assorted Adventures in Probability Appendices Tables Answers and Selected Solutions Bibliography Biography Dr. David G. Taylor is a professor of mathematics and an associate dean for academic affairs at Roanoke College in southwest Virginia. He attended Lebanon Valley College for his B.S. in computer science and mathematics and went to the University of Virginia for his Ph.D. While his graduate school focus was on studying infinite dimensional Lie algebras, he started studying the mathematics of various games in order to have a more undergraduate-friendly research agenda. Work done with two Roanoke College students, Heather Cook and Jonathan Marino, appears in this book! Currently he owns over 100 different board games and enjoys using probability in his decision-making while playing most of those games. In his spare time, he enjoys reading, cooking, coding, playing his board games, and spending time with his six-year-old dog Lilly.
This volume deals with problems of modern effective algorithms for the numerical solution of the most frequently occurring elliptic partial differential equations. From the point of view of implementation, attention is paid to algorithms for both classical sequential and parallel computer systems. The first two chapters are devoted to fast algorithms for solving the Poisson and biharmonic equation. In the third chapter, parallel algorithms for model parallel computer systems of the SIMD and MIMD types are described. The implementation aspects of parallel algorithms for solving model elliptic boundary value problems are outlined for systems with matrix, pipeline and multiprocessor parallel computer architectures. A modern and popular multigrid computational principle which offers a good opportunity for a parallel realization is described in the next chapter. More parallel variants based in this idea are presented, whereby methods and assignments strategies for hypercube systems are treated in more detail. The last chapter presents VLSI designs for solving special tridiagonal linear systems of equations arising from finite-difference approximations of elliptic problems. For researchers interested in the development and application of fast algorithms for solving elliptic partial differential equations using advanced computer systems.
This innovative monograph explores a new mathematical formalism in higher-order temporal logic for proving properties about the behavior of systems. Developed by the authors, the goal of this novel approach is to explain what occurs when multiple, distinct system components interact by using a category-theoretic description of behavior types based on sheaves. The authors demonstrate how to analyze the behaviors of elements in continuous and discrete dynamical systems so that each can be translated and compared to one another. Their temporal logic is also flexible enough that it can serve as a framework for other logics that work with similar models. The book begins with a discussion of behavior types, interval domains, and translation invariance, which serves as the groundwork for temporal type theory. From there, the authors lay out the logical preliminaries they need for their temporal modalities and explain the soundness of those logical semantics. These results are then applied to hybrid dynamical systems, differential equations, and labeled transition systems. A case study involving aircraft separation within the National Airspace System is provided to illustrate temporal type theory in action. Researchers in computer science, logic, and mathematics interested in topos-theoretic and category-theory-friendly approaches to system behavior will find this monograph to be an important resource. It can also serve as a supplemental text for a specialized graduate topics course.
The Italian mathematician Mario Pieri (1860-1913) played an integral part in the research groups of Corrado Segre and Giuseppe Peano, and thus had a significant, yet somewhat underappreciated impact on several branches of mathematics, particularly on the development of algebraic geometry and the foundations of mathematics in the years around the turn of the 20th century. This book is the first in a series of three volumes that are dedicated to countering that neglect and comprehensively examining Pieria (TM)s life, mathematical work and influence in such diverse fields as mathematical logic, algebraic geometry, number theory, inversive geometry, vector analysis, and differential geometry. The Legacy of Mario Pieri in Geometry and Arithmetic introduces readers to Pieria (TM)s career and his studies in foundations, from both historical and modern viewpoints, placing his life and research in context and tracing his influence on his contemporaries as well as more recent mathematicians. The text also provides a glimpse of the Italian academic world of Pieri's time, and its relationship with the developing international mathematics community. Included in this volume are the first English translations, along with analyses, of two of his most important axiomatizationsa "his postulates for arithmetic, which Peano judged superior to his own; and his foundation of elementary geometry on the basis of point and sphere, which Alfred Tarski used as a basis for his own system. Combining an engaging exposition, little-known historical information, exhaustive references and an excellent index, this text will be of interest to graduate students, researchers and historians with a general knowledgeof logic and advanced mathematics, and it requires no specialized experience in mathematical logic or the foundations of geometry.
The contributions gathered here demonstrate how categorical ontology can provide a basis for linking three important basic sciences: mathematics, physics, and philosophy. Category theory is a new formal ontology that shifts the main focus from objects to processes. The book approaches formal ontology in the original sense put forward by the philosopher Edmund Husserl, namely as a science that deals with entities that can be exemplified in all spheres and domains of reality. It is a dynamic, processual, and non-substantial ontology in which all entities can be treated as transformations, and in which objects are merely the sources and aims of these transformations. Thus, in a rather surprising way, when employed as a formal ontology, category theory can unite seemingly disparate disciplines in contemporary science and the humanities, such as physics, mathematics and philosophy, but also computer and complex systems science.
This book demonstrates how to formally model various mathematical domains (including algorithms operating in these domains) in a way that makes them amenable to a fully automatic analysis by computer software.The presented domains are typically investigated in discrete mathematics, logic, algebra, and computer science; they are modeled in a formal language based on first-order logic which is sufficiently rich to express the core entities in whose correctness we are interested: mathematical theorems and algorithmic specifications. This formal language is the language of RISCAL, a “mathematical model checker” by which the validity of all formulas and the correctness of all algorithms can be automatically decided. The RISCAL software is freely available; all formal contents presented in the book are given in the form of specification files by which the reader may interact with the software while studying the corresponding book material.
We see numbers on automobile license plates, addresses, weather reports, and, of course, on our smartphones. Yet we look at these numbers for their role as descriptors, not as an entity in and unto themselves. Each number has its own history of meaning, usage, and connotation in the larger world. The Secret Lives of Numbers takes readers on a journey through integers, considering their numerological assignments as well as their significance beyond mathematics and in the realm of popular culture. Of course we all know that the number 13 carries a certain value of unluckiness with it. The phobia of the number is called Triskaidekaphobia; Franklin Delano Roosevelt was known to invite and disinvite guests to parties to avoid having 13 people in attendance; high-rise buildings often skip the 13th floor out of superstition. There are many explanations as to how the number 13 received this negative honor, but from a mathematical point of view, the number 13 is also the smallest prime number that when its digits are reversed is also a prime number. It is honored with a place among the Fibonacci numbers and integral Pythagorean triples, as well as many other interesting and lesser-known occurrences. In The Secret Lives of Numbers, popular mathematician Alfred S. Posamentier provides short and engaging mini-biographies of more than 100 numbers, starting with 1 and featuring some especially interesting numbers -like 6,174, a number with most unusual properties -to provide readers with a more comprehensive picture of the lives of numbers both mathematically and socially.
This book is dedicated to V.A. Yankov's seminal contributions to the theory of propositional logics. His papers, published in the 1960s, are highly cited even today. The Yankov characteristic formulas have become a very useful tool in propositional, modal and algebraic logic. The papers contributed to this book provide the new results on different generalizations and applications of characteristic formulas in propositional, modal and algebraic logics. In particular, an exposition of Yankov's results and their applications in algebraic logic, the theory of admissible rules and refutation systems is included in the book. In addition, the reader can find the studies on splitting and join-splitting in intermediate propositional logics that are based on Yankov-type formulas which are closely related to canonical formulas, and the study of properties of predicate extensions of non-classical propositional logics. The book also contains an exposition of Yankov's revolutionary approach to constructive proof theory. The editors also include Yankov's contributions to history and philosophy of mathematics and foundations of mathematics, as well as an examination of his original interpretation of history of Greek philosophy and mathematics.
This undergraduate textbook promotes an active transition to higher mathematics. Problem solving is the heart and soul of this book: each problem is carefully chosen to demonstrate, elucidate, or extend a concept. More than 300 exercises engage the reader in extensive arguments and creative approaches, while exploring connections between fundamental mathematical topics. Divided into four parts, this book begins with a playful exploration of the building blocks of mathematics, such as definitions, axioms, and proofs. A study of the fundamental concepts of logic, sets, and functions follows, before focus turns to methods of proof. Having covered the core of a transition course, the author goes on to present a selection of advanced topics that offer opportunities for extension or further study. Throughout, appendices touch on historical perspectives, current trends, and open questions, showing mathematics as a vibrant and dynamic human enterprise. This second edition has been reorganized to better reflect the layout and curriculum of standard transition courses. It also features recent developments and improved appendices. An Invitation to Abstract Mathematics is ideal for those seeking a challenging and engaging transition to advanced mathematics, and will appeal to both undergraduates majoring in mathematics, as well as non-math majors interested in exploring higher-level concepts. From reviews of the first edition: Bajnok's new book truly invites students to enjoy the beauty, power, and challenge of abstract mathematics. ... The book can be used as a text for traditional transition or structure courses ... but since Bajnok invites all students, not just mathematics majors, to enjoy the subject, he assumes very little background knowledge. Jill Dietz, MAA ReviewsThe style of writing is careful, but joyously enthusiastic.... The author's clear attitude is that mathematics consists of problem solving, and that writing a proof falls into this category. Students of mathematics are, therefore, engaged in problem solving, and should be given problems to solve, rather than problems to imitate. The author attributes this approach to his Hungarian background ... and encourages students to embrace the challenge in the same way an athlete engages in vigorous practice. John Perry, zbMATH
Fuzzy logics are many-valued logics that are well suited to reasoning in the context of vagueness. They provide the basis for the wider field of Fuzzy Logic, encompassing diverse areas such as fuzzy control, fuzzy databases, and fuzzy mathematics. This book provides an accessible and up-to-date introduction to this fast-growing and increasingly popular area. It focuses in particular on the development and applications of "proof-theoretic" presentations of fuzzy logics; the result of more than ten years of intensive work by researchers in the area, including the authors. In addition to providing alternative elegant presentations of fuzzy logics, proof-theoretic methods are useful for addressing theoretical problems (including key standard completeness results) and developing efficient deduction and decision algorithms. Proof-theoretic presentations also place fuzzy logics in the broader landscape of non-classical logics, revealing deep relations with other logics studied in Computer Science, Mathematics, and Philosophy. The book builds methodically from the semantic origins of fuzzy logics to proof-theoretic presentations such as Hilbert and Gentzen systems, introducing both theoretical and practical applications of these presentations.
The aim of this book volume is to explain the importance of Markov state models to molecular simulation, how they work, and how they can be applied to a range of problems. The Markov state model (MSM) approach aims to address two key challenges of molecular simulation: 1) How to reach long timescales using short simulations of detailed molecular models. 2) How to systematically gain insight from the resulting sea of data. MSMs do this by providing a compact representation of the vast conformational space available to biomolecules by decomposing it into states sets of rapidly interconverting conformations and the rates of transitioning between states.This kinetic definition allows one to easily vary the temporal and spatial resolution of an MSM from high-resolution models capable of quantitative agreement with (or prediction of) experiment to low-resolution models that facilitate understanding. Additionally, MSMs facilitate the calculation of quantities that are difficult to obtain from more direct MD analyses, such as the ensemble of transition pathways. This book introduces the mathematical foundations of Markov models, how they can be used to analyze simulations and drive efficient simulations, and some of the insights these models have yielded in a variety of applications of molecular simulation."
The book presents a thoroughly elaborated logical theory of generalized truth-values understood as subsets of some established set of (basic) truth values. After elucidating the importance of the very notion of a truth value in logic and philosophy, we examine some possible ways of generalizing this notion. The useful four-valued logic of first-degree entailment by Nuel Belnap and the notion of a bilattice (a lattice of truth values with two ordering relations) constitute the basis for further generalizations. By doing so we elaborate the idea of a multilattice, and most notably, a trilattice of truth values - a specific algebraic structure with information ordering and two distinct logical orderings, one for truth and another for falsity. Each logical order not only induces its own logical vocabulary, but determines also its own entailment relation. We consider both semantic and syntactic ways of formalizing these relations and construct various logical calculi.
This book features a series of lectures that explores three different fields in which functor homology (short for homological algebra in functor categories) has recently played a significant role. For each of these applications, the functor viewpoint provides both essential insights and new methods for tackling difficult mathematical problems. In the lectures by Aurelien Djament, polynomial functors appear as coefficients in the homology of infinite families of classical groups, e.g. general linear groups or symplectic groups, and their stabilization. Djament's theorem states that this stable homology can be computed using only the homology with trivial coefficients and the manageable functor homology. The series includes an intriguing development of Scorichenko's unpublished results. The lectures by Wilberd van der Kallen lead to the solution of the general cohomological finite generation problem, extending Hilbert's fourteenth problem and its solution to the context of cohomology. The focus here is on the cohomology of algebraic groups, or rational cohomology, and the coefficients are Friedlander and Suslin's strict polynomial functors, a conceptual form of modules over the Schur algebra. Roman Mikhailov's lectures highlight topological invariants: homoto py and homology of topological spaces, through derived functors of polynomial functors. In this regard the functor framework makes better use of naturality, allowing it to reach calculations that remain beyond the grasp of classical algebraic topology. Lastly, Antoine Touze's introductory course on homological algebra makes the book accessible to graduate students new to the field. The links between functor homology and the three fields mentioned above offer compelling arguments for pushing the development of the functor viewpoint. The lectures in this book will provide readers with a feel for functors, and a valuable new perspective to apply to their favourite problems.
This monograph is a defence of the Fregean take on logic. The author argues that Freges projects, in logic and philosophy of language, are essentially connected and that the formalist shift produced by the work of Peano, Boole and Schroeder and continued by Hilbert and Tarski is completely alien to Frege's approach in the Begriffsschrift. A central thesis of the book is that judgeable contents, i.e. propositions, are the primary bearers of logical properties, which makes logic embedded in our conceptual system. This approach allows coherent and correct definitions of logical constants, logical consequence, and truth and connects their use to the practices of rational agents in science and everyday life.
The book offers a collection of essays on various aspects of Leibniz's scientific thought, written by historians of science and world-leading experts on Leibniz. The essays deal with a vast array of topics on the exact sciences: Leibniz's logic, mereology, the notion of infinity and cardinality, the foundations of geometry, the theory of curves and differential geometry, and finally dynamics and general epistemology. Several chapters attempt a reading of Leibniz's scientific works through modern mathematical tools, and compare Leibniz's results in these fields with 19th- and 20th-Century conceptions of them. All of them have special care in framing Leibniz's work in historical context, and sometimes offer wider historical perspectives that go much beyond Leibniz's researches. A special emphasis is given to effective mathematical practice rather than purely epistemological thought. The book is addressed to all scholars of the exact sciences who have an interest in historical research and Leibniz in particular, and may be useful to historians of mathematics, physics, and epistemology, mathematicians with historical interests, and philosophers of science at large.
This book delves into finite mathematics and its application in physics, particularly quantum theory. It is shown that quantum theory based on finite mathematics is more general than standard quantum theory, whilst finite mathematics is itself more general than standard mathematics.As a consequence, the mathematics describing nature at the most fundamental level involves only a finite number of numbers while the notions of limit, infinite/infinitesimal and continuity are needed only in calculations that describe nature approximately. It is also shown that the concepts of particle and antiparticle are likewise approximate notions, valid only in special situations, and that the electric charge and baryon- and lepton quantum numbers can be only approximately conserved.
This volume provides an introduction to the properties of functional differential equations and their applications in diverse fields such as immunology, nuclear power generation, heat transfer, signal processing, medicine and economics. In particular, it deals with problems and methods relating to systems having a memory (hereditary systems). The book contains eight chapters. Chapter 1 explains where functional differential equations come from and what sort of problems arise in applications. Chapter 2 gives a broad introduction to the basic principle involved and deals with systems having discrete and distributed delay. Chapters 3-5 are devoted to stability problems for retarded, neutral and stochastic functional differential equations. Problems of optimal control and estimation are considered in Chapters 6-8. For applied mathematicians, engineers, and physicists whose work involves mathematical modeling of hereditary systems. This volume can also be recommended as a supplementary text for graduate students who wish to become better acquainted with the properties and applications of functional differential equations.
This monograph presents a new model of mathematical structures called weak n-categories. These structures find their motivation in a wide range of fields, from algebraic topology to mathematical physics, algebraic geometry and mathematical logic. While strict n-categories are easily defined in terms associative and unital composition operations they are of limited use in applications, which often call for weakened variants of these laws. The author proposes a new approach to this weakening, whose generality arises not from a weakening of such laws but from the very geometric structure of its cells; a geometry dubbed weak globularity. The new model, called weakly globular n-fold categories, is one of the simplest known algebraic structures yielding a model of weak n-categories. The central result is the equivalence of this model to one of the existing models, due to Tamsamani and further studied by Simpson. This theory has intended applications to homotopy theory, mathematical physics and to long-standing open questions in category theory. As the theory is described in elementary terms and the book is largely self-contained, it is accessible to beginning graduate students and to mathematicians from a wide range of disciplines well beyond higher category theory. The new model makes a transparent connection between higher category theory and homotopy theory, rendering it particularly suitable for category theorists and algebraic topologists. Although the results are complex, readers are guided with an intuitive explanation before each concept is introduced, and with diagrams showing the interconnections between the main ideas and results. |
![]() ![]() You may like...
Windows Installation and Update…
Chris Rhodes, Andrew Bettany
Paperback
R1,464
Discovery Miles 14 640
Reading Mawsim al-Hijra ila al-Shamal…
Ahmad Alswaid, Munther Younes
Paperback
R1,585
Discovery Miles 15 850
Learn Spanish with Pride and Prejudice…
Jane Austen, Weeve Languages
Paperback
R500
Discovery Miles 5 000
PowerShell for Administration, IT Pro…
William R. Stanek, William Stanek
Hardcover
R1,533
Discovery Miles 15 330
Learn French with Alice In Wonderland…
Lewis Carol, Weeve Languages
Paperback
R410
Discovery Miles 4 100
|