![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Mathematical foundations > General
This book features research contributions from The Abel Symposium on Statistical Analysis for High Dimensional Data, held in Nyvagar, Lofoten, Norway, in May 2014. The focus of the symposium was on statistical and machine learning methodologies specifically developed for inference in "big data" situations, with particular reference to genomic applications. The contributors, who are among the most prominent researchers on the theory of statistics for high dimensional inference, present new theories and methods, as well as challenging applications and computational solutions. Specific themes include, among others, variable selection and screening, penalised regression, sparsity, thresholding, low dimensional structures, computational challenges, non-convex situations, learning graphical models, sparse covariance and precision matrices, semi- and non-parametric formulations, multiple testing, classification, factor models, clustering, and preselection. Highlighting cutting-edge research and casting light on future research directions, the contributions will benefit graduate students and researchers in computational biology, statistics and the machine learning community.
Improved geospatial instrumentation and technology such as in laser scanning has now resulted in millions of data being collected, e.g., point clouds. It is in realization that such huge amount of data requires efficient and robust mathematical solutions that this third edition of the book extends the second edition by introducing three new chapters: Robust parameter estimation, Multiobjective optimization and Symbolic regression. Furthermore, the linear homotopy chapter is expanded to include nonlinear homotopy. These disciplines are discussed first in the theoretical part of the book before illustrating their geospatial applications in the applications chapters where numerous numerical examples are presented. The renewed electronic supplement contains these new theoretical and practical topics, with the corresponding Mathematica statements and functions supporting their computations introduced and applied. This third edition is renamed in light of these technological advancements.
This volume presents recent advances in the field of matrix analysis based on contributions at the MAT-TRIAD 2015 conference. Topics covered include interval linear algebra and computational complexity, Birkhoff polynomial basis, tensors, graphs, linear pencils, K-theory and statistic inference, showing the ubiquity of matrices in different mathematical areas. With a particular focus on matrix and operator theory, statistical models and computation, the International Conference on Matrix Analysis and its Applications 2015, held in Coimbra, Portugal, was the sixth in a series of conferences. Applied and Computational Matrix Analysis will appeal to graduate students and researchers in theoretical and applied mathematics, physics and engineering who are seeking an overview of recent problems and methods in matrix analysis.
This Undergraduate Textbook introduces key methods and examines the major areas of philosophy in which formal methods play pivotal roles. Coverage begins with a thorough introduction to formalization and to the advantages and pitfalls of formal methods in philosophy. The ensuing chapters show how to use formal methods in a wide range of areas. Throughout, the contributors clarify the relationships and interdependencies between formal and informal notions and constructions. Their main focus is to show how formal treatments of philosophical problems may help us understand them better. Formal methods can be used to solve problems but also to express new philosophical problems that would never have seen the light of day without the expressive power of the formal apparatus. Formal philosophy merges work in different areas of philosophy as well as logic, mathematics, computer science, linguistics, physics, psychology, biology, economics, political theory, and sociology. This title offers an accessible introduction to this new interdisciplinary research area to a wide academic audience.
This volume of LNCSE is a collection of the papers from the proceedings of the third workshop on sparse grids and applications. Sparse grids are a popular approach for the numerical treatment of high-dimensional problems. Where classical numerical discretization schemes fail in more than three or four dimensions, sparse grids, in their different guises, are frequently the method of choice, be it spatially adaptive in the hierarchical basis or via the dimensionally adaptive combination technique. Demonstrating once again the importance of this numerical discretization scheme, the selected articles present recent advances on the numerical analysis of sparse grids as well as efficient data structures. The book also discusses a range of applications, including uncertainty quantification and plasma physics.
Written by a team of leading experts in the field, this volume presents a self-contained account of the theory, techniques and results in metric type spaces (in particular in G-metric spaces); that is, the text approaches this important area of fixed point analysis beginning from the basic ideas of metric space topology. The text is structured so that it leads the reader from preliminaries and historical notes on metric spaces (in particular G-metric spaces) and on mappings, to Banach type contraction theorems in metric type spaces, fixed point theory in partially ordered G-metric spaces, fixed point theory for expansive mappings in metric type spaces, generalizations, present results and techniques in a very general abstract setting and framework. Fixed point theory is one of the major research areas in nonlinear analysis. This is partly due to the fact that in many real world problems fixed point theory is the basic mathematical tool used to establish the existence of solutions to problems which arise naturally in applications. As a result, fixed point theory is an important area of study in pure and applied mathematics and it is a flourishing area of research.
This visionary and engaging book provides a mathematical perspective on the fundamental ideas of numbers, space, life, evolution, the brain and the mind. The author suggests how a development of mathematical concepts in the spirit of category theory may lead to unravelling the mystery of the human mind and the design of universal learning algorithms. The book is divided into two parts, the first of which describes the ideas of great mathematicians and scientists, those who saw sparks of light in the dark sea of unknown. The second part, Memorandum Ergo, reflects on how mathematics can contribute to the understanding of the mystery of thought. It argues that the core of the human mind is a structurally elaborated object that needs a creation of a broad mathematical context for its understanding. Readers will discover the main properties of the expected mathematical objects within this context, called ERGO-SYSTEMS, and readers will see how these "systems" may serve as prototypes for design of universal learning computer programs. This is a work of great, poetical insight and is richly illustrated. It is a highly attractive read for all those who welcome a mathematical and scientific way of thinking about the world.
This book celebrates the work of Don Pigozzi on the occasion of his 80th birthday. In addition to articles written by leading specialists and his disciples, it presents Pigozzi's scientific output and discusses his impact on the development of science. The book both catalogues his works and offers an extensive profile of Pigozzi as a person, sketching the most important events, not only related to his scientific activity, but also from his personal life. It reflects Pigozzi's contribution to the rise and development of areas such as abstract algebraic logic (AAL), universal algebra and computer science, and introduces new scientific results. Some of the papers also present chronologically ordered facts relating to the development of the disciplines he contributed to, especially abstract algebraic logic. The book offers valuable source material for historians of science, especially those interested in history of mathematics and logic.
Now in its second edition, this textbook provides an introduction and overview of number theory based on the density and properties of the prime numbers. This unique approach offers both a firm background in the standard material of number theory, as well as an overview of the entire discipline. All of the essential topics are covered, such as the fundamental theorem of arithmetic, theory of congruences, quadratic reciprocity, arithmetic functions, and the distribution of primes. New in this edition are coverage of p-adic numbers, Hensel's lemma, multiple zeta-values, and elliptic curve methods in primality testing. Key topics and features include: A solid introduction to analytic number theory, including full proofs of Dirichlet's Theorem and the Prime Number Theorem Concise treatment of algebraic number theory, including a complete presentation of primes, prime factorizations in algebraic number fields, and unique factorization of ideals Discussion of the AKS algorithm, which shows that primality testing is one of polynomial time, a topic not usually included in such texts Many interesting ancillary topics, such as primality testing and cryptography, Fermat and Mersenne numbers, and Carmichael numbers The user-friendly style, historical context, and wide range of exercises that range from simple to quite difficult (with solutions and hints provided for select exercises) make Number Theory: An Introduction via the Density of Primes ideal for both self-study and classroom use. Intended for upper level undergraduates and beginning graduates, the only prerequisites are a basic knowledge of calculus, multivariable calculus, and some linear algebra. All necessary concepts from abstract algebra and complex analysis are introduced where needed.
The book discusses the solutions to nonlinear ordinary differential equations (ODEs) using analytical and numerical approximation methods. Recently, analytical approximation methods have been largely used in solving linear and nonlinear lower-order ODEs. It also discusses using these methods to solve some strong nonlinear ODEs. There are two chapters devoted to solving nonlinear ODEs using numerical methods, as in practice high-dimensional systems of nonlinear ODEs that cannot be solved by analytical approximate methods are common. Moreover, it studies analytical and numerical techniques for the treatment of parameter-depending ODEs. The book explains various methods for solving nonlinear-oscillator and structural-system problems, including the energy balance method, harmonic balance method, amplitude frequency formulation, variational iteration method, homotopy perturbation method, iteration perturbation method, homotopy analysis method, simple and multiple shooting method, and the nonlinear stabilized march method. This book comprehensively investigates various new analytical and numerical approximation techniques that are used in solving nonlinear-oscillator and structural-system problems. Students often rely on the finite element method to such an extent that on graduation they have little or no knowledge of alternative methods of solving problems. To rectify this, the book introduces several new approximation techniques.
This book explains exactly what human knowledge is. The key concepts in this book are structures and algorithms, i.e., what the readers "see" and how they make use of what they see. Thus in comparison with some other books on the philosophy (or methodology) of science, which employ a syntactic approach, the author's approach is model theoretic or structural. Properly understood, it extends the current art and science of mathematical modeling to all fields of knowledge. The link between structure and algorithms is mathematics. But viewing "mathematics" as such a link is not exactly what readers most likely learned in school; thus, the task of this book is to explain what "mathematics" should actually mean. Chapter 1, an introductory essay, presents a general analysis of structures, algorithms and how they are to be linked. Several examples from the natural and social sciences, and from the history of knowledge, are provided in Chapters 2-6. In turn, Chapters 7 and 8 extend the analysis to include language and the mind. Structures are what the readers see. And, as abstract cultural objects, they can almost always be seen in many different ways. But certain structures, such as natural numbers and the basic theory of grammar, seem to have an absolute character. Any theory of knowledge grounded in human culture must explain how this is possible. The author's analysis of this cultural invariance, combining insights from evolutionary theory and neuroscience, is presented in the book's closing chapter. The book will be of interest to researchers, students and those outside academia who seek a deeper understanding of knowledge in our present-day society.
The book presents an overview of the state of research of advanced finite element technologies. Besides the mathematical analysis, the finite element development and their engineering applications are shown to the reader. The authors give a survey of the methods and technologies concerning efficiency, robustness and performance aspects. The book covers the topics of mathematical foundations for variational approaches and the mathematical understanding of the analytical requirements of modern finite element methods. Special attention is paid to finite deformations, adaptive strategies, incompressible, isotropic or anisotropic material behavior and the mathematical and numerical treatment of the well-known locking phenomenon. Beyond that new results for the introduced approaches are presented especially for challenging nonlinear problems.
Held during algebraic topology special sessions at the Vietnam Institute for Advanced Studies in Mathematics (VIASM, Hanoi), this set of notes consists of expanded versions of three courses given by G. Ginot, H.-W. Henn and G. Powell. They are all introductory texts and can be used by PhD students and experts in the field. Among the three contributions, two concern stable homotopy of spheres: Henn focusses on the chromatic point of view, the Morava K(n)-localization and the cohomology of the Morava stabilizer groups. Powell's chapter is concerned with the derived functors of the destabilization and iterated loop functors and provides a small complex to compute them. Indications are given for the odd prime case. Providing an introduction to some aspects of string and brane topology, Ginot's contribution focusses on Hochschild homology and its generalizations. It contains a number of new results and fills a gap in the literature.
The Shape of Space, Third Edition maintains the standard of excellence set by the previous editions. This lighthearted textbook covers the basic geometry and topology of two- and three-dimensional spaces-stretching students' minds as they learn to visualize new possibilities for the shape of our universe. Written by a master expositor, leading researcher in the field, and MacArthur Fellow, its informal exposition and engaging exercises appeal to an exceptionally broad audience, from liberal arts students to math undergraduate and graduate students looking for a clear intuitive understanding to supplement more formal texts, and even to laypeople seeking an entertaining self-study book to expand their understanding of space. Features of the Third Edition: Full-color figures throughout "Picture proofs" have replaced algebraic proofs Simpler handles-and-crosscaps approach to surfaces Updated discussion of cosmological applications Intuitive examples missing from many college and graduate school curricula About the Author: Jeffrey R. Weeks is a freelance geometer living in Canton, New York. With support from the U.S. National Science Foundation, the MacArthur Foundation and several science museums, his work spans pure mathematics, applications in cosmology and-closest to his heart-exposition for the general public.
This book constitutes the thoroughly refereed post-conference proceedings of the 23rd IFIP WG 1.3 International Workshop on Algebraic Development Techniques, WADT 2016, held in September 2016 in Gregynog, UK. The 9 revised papers presented together with two invited talks, one invited paper and two survey papers were carefully reviewed and selected from numerous submissions and focus on foundations of algebraic specification; other approaches to formal specification, including process calculi and models of concurrent, distributed and mobile computing; specification languages, methods, and environments; semantics of conceptual modeling methods and techniques; model-driven development; graph transformations, term rewriting and proof systems; integration of formal specification techniques; formal testing and quality assurance, validation, and verification areas, broadly falling into three categories: multimedia content analysis; multimedia signal processing and communications; and multimedia applications and services.
This series is designed to meet the needs of students and lecturers of the National Certificate Vocational. Features for the student include: Easy-to-understand language; Real-life examples; A key word feature for important subject terms; A dictionary feature for difficult words; A reflect-on-how-you-learn feature to explore personal learning styles; Workplace-oriented activities; and Chapter summaries that are useful for exam revision.
Gerhard Gentzen is best known for his development of the proof systems of natural deduction and sequent calculus, central in many areas of logic and computer science today. Another noteworthy achievement is his resolution of the embarrassing situation created by Goedel's incompleteness results, especially the second one about the unprovability of consistency of elementary arithmetic. After these successes, Gentzen dedicated the rest of his short life to the main problem of Hilbert's proof theory, the question of the consistency of analysis. He was arrested in the summer of 1945 with other professors of the German University of Prague and died soon afterward of starvation in a prison cell. Attempts at locating his lost manuscripts failed at the time, but several decades later, two slim folders of shorthand notes were found. In this volume, Jan von Plato gives an overview of Gentzen's life and scientific achievements, based on detailed archival and systematic studies, and essential for placing the translations of shorthand manuscripts that follow in the right setting. The materials in this book are singular in the way they show the birth and development of Gentzen's central ideas and results, sometimes in a well-developed form, and other times as flashes into the anatomy of the workings of a unique mind.
This LNCS volume is part of FoLLI book serie and contains the papers presented at the 6th International Workshop on Logic, Rationality and Interaction/ (LORI-VI), held in September 2017 in Sapporo, Japan. The focus of the workshop is on following topics: Agency, Argumentation and Agreement, Belief Revision and Belief Merging, Belief Representation, Cooperation, Decision making and Planning, Natural Language, Philosophy and Philosophical Logic, and Strategic Reasoning.
This book argues for a view in which processes of dialogue and interaction are taken to be foundational to reasoning, logic, and meaning. This is both a continuation, and a substantial modification, of an inferentialist approach to logic. As such, the book not only provides a critical introduction to the inferentialist view, but it also provides an argument that this shift in perspective has deep and foundational consequences for how we understand the nature of logic and its relationship with meaning and reasoning. This has been upheld by several technical results, including, for example a novel approach to logical paradox and logical revision, and an account of the internal justification of logical rules. The book shows that inferentialism is greatly strengthened, such that it can answer the most stringent criticisms of the view. This leads to a view of logic that emphasizes the dynamics of reasoning, provides a novel account of the justification and normativity of logical rules, thus leading to a new, attractive approach to the foundations of logic. The book addresses readers interested in philosophy of language, philosophical and mathematical logic, theories of reasoning, and also those who actively engage in current debates involving, for example, logical revision, and the relationship between logic and reasoning, from advanced undergraduates, to professional philosophers, mathematicians, and linguists.
Designed for graduate students, researchers, and engineers in mathematics, optimization, and economics, this self-contained volume presents theory, methods, and applications in mathematical analysis and approximation theory. Specific topics include: approximation of functions by linear positive operators with applications to computer aided geometric design, numerical analysis, optimization theory, and solutions of differential equations. Recent and significant developments in approximation theory, special functions and q-calculus along with their applications to mathematics, engineering, and social sciences are discussed and analyzed. Each chapter enriches the understanding of current research problems and theories in pure and applied research.
Presenting a novel approach to wave theory, this book applies mathematical modeling to the investigation of sea waves. It presents problems, solutions and methods, and explores issues such as statistical properties of sea waves, generation of turbulence, Benjamin-Feir instability and the development of wave fields under the action of wind. Special attention is paid to the processes of dynamic wind-wave interaction, the formation of freak waves, as well as the role that sea waves play in the dynamic ocean/atmosphere system. It presents theoretical results which are followed by a description of the algorithms used in the development of wave forecasting models, and provides illustrations to assist understanding of the various models presented. This book provides an invaluable resource to oceanographers, specialists in fluid dynamics and advanced students interested in investigation of the widely known but poorly investigated phenomenon of sea waves.
This book presents a new suite of benchmarks for and examples of porous media mechanics collected over the last two years. It continues the assembly of benchmarks and examples for porous media mechanics published in 2014. The book covers various applications in the geosciences, geotechnics, geothermal energy, and geological waste deposition. The analysis of thermo-hydro-mechanical-chemical (THMC) processes is essential to many applications in environmental engineering, such as geological waste deposition, geothermal energy utilisation, carbon capture and storage, water resources management, hydrology, and even climate change. In order to assess the feasibility and safety of geotechnical applications, process-based modelling is the only tool that can effectively quantify future scenarios, a fact which also creates a huge burden of responsibility concerning the reliability of computational tools. The book shows that benchmarking offers a suitable methodology for verifying the quality of modelling tools based on best practices, and together with code comparison fosters community efforts. It also provides a brief introduction to the DECOVALEX, SeSBench and MOMAS initiatives. This benchmark book is part of the OpenGeoSys initiative - an open source project designed to share knowledge and experience in environmental analysis and scientific computation.
This book presents the latest advances in research to analyze mechanical damage and its detection in multilayer systems. The contents are linked to the Rilem TC241 - MCD scientific activities and the proceedings of the 8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016). MCD2016 was hosted by Ifsttar and took place in Nantes, France, on June 7-9, 2016. In their lifetime, pavements undergo degradation due to different mechanisms of which cracking is among the most important ones. The damage and the fracture behavior of all its material layers as well as interfaces must be understood. In that field, the research activities aims to develop a deeper fundamental understanding of the mechanisms responsible for cracking and debonding in asphalt concrete and composite (e.g. asphalt overlays placed on PCC or thin cement concrete overlay placed on asphalt layer) pavement systems.
This edited book aims at presenting current research activities in the field of robust variable-structure systems. The scope equally comprises highlighting novel methodological aspects as well as presenting the use of variable-structure techniques in industrial applications including their efficient implementation on hardware for real-time control. The target audience primarily comprises research experts in the field of control theory and nonlinear dynamics but the book may also be beneficial for graduate students.
This book presents lecture notes from the XVI 'Jacques-Louis Lions' Spanish-French School on Numerical Simulation in Physics and Engineering, held in Pamplona (Navarra, Spain) in September 2014. The subjects covered include: numerical analysis of isogeometric methods, convolution quadrature for wave simulations, mathematical methods in image processing and computer vision, modeling and optimization techniques in food processes, bio-processes and bio-systems, and GPU computing for numerical simulation. The book is highly recommended to graduate students in Engineering or Science who want to focus on numerical simulation, either as a research topic or in the field of industrial applications. It can also benefit senior researchers and technicians working in industry who are interested in the use of state-of-the-art numerical techniques in the fields addressed here. Moreover, the book can be used as a textbook for master courses in Mathematics, Physics, or Engineering. |
![]() ![]() You may like...
Blackouts & Boerewors - Forty Bright…
Karl Tessendorf, Greg Gilowey
Paperback
Modeling, Control and Coordination of…
Beibei Ren, Shuzhi Sam Ge, …
Hardcover
R3,038
Discovery Miles 30 380
Computational Science and High…
Egon Krause, Yurii I Shokin, …
Paperback
R5,904
Discovery Miles 59 040
|