![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Mathematical foundations > General
Gerhard Gentzen is best known for his development of the proof systems of natural deduction and sequent calculus, central in many areas of logic and computer science today. Another noteworthy achievement is his resolution of the embarrassing situation created by Goedel's incompleteness results, especially the second one about the unprovability of consistency of elementary arithmetic. After these successes, Gentzen dedicated the rest of his short life to the main problem of Hilbert's proof theory, the question of the consistency of analysis. He was arrested in the summer of 1945 with other professors of the German University of Prague and died soon afterward of starvation in a prison cell. Attempts at locating his lost manuscripts failed at the time, but several decades later, two slim folders of shorthand notes were found. In this volume, Jan von Plato gives an overview of Gentzen's life and scientific achievements, based on detailed archival and systematic studies, and essential for placing the translations of shorthand manuscripts that follow in the right setting. The materials in this book are singular in the way they show the birth and development of Gentzen's central ideas and results, sometimes in a well-developed form, and other times as flashes into the anatomy of the workings of a unique mind.
This LNCS volume is part of FoLLI book serie and contains the papers presented at the 6th International Workshop on Logic, Rationality and Interaction/ (LORI-VI), held in September 2017 in Sapporo, Japan. The focus of the workshop is on following topics: Agency, Argumentation and Agreement, Belief Revision and Belief Merging, Belief Representation, Cooperation, Decision making and Planning, Natural Language, Philosophy and Philosophical Logic, and Strategic Reasoning.
This book provides comprehensive, graduate-level treatment of analog and digital signal analysis suitable for course use and self-guided learning. This expert text guides the reader from the basics of signal theory through a range of application tools for use in acoustic analysis, geophysics, and data compression. Each concept is introduced and explained step by step, and the necessary mathematical formulae are integrated in an accessible and intuitive way. The first part of the book explores how analog systems and signals form the basics of signal analysis. This section covers Fourier series and integral transforms of analog signals, Laplace and Hilbert transforms, the main analog filter classes, and signal modulations. Part II covers digital signals, demonstrating their key advantages. It presents z and Fourier transforms, digital filtering, inverse filters, deconvolution, and parametric modeling for deterministic signals. Wavelet decomposition and reconstruction of non-stationary signals are also discussed. The third part of the book is devoted to random signals, including spectral estimation, parametric modeling, and Tikhonov regularization. It covers statistics of one and two random variables and the principles and methods of spectral analysis. Estimation of signal properties is discussed in the context of ergodicity conditions and parameter estimations, including the use of Wiener and Kalman filters. Two appendices cover the basics of integration in the complex plane and linear algebra. A third appendix presents a basic Matlab toolkit for computer signal analysis. This expert text provides both a solid theoretical understanding and tools for real-world applications.
This book argues for a view in which processes of dialogue and interaction are taken to be foundational to reasoning, logic, and meaning. This is both a continuation, and a substantial modification, of an inferentialist approach to logic. As such, the book not only provides a critical introduction to the inferentialist view, but it also provides an argument that this shift in perspective has deep and foundational consequences for how we understand the nature of logic and its relationship with meaning and reasoning. This has been upheld by several technical results, including, for example a novel approach to logical paradox and logical revision, and an account of the internal justification of logical rules. The book shows that inferentialism is greatly strengthened, such that it can answer the most stringent criticisms of the view. This leads to a view of logic that emphasizes the dynamics of reasoning, provides a novel account of the justification and normativity of logical rules, thus leading to a new, attractive approach to the foundations of logic. The book addresses readers interested in philosophy of language, philosophical and mathematical logic, theories of reasoning, and also those who actively engage in current debates involving, for example, logical revision, and the relationship between logic and reasoning, from advanced undergraduates, to professional philosophers, mathematicians, and linguists.
The book presents an overview of the state of research of advanced finite element technologies. Besides the mathematical analysis, the finite element development and their engineering applications are shown to the reader. The authors give a survey of the methods and technologies concerning efficiency, robustness and performance aspects. The book covers the topics of mathematical foundations for variational approaches and the mathematical understanding of the analytical requirements of modern finite element methods. Special attention is paid to finite deformations, adaptive strategies, incompressible, isotropic or anisotropic material behavior and the mathematical and numerical treatment of the well-known locking phenomenon. Beyond that new results for the introduced approaches are presented especially for challenging nonlinear problems.
This proceedings volume highlights a selection of papers presented at the Sixth International Conference on High Performance Scientific Computing, which took place in Hanoi, Vietnam on March 16-20, 2015. The conference was jointly organized by the Heidelberg Institute of Theoretical Studies (HITS), the Institute of Mathematics of the Vietnam Academy of Science and Technology (VAST), the Interdisciplinary Center for Scientific Computing (IWR) at Heidelberg University, and the Vietnam Institute for Advanced Study in Mathematics, Ministry of Education The contributions cover a broad, interdisciplinary spectrum of scientific computing and showcase recent advances in theory, methods, and practical applications. Subjects covered numerical simulation, methods for optimization and control, parallel computing, and software development, as well as the applications of scientific computing in physics, mechanics, biomechanics and robotics, material science, hydrology, biotechnology, medicine, transport, scheduling, and industry.
Designed for graduate students, researchers, and engineers in mathematics, optimization, and economics, this self-contained volume presents theory, methods, and applications in mathematical analysis and approximation theory. Specific topics include: approximation of functions by linear positive operators with applications to computer aided geometric design, numerical analysis, optimization theory, and solutions of differential equations. Recent and significant developments in approximation theory, special functions and q-calculus along with their applications to mathematics, engineering, and social sciences are discussed and analyzed. Each chapter enriches the understanding of current research problems and theories in pure and applied research.
Presenting a novel approach to wave theory, this book applies mathematical modeling to the investigation of sea waves. It presents problems, solutions and methods, and explores issues such as statistical properties of sea waves, generation of turbulence, Benjamin-Feir instability and the development of wave fields under the action of wind. Special attention is paid to the processes of dynamic wind-wave interaction, the formation of freak waves, as well as the role that sea waves play in the dynamic ocean/atmosphere system. It presents theoretical results which are followed by a description of the algorithms used in the development of wave forecasting models, and provides illustrations to assist understanding of the various models presented. This book provides an invaluable resource to oceanographers, specialists in fluid dynamics and advanced students interested in investigation of the widely known but poorly investigated phenomenon of sea waves.
This book presents a new suite of benchmarks for and examples of porous media mechanics collected over the last two years. It continues the assembly of benchmarks and examples for porous media mechanics published in 2014. The book covers various applications in the geosciences, geotechnics, geothermal energy, and geological waste deposition. The analysis of thermo-hydro-mechanical-chemical (THMC) processes is essential to many applications in environmental engineering, such as geological waste deposition, geothermal energy utilisation, carbon capture and storage, water resources management, hydrology, and even climate change. In order to assess the feasibility and safety of geotechnical applications, process-based modelling is the only tool that can effectively quantify future scenarios, a fact which also creates a huge burden of responsibility concerning the reliability of computational tools. The book shows that benchmarking offers a suitable methodology for verifying the quality of modelling tools based on best practices, and together with code comparison fosters community efforts. It also provides a brief introduction to the DECOVALEX, SeSBench and MOMAS initiatives. This benchmark book is part of the OpenGeoSys initiative - an open source project designed to share knowledge and experience in environmental analysis and scientific computation.
This book presents the latest advances in research to analyze mechanical damage and its detection in multilayer systems. The contents are linked to the Rilem TC241 - MCD scientific activities and the proceedings of the 8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016). MCD2016 was hosted by Ifsttar and took place in Nantes, France, on June 7-9, 2016. In their lifetime, pavements undergo degradation due to different mechanisms of which cracking is among the most important ones. The damage and the fracture behavior of all its material layers as well as interfaces must be understood. In that field, the research activities aims to develop a deeper fundamental understanding of the mechanisms responsible for cracking and debonding in asphalt concrete and composite (e.g. asphalt overlays placed on PCC or thin cement concrete overlay placed on asphalt layer) pavement systems.
This book presents lecture notes from the XVI 'Jacques-Louis Lions' Spanish-French School on Numerical Simulation in Physics and Engineering, held in Pamplona (Navarra, Spain) in September 2014. The subjects covered include: numerical analysis of isogeometric methods, convolution quadrature for wave simulations, mathematical methods in image processing and computer vision, modeling and optimization techniques in food processes, bio-processes and bio-systems, and GPU computing for numerical simulation. The book is highly recommended to graduate students in Engineering or Science who want to focus on numerical simulation, either as a research topic or in the field of industrial applications. It can also benefit senior researchers and technicians working in industry who are interested in the use of state-of-the-art numerical techniques in the fields addressed here. Moreover, the book can be used as a textbook for master courses in Mathematics, Physics, or Engineering.
This edited book aims at presenting current research activities in the field of robust variable-structure systems. The scope equally comprises highlighting novel methodological aspects as well as presenting the use of variable-structure techniques in industrial applications including their efficient implementation on hardware for real-time control. The target audience primarily comprises research experts in the field of control theory and nonlinear dynamics but the book may also be beneficial for graduate students.
This book focuses on the finite element method in fluid flows. It is targeted at researchers, from those just starting out up to practitioners with some experience. Part I is devoted to the beginners who are already familiar with elementary calculus. Precise concepts of the finite element method remitted in the field of analysis of fluid flow are stated, starting with spring structures, which are most suitable to show the concepts of superposition/assembling. Pipeline system and potential flow sections show the linear problem. The advection-diffusion section presents the time-dependent problem; mixed interpolation is explained using creeping flows, and elementary computer programs by FORTRAN are included. Part II provides information on recent computational methods and their applications to practical problems. Theories of Streamline-Upwind/Petrov-Galerkin (SUPG) formulation, characteristic formulation, and Arbitrary Lagrangian-Eulerian (ALE) formulation and others are presented with practical results solved by those methods.
Gerhard Gentzen is best known for his development of the proof systems of natural deduction and sequent calculus, central in many areas of logic and computer science today. Another noteworthy achievement is his resolution of the embarrassing situation created by Goedel's incompleteness results, especially the second one about the unprovability of consistency of elementary arithmetic. After these successes, Gentzen dedicated the rest of his short life to the main problem of Hilbert's proof theory, the question of the consistency of analysis. He was arrested in the summer of 1945 with other professors of the German University of Prague and died soon afterward of starvation in a prison cell. Attempts at locating his lost manuscripts failed at the time, but several decades later, two slim folders of shorthand notes were found. In this volume, Jan von Plato gives an overview of Gentzen's life and scientific achievements, based on detailed archival and systematic studies, and essential for placing the translations of shorthand manuscripts that follow in the right setting. The materials in this book are singular in the way they show the birth and development of Gentzen's central ideas and results, sometimes in a well-developed form, and other times as flashes into the anatomy of the workings of a unique mind.
Written by a team of leading experts in the field, this volume presents a self-contained account of the theory, techniques and results in metric type spaces (in particular in G-metric spaces); that is, the text approaches this important area of fixed point analysis beginning from the basic ideas of metric space topology. The text is structured so that it leads the reader from preliminaries and historical notes on metric spaces (in particular G-metric spaces) and on mappings, to Banach type contraction theorems in metric type spaces, fixed point theory in partially ordered G-metric spaces, fixed point theory for expansive mappings in metric type spaces, generalizations, present results and techniques in a very general abstract setting and framework. Fixed point theory is one of the major research areas in nonlinear analysis. This is partly due to the fact that in many real world problems fixed point theory is the basic mathematical tool used to establish the existence of solutions to problems which arise naturally in applications. As a result, fixed point theory is an important area of study in pure and applied mathematics and it is a flourishing area of research.
Covering a period up to 1971, this selection of Saunders Mac Lane's most distinguished papers takes the reader on a journey through the most important milestones of the mathematical world in the twentieth century. Mac Lane was an extraordinary mathematician and a dedicated teacher who cared earnestly about the values of science and education. His life spanned nearly a century of mathematical progress. In his earlier years, he participated in the exciting developments in Goettingen. He studied under David Hilbert, Hermann Weyl, and Paul Bernays. Later, he contributed to the more abstract and general mathematical viewpoints which emerged in the twentieth century. Perhaps the most outstanding accomplishment during his long and extraordinary career was the development of the concept and theory of categories, together with Samuel Eilenberg, which has broad applications in different areas, in particular in topology and the foundations of mathematics.
This text is an introduction to harmonic analysis on symmetric spaces, focusing on advanced topics such as higher rank spaces, positive definite matrix space and generalizations. It is intended for beginning graduate students in mathematics or researchers in physics or engineering. As with the introductory book entitled "Harmonic Analysis on Symmetric Spaces - Euclidean Space, the Sphere, and the Poincare Upper Half Plane, the style is informal with an emphasis on motivation, concrete examples, history, and applications. The symmetric spaces considered here are quotients X=G/K, where G is a non-compact real Lie group, such as the general linear group GL(n,P) of all n x n non-singular real matrices, and K=O(n), the maximal compact subgroup of orthogonal matrices. Other examples are Siegel's upper half "plane" and the quaternionic upper half "plane". In the case of the general linear group, one can identify X with the space Pn of n x n positive definite symmetric matrices. Many corrections and updates have been incorporated in this new edition. Updates include discussions of random matrix theory and quantum chaos, as well as recent research on modular forms and their corresponding L-functions in higher rank. Many applications have been added, such as the solution of the heat equation on Pn, the central limit theorem of Donald St. P. Richards for Pn, results on densest lattice packing of spheres in Euclidean space, and GL(n)-analogs of the Weyl law for eigenvalues of the Laplacian in plane domains. Topics featured throughout the text include inversion formulas for Fourier transforms, central limit theorems, fundamental domains in X for discrete groups (such as the modular group GL(n,Z) of n x n matrices with integer entries and determinant +/-1), connections with the problem of finding densest lattice packings of spheres in Euclidean space, automorphic forms, Hecke operators, L-functions, and the Selberg trace formula and its applications in spectral theory as well as number theory.
Decision Theory An Introduction to Dynamic Programming and
Sequential Decisions John Bather University of Sussex, UK
Mathematical induction, and its use in solving optimization
problems, is a topic of great interest with many applications. It
enables us to study multistage decision problems by proceeding
backwards in time, using a method called dynamic programming. All
the techniques needed to solve the various problems are explained,
and the author's fluent style will leave the reader with an avid
interest in the subject.
This is a collection of new investigations and discoveries on the theory of opposition (square, hexagon, octagon, polyhedra of opposition) by the best specialists from all over the world. The papers range from historical considerations to new mathematical developments of the theory of opposition including applications to theology, theory of argumentation and metalogic.
Providing a timely description of the present state of the art of moduli spaces of curves and their geometry, this volume is written in a way which will make it extremely useful both for young people who want to approach this important field, and also for established researchers, who will find references, problems, original expositions, new viewpoints, etc. The book collects the lecture notes of a number of leading algebraic geometers and in particular specialists in the field of moduli spaces of curves and their geometry. This is an important subject in algebraic geometry and complex analysis which has seen spectacular developments in recent decades, with important applications to other parts of mathematics such as birational geometry and enumerative geometry, and to other sciences, including physics. The themes treated are classical but with a constant look to modern developments (see Cascini, Debarre, Farkas, and Sernesi's contributions), and include very new material, such as Bridgeland stability (see Macri's lecture notes) and tropical geometry (see Chan's lecture notes).
This series is designed to meet the needs of students and lecturers of the National Certificate Vocational. Features for the student include: Easy-to-understand language; Real-life examples; A key word feature for important subject terms; A dictionary feature for difficult words; A reflect-on-how-you-learn feature to explore personal learning styles; Workplace-oriented activities; and Chapter summaries that are useful for exam revision.
Michael Holzhauser discusses generalizations of well-known network flow and packing problems by additional or modified side constraints. By exploiting the inherent connection between the two problem classes, the author investigates the complexity and approximability of several novel network flow and packing problems and presents combinatorial solution and approximation algorithms.
Mathematics of Keno and Lotteries is an elementary treatment of the mathematics, primarily probability and simple combinatorics, involved in lotteries and keno. Keno has a long history as a high-advantage, high-payoff casino game, and state lottery games such as Powerball are mathematically similar. MKL also considers such lottery games as passive tickets, daily number drawings, and specialized games offered around the world. In addition, there is a section on financial mathematics that explains the connection between lump-sum lottery prizes (as with Powerball) and their multi-year annuity options. So-called "winning systems" for keno and lotteries are examined mathematically and their flaws identified.
Elements of Mathematics takes readers on a fascinating tour that begins in elementary mathematics--but, as John Stillwell shows, this subject is not as elementary or straightforward as one might think. Not all topics that are part of today's elementary mathematics were always considered as such, and great mathematical advances and discoveries had to occur in order for certain subjects to become "elementary." Stillwell examines elementary mathematics from a distinctive twenty-first-century viewpoint and describes not only the beauty and scope of the discipline, but also its limits. From Gaussian integers to propositional logic, Stillwell delves into arithmetic, computation, algebra, geometry, calculus, combinatorics, probability, and logic. He discusses how each area ties into more advanced topics to build mathematics as a whole. Through a rich collection of basic principles, vivid examples, and interesting problems, Stillwell demonstrates that elementary mathematics becomes advanced with the intervention of infinity. Infinity has been observed throughout mathematical history, but the recent development of "reverse mathematics" confirms that infinity is essential for proving well-known theorems, and helps to determine the nature, contours, and borders of elementary mathematics. Elements of Mathematics gives readers, from high school students to professional mathematicians, the highlights of elementary mathematics and glimpses of the parts of math beyond its boundaries. |
![]() ![]() You may like...
The Public School Arithmetic - Based on…
J a (James Alexander) 18 McLellan, A F (Albert Flintoft) Ames
Hardcover
R973
Discovery Miles 9 730
An Elementary Arithmetic [microform]
By a Committee of Teachers Supervised
Hardcover
R865
Discovery Miles 8 650
Key to Advanced Arithmetic for Canadian…
Barnard 1817-1876 Smith, Archibald McMurchy
Hardcover
R930
Discovery Miles 9 300
Companion to the Public School…
William 1845-1920 Scott, Charles A. Barnes
Hardcover
R940
Discovery Miles 9 400
|