![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Mathematical foundations > General
This textbook introduces enumerative combinatorics through the framework of formal languages and bijections. By starting with elementary operations on words and languages, the authors paint an insightful, unified picture for readers entering the field. Numerous concrete examples and illustrative metaphors motivate the theory throughout, while the overall approach illuminates the important connections between discrete mathematics and theoretical computer science. Beginning with the basics of formal languages, the first chapter quickly establishes a common setting for modeling and counting classical combinatorial objects and constructing bijective proofs. From here, topics are modular and offer substantial flexibility when designing a course. Chapters on generating functions and partitions build further fundamental tools for enumeration and include applications such as a combinatorial proof of the Lagrange inversion formula. Connections to linear algebra emerge in chapters studying Cayley trees, determinantal formulas, and the combinatorics that lie behind the classical Cayley-Hamilton theorem. The remaining chapters range across the Inclusion-Exclusion Principle, graph theory and coloring, exponential structures, matching and distinct representatives, with each topic opening many doors to further study. Generous exercise sets complement all chapters, and miscellaneous sections explore additional applications. Lessons in Enumerative Combinatorics captures the authors' distinctive style and flair for introducing newcomers to combinatorics. The conversational yet rigorous presentation suits students in mathematics and computer science at the graduate, or advanced undergraduate level. Knowledge of single-variable calculus and the basics of discrete mathematics is assumed; familiarity with linear algebra will enhance the study of certain chapters.
A Collection of Papers by Varoius Authors
Students become mathematical adventurers in these challenging and engaging activities designed to deepen and extend their understanding of concepts from the Common Core State Standards in Mathematics. The investigations in this book stretch students' mathematical imaginations to their limits as they solve puzzles, create stories, and explore fraction-related concepts that take them from the mathematics of ancient Greece to the outer reaches of infinity. Each activity comes with detailed support for classroom implementation including learning goals, discussion guides, detailed solutions, and suggestions for extending the investigation. There is also a free supplemental e-book offering strategies for motivation, assessment, parent communication, and suggestions for using the materials in different learning environments. Grades 5-8
IN 1959 I lectured on Boolean algebras at the University of Chicago. A mimeographed version of the notes on which the lectures were based circulated for about two years; this volume contains those notes, corrected and revised. Most of the corrections were suggested by Peter Crawley. To judge by his detailed and precise suggestions, he must have read every word, checked every reference, and weighed every argument, and I am lIery grateful to hirn for his help. This is not to say that he is to be held responsible for the imperfec tions that remain, and, in particular, I alone am responsible for all expressions of personal opinion and irreverent view point. P. R. H. Ann Arbor, Michigan ] anuary, 1963 Contents Section Page 1 1 Boolean rings ............................ . 2 Boolean algebras ......................... . 3 9 3 Fields of sets ............................ . 4 Regular open sets . . . . . . . . . . . . . . . . . . . 12 . . . . . . 5 Elementary relations. . . . . . . . . . . . . . . . . . 17 . . . . . 6 Order. . . . . . . . . . . . . . . . . . . . . . . . . . . 21 . . . . . . . . . 7 Infinite operations. . .. . . . . . . . . . . . . . . . . 25 . . . . . 8 Subalgebras . . . . . . . . . . . . . . . . . . . . .. . . . 31 . . . . . . 9 Homomorphisms . . . . . . . . . . . . . . . . . . . . 35 . . . . . . . 10 Free algebras . . . . . . . . . . . . . . . . . . . . . . 40 . . . . . . . 11 Ideals and filters. . . . . . . . . . . . . . . . . . . . 47 . . . . . . 12 The homomorphism theorem. . . . . . . . . . . . .. . . 52 . . 13 Boolean a-algebras . . . . . . . . . . . . . . . . . . 55 . . . . . . 14 The countable chain condition . . . . . . . . . . . . 61 . . . 15 Measure algebras . . . . . . . . . . . . . . . . . . . 64 . . . . . . . 16 Atoms.. . . . .. . . . . .. .. . . . ... . . . . .. . . ... . . .. 69 17 Boolean spaces . . . . . . . . . . . . . . . . . . . . 72 . . . . . . . 18 The representation theorem. . . . . . . . . . . . . . 77 . . . 19 Duali ty for ideals . . . . . . . . . . . . . . . . . .. . . 81 . . . . . 20 Duality for homomorphisms . . . . . . . . . . . . . . 84 . . . . 21 Completion . . . . . . . . . . . . . . . . . . . . . . . 90 . . . . . . . . 22 Boolean a-spaces . . . . . . . . . . . . . . . . . .. . . 97 . . . . . 23 The representation of a-algebras . . . . . . . . .. . . 100 . 24 Boolean measure spaces . . . . . . . . . . . . . .. . . 104 . . . 25 Incomplete algebras . . . . . . . . . . . . . . . .. . . 109 . . . . . 26 Products of algebras . . . . . . . . . . . . . . . .. . . 115 . . . . 27 Sums of algebras . . . . . . . . . . . . . . . . . .. . . 119 . . . . . 28 Isomorphisms of factors . . . . . . . . . . . . . .. . . 122 . . ."
The Shape of Space, Third Edition maintains the standard of excellence set by the previous editions. This lighthearted textbook covers the basic geometry and topology of two- and three-dimensional spaces-stretching students' minds as they learn to visualize new possibilities for the shape of our universe. Written by a master expositor, leading researcher in the field, and MacArthur Fellow, its informal exposition and engaging exercises appeal to an exceptionally broad audience, from liberal arts students to math undergraduate and graduate students looking for a clear intuitive understanding to supplement more formal texts, and even to laypeople seeking an entertaining self-study book to expand their understanding of space. Features of the Third Edition: Full-color figures throughout "Picture proofs" have replaced algebraic proofs Simpler handles-and-crosscaps approach to surfaces Updated discussion of cosmological applications Intuitive examples missing from many college and graduate school curricula About the Author: Jeffrey R. Weeks is a freelance geometer living in Canton, New York. With support from the U.S. National Science Foundation, the MacArthur Foundation and several science museums, his work spans pure mathematics, applications in cosmology and-closest to his heart-exposition for the general public.
This text deals with three basic techniques for constructing models of Zermelo-Fraenkel set theory: relative constructibility, Cohen's forcing, and Scott-Solovay's method of Boolean valued models. Our main concern will be the development of a unified theory that encompasses these techniques in one comprehensive framework. Consequently we will focus on certain funda mental and intrinsic relations between these methods of model construction. Extensive applications will not be treated here. This text is a continuation of our book, "I ntroduction to Axiomatic Set Theory," Springer-Verlag, 1971; indeed the two texts were originally planned as a single volume. The content of this volume is essentially that of a course taught by the first author at the University of Illinois in the spring of 1969. From the first author's lectures, a first draft was prepared by Klaus Gloede with the assistance of Donald Pelletier and the second author. This draft was then rcvised by the first author assisted by Hisao Tanaka. The introductory material was prepared by the second author who was also responsible for the general style of exposition throughout the text. We have inc1uded in the introductory material al1 the results from Boolean algebra and topology that we need. When notation from our first volume is introduced, it is accompanied with a deflnition, usually in a footnote. Consequently a reader who is familiar with elementary set theory will find this text quite self-contained.
This book grew out of lectures. It is intended as an introduction to classical two-valued predicate logic. The restriction to classical logic is not meant to imply that this logic is intrinsically better than other, non-classical logics; however, classical logic is a good introduction to logic because of its simplicity, and a good basis for applications because it is the foundation of classical mathematics, and thus of the exact sciences which are based on it. The book is meant primarily for mathematics students who are already acquainted with some of the fundamental concepts of mathematics, such as that of a group. It should help the reader to see for himself the advantages of a formalisation. The step from the everyday language to a formalised language, which usually creates difficulties, is dis cussed and practised thoroughly. The analysis of the way in which basic mathematical structures are approached in mathematics leads in a natural way to the semantic notion of consequence. One of the substantial achievements of modern logic has been to show that the notion of consequence can be replaced by a provably equivalent notion of derivability which is defined by means of a calculus. Today we know of many calculi which have this property."
If you have ever wondered what quaternions are - then look no further, John Vince will show you how simple and useful they are. This 2nd edition has been completely revised and includes extra detail on the invention of quaternions, a complete review of the text and equations, all figures are in colour, extra worked examples, an expanded index, and a bibliography arranged for each chapter. Quaternions for Computer Graphics includes chapters on number sets and algebra, imaginary and complex numbers, the complex plane, rotation transforms, and a comprehensive description of quaternions in the context of rotation. The book will appeal to students of computer graphics, computer science and mathematics, as well as programmers, researchers, academics and professional practitioners interested in learning about quaternions. John Vince explains in an easy-to-understand language, with the aid of useful figures, how quaternions emerged, gave birth to modern vector analysis, disappeared, and reemerged to be adopted by the flight simulation industry and computer graphics. This book will give you the confidence to use quaternions within your every-day mathematics, and explore more advanced texts.
Algebraic theories, introduced as a concept in the 1960s, have been a fundamental step towards a categorical view of general algebra. Moreover, they have proved very useful in various areas of mathematics and computer science. This carefully developed book gives a systematic introduction to algebra based on algebraic theories that is accessible to both graduate students and researchers. It will facilitate interactions of general algebra, category theory and computer science. A central concept is that of sifted colimits - that is, those commuting with finite products in sets. The authors prove the duality between algebraic categories and algebraic theories and discuss Morita equivalence between algebraic theories. They also pay special attention to one-sorted algebraic theories and the corresponding concrete algebraic categories over sets, and to S-sorted algebraic theories, which are important in program semantics. The final chapter is devoted to finitary localizations of algebraic categories, a recent research area.
This book contains fundamental concepts on discrete mathematical structures in an easy to understand style so that the reader can grasp the contents and explanation easily. The concepts of discrete mathematical structures have application to computer science, engineering and information technology including in coding techniques, switching circuits, pointers and linked allocation, error corrections, as well as in data networking, Chemistry, Biology and many other scientific areas. The book is for undergraduate and graduate levels learners and educators associated with various courses and progammes in Mathematics, Computer Science, Engineering and Information Technology. The book should serve as a text and reference guide to many undergraduate and graduate programmes offered by many institutions including colleges and universities. Readers will find solved examples and end of chapter exercises to enhance reader comprehension. Features Offers comprehensive coverage of basic ideas of Logic, Mathematical Induction, Graph Theory, Algebraic Structures and Lattices and Boolean Algebra Provides end of chapter solved examples and practice problems Delivers materials on valid arguments and rules of inference with illustrations Focuses on algebraic structures to enable the reader to work with discrete structures
Using basic category theory, this Element describes all the central concepts and proves the main theorems of theoretical computer science. Category theory, which works with functions, processes, and structures, is uniquely qualified to present the fundamental results of theoretical computer science. In this Element, readers will meet some of the deepest ideas and theorems of modern computers and mathematics, such as Turing machines, unsolvable problems, the P=NP question, Kurt Goedel's incompleteness theorem, intractable problems, cryptographic protocols, Alan Turing's Halting problem, and much more. The concepts come alive with many examples and exercises. |
![]() ![]() You may like...
Research in Shape Modeling - Los…
Kathryn Leonard, Sibel Tari
Hardcover
Graphs for the Analysis of Bipolar Fuzzy…
Muhammad Akram, Musavarah Sarwar, …
Hardcover
R3,109
Discovery Miles 31 090
Combinatorial Set Theory - With a Gentle…
Lorenz J. Halbeisen
Hardcover
R4,715
Discovery Miles 47 150
Inverse Problems and Zero Forcing for…
Leslie Hogben, Jephian C.-H. Lin, …
Paperback
R3,280
Discovery Miles 32 800
Configuration Spaces - Geometry…
Filippo Callegaro, Frederick Cohen, …
Hardcover
Representation Theory of the Virasoro…
Kenji Iohara, Yoshiyuki Koga
Hardcover
R3,322
Discovery Miles 33 220
Behavior and Evolutionary Dynamics in…
Yan Chen, H. Vicky Zhao
Hardcover
R4,316
Discovery Miles 43 160
|