![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Mathematical foundations > General
This book gives a general introduction to the theory of representations of algebras. It starts with examples of classification problems of matrices under linear transformations, explaining the three common setups: representation of quivers, modules over algebras and additive functors over certain categories. The main part is devoted to (i) module categories, presenting the unicity of the decomposition into indecomposable modules, the Auslander-Reiten theory and the technique of knitting; (ii) the use of combinatorial tools such as dimension vectors and integral quadratic forms; and (iii) deeper theorems such as Gabriel's Theorem, the trichotomy and the Theorem of Kac - all accompanied by further examples. Each section includes exercises to facilitate understanding. By keeping the proofs as basic and comprehensible as possible and introducing the three languages at the beginning, this book is suitable for readers from the advanced undergraduate level onwards and enables them to consult related, specific research articles.
This expanded second edition presents the fundamentals and touchstone results of real analysis in full rigor, but in a style that requires little prior familiarity with proofs or mathematical language. The text is a comprehensive and largely self-contained introduction to the theory of real-valued functions of a real variable. The chapters on Lebesgue measure and integral have been rewritten entirely and greatly improved. They now contain Lebesgue's differentiation theorem as well as his versions of the Fundamental Theorem(s) of Calculus. With expanded chapters, additional problems, and an expansive solutions manual, Basic Real Analysis, Second Edition is ideal for senior undergraduates and first-year graduate students, both as a classroom text and a self-study guide. Reviews of first edition: The book is a clear and well-structured introduction to real analysis aimed at senior undergraduate and beginning graduate students. The prerequisites are few, but a certain mathematical sophistication is required. ... The text contains carefully worked out examples which contribute motivating and helping to understand the theory. There is also an excellent selection of exercises within the text and problem sections at the end of each chapter. In fact, this textbook can serve as a source of examples and exercises in real analysis. -Zentralblatt MATH The quality of the exposition is good: strong and complete versions of theorems are preferred, and the material is organised so that all the proofs are of easily manageable length; motivational comments are helpful, and there are plenty of illustrative examples. The reader is strongly encouraged to learn by doing: exercises are sprinkled liberally throughout the text and each chapter ends with a set of problems, about 650 in all, some of which are of considerable intrinsic interest. -Mathematical Reviews [This text] introduces upper-division undergraduate or first-year graduate students to real analysis.... Problems and exercises abound; an appendix constructs the reals as the Cauchy (sequential) completion of the rationals; references are copious and judiciously chosen; and a detailed index brings up the rear. -CHOICE Reviews
This is a comprehensive book on the life and works of Leon Henkin (1921-2006), an extraordinary scientist and excellent teacher whose writings became influential right from the beginning of his career with his doctoral thesis on "The completeness of formal systems" under the direction of Alonzo Church. Upon the invitation of Alfred Tarski, Henkin joined the Group in Logic and the Methodology of Science in the Department of Mathematics at the University of California Berkeley in 1953. He stayed with the group until his retirement in 1991. This edited volume includes both foundational material and a logic perspective. Algebraic logic, model theory, type theory, completeness theorems, philosophical and foundational studies are among the topics covered, as well as mathematical education. The work discusses Henkin's intellectual development, his relation to his predecessors and contemporaries and his impact on the recent development of mathematical logic. It offers a valuable reference work for researchers and students in the fields of philosophy, mathematics and computer science.
The book describes 4 main topics in current model theory and updates their most recent development and applications. The 4 topics are: 1) model theory of valued fields; 2) undecidability in arithmetic; 3) NIP theories; 4) model theory of real and complex exponentiation. The book addresses in particular young researchers in model theory, as well as more senior researchers in other branches of mathematics.
Mathematics plays a key role in computer science, some researchers would consider computers as nothing but the physical embodiment of mathematical systems. And whether you are designing a digital circuit, a computer program or a new programming language, you need mathematics to be able to reason about the design -- its correctness, robustness and dependability. This book covers the foundational mathematics necessary for courses in computer science. The common approach to presenting mathematical concepts and operators is to define them in terms of properties they satisfy, and then based on these definitions develop ways of computing the result of applying the operators and prove them correct. This book is mainly written for computer science students, so here the author takes a different approach: he starts by defining ways of calculating the results of applying the operators and then proves that they satisfy various properties. After justifying his underlying approach the author offers detailed chapters covering propositional logic, predicate calculus, sets, relations, discrete structures, structured types, numbers, and reasoning about programs. The book contains chapter and section summaries, detailed proofs and many end-of-section exercises -- key to the learning process. The book is suitable for undergraduate and graduate students, and although the treatment focuses on areas with frequent applications in computer science, the book is also suitable for students of mathematics and engineering.
This impressive volume is dedicated to Mel Nathanson, a leading authoritative expert for several decades in the area of combinatorial and additive number theory. For several decades, Mel Nathanson's seminal ideas and results in combinatorial and additive number theory have influenced graduate students and researchers alike. The invited survey articles in this volume reflect the work of distinguished mathematicians in number theory, and represent a wide range of important topics in current research.
This volume commemorates the life, work and foundational views of Kurt Goedel (1906-78), most famous for his hallmark works on the completeness of first-order logic, the incompleteness of number theory, and the consistency - with the other widely accepted axioms of set theory - of the axiom of choice and of the generalized continuum hypothesis. It explores current research, advances and ideas for future directions not only in the foundations of mathematics and logic, but also in the fields of computer science, artificial intelligence, physics, cosmology, philosophy, theology and the history of science. The discussion is supplemented by personal reflections from several scholars who knew Goedel personally, providing some interesting insights into his life. By putting his ideas and life's work into the context of current thinking and perceptions, this book will extend the impact of Goedel's fundamental work in mathematics, logic, philosophy and other disciplines for future generations of researchers.
First published in 1908 as the second edition of a 1900 original, this book explains the content of the fifth and sixth books of Euclid's Elements, which are primarily concerned with ratio and magnitudes. Hill furnishes the text with copious diagrams to illustrate key points of Euclidian reasoning. This book will be of value to anyone with an interest in the history of education.
Ernst Zermelo (1871-1953) is regarded as the founder of axiomatic set theory and is best-known for the first formulation of the axiom of choice. However, his papers also include pioneering work in applied mathematics and mathematical physics. This edition of his collected papers consists of two volumes. The present Volume II covers Ernst Zermelo's work on the calculus of variations, applied mathematics, and physics. The papers are each presented in their original language together with an English translation, the versions facing each other on opposite pages. Each paper or coherent group of papers is preceded by an introductory note provided by an acknowledged expert in the field who comments on the historical background, motivation, accomplishments, and influence.
This work presents a purely classical first-order logical approach to the field of study in theoretical computer science sometimes referred to as the theory of programs, or programming theory. This field essentially attempts to provide a precise mathematical basis for the common activities involved in reasoning about computer programs and programming languages, and it also attempts to find practical applications in the areas of program specification, verification and programming language design. Many different approaches with different mathematical frameworks have been proposed as a basis for programming theory. They differ in the mathe matical machinery they use to define and investigate programs and program properties and they also differ in the concepts they deal with to understand the programming paradigm. Different approaches use different tools and viewpoints to characterize the data environment of programs. Most of the approaches are related to mathe matical logic and they provide their own logic. These logics, however, are very eclectic since they use special entities to reflect a special world of programs, and also, they are usually incomparable with each other. This Babel's mess irritated us and we decided to peel off the eclectic com ponents and try to answer all the questions by using classical first-order logic."
"These volumes collect almost all of the research and expository papers of J.-P. Serre published in mathematical journals through 1984, as well as some of his seminar reports, and a few items not previously published. .... Throughout his writings, Serre has liberally sprinkled open questions and conjectures. Most endnotes list subsequent progress made on these questions or improvements to the main results of the papers. Some make additional comments, and a few are corrections. These endnotes alone justify the publication of the collected works. Serre is one of the masters of mathematical exposition...." --James Milne, University of Michigan, in Math Reviews
This book explains the first published consistency proof of PA. It contains the original Gentzen's proof, but it uses modern terminology and examples to illustrate the essential notions. The author comments on Gentzen's steps which are supplemented with exact calculations and parts of formal derivations. A notable aspect of the proof is the representation of ordinal numbers that was developed by Gentzen. This representation is analysed and connection to set-theoretical representation is found, namely an algorithm for translating Gentzen's notation into Cantor normal form. The topic should interest researchers and students who work on proof theory, history of proof theory or Hilbert's program and who do not mind reading mathematical texts. "
This book constitutes the refereed proceedings of the 9th
Conference on Computability in Europe, CiE 2013, held in Milan,
Italy, in July 2013.
0. A Theorem of Polynomial Algebra.- 1. The General Theory.- 2. Applications to Algebraic Number Theory.- 3. Applications to the Theory of Algebraic Curves.- References.
Intuitionistic logic is presented here as part of familiar classical logic which allows mechanical extraction of programs from proofs. to make the material more accessible, basic techniques are presented first for propositional logic; Part II contains extensions to predicate logic. This material provides an introduction and a safe background for reading research literature in logic and computer science as well as advanced monographs. Readers are assumed to be familiar with basic notions of first order logic. One device for making this book short was inventing new proofs of several theorems. The presentation is based on natural deduction. The topics include programming interpretation of intuitionistic logic by simply typed lambda-calculus (Curry-Howard isomorphism), negative translation of classical into intuitionistic logic, normalization of natural deductions, applications to category theory, Kripke models, algebraic and topological semantics, proof-search methods, interpolation theorem. The text developed from materal for several courses taught at Stanford University in 1992-1999.
This book constitutes the thoroughly refereed post-conference proceedings of the 21st International Workshop on Algebraic Development Techniques, WADT 2012, held in June 2012, in Salamanca, Spain. The 16 revised papers presented were carefully reviewed and selected from 25 presentations. The workshop deals with the following topics: foundations of algebraic specification; other approaches to formal specification including process calculi and models of concurrent, distributed and mobile computing; specification languages, methods, and environments; semantics of conceptual modeling methods and techniques; model-driven development; graph transformations, term rewriting and proof systems; integration of formal specification techniques; formal testing and quality assurance; validation, and verification.
This is a short, modern, and motivated introduction to mathematical logic for upper undergraduate and beginning graduate students in mathematics and computer science. Any mathematician who is interested in getting acquainted with logic and would like to learn Godel's incompleteness theorems should find this book particularly useful. The treatment is thoroughly mathematical and prepares students to branch out in several areas of mathematics related to foundations and computability, such as logic, axiomatic set theory, model theory, recursion theory, and computability. In this new edition, many small and large changes have been made throughout the text. The main purpose of this new edition is toprovide a healthy first introduction to model theory, which is a very important branch of logic. Topics in the new chapter include ultraproduct of models, elimination of quantifiers, types, applications of types to model theory, and applications to algebra, number theory and geometry. Some proofs, such as the proof of the very important completeness theorem, have been completely rewritten in a more clear and concise manner. The new edition also introduces new topics, such as the notion of elementary class of structures, elementary diagrams, partial elementary maps, homogeneous structures, definability, and many more."
This systematic and historical treatment of Russell's contributions to analytic philosophy, from his embrace of analysis in 1898 to his landmark theory of descriptions in 1905, draws important connections between his philosophically motivated conception of analysis and the technical apparatus he devised to facilitate analyses in mathematics
The rapidly expanding area of structural graph theory uses ideas of connectivity to explore various aspects of graph theory and vice versa. It has links with other areas of mathematics, such as design theory and is increasingly used in such areas as computer networks where connectivity algorithms are an important feature. Although other books cover parts of this material, none has a similarly wide scope. Ortrud R. Oellermann (Winnipeg), internationally recognised for her substantial contributions to structural graph theory, acted as academic consultant for this volume, helping shape its coverage of key topics. The result is a collection of thirteen expository chapters, each written by acknowledged experts. These contributions have been carefully edited to enhance readability and to standardise the chapter structure, terminology and notation throughout. An introductory chapter details the background material in graph theory and network flows and each chapter concludes with an extensive list of references.
This book constitutes the refereed proceedings of the International Symposium on Logical Foundations of Computer Science, LFCS 2013, held in San Diego, CA, USA in January 2013. The volume presents 29 revised refereed papers carefully selected by the program committee. The scope of the Symposium is broad and includes constructive mathematics and type theory; logic, automata and automatic structures; computability and randomness; logical foundations of programming; logical aspects of computational complexity; logic programming and constraints; automated deduction and interactive theorem proving; logical methods in protocol and program verification; logical methods in program specification and extraction; domain theory logic; logical foundations of database theory; equational logic and term rewriting; lambda and combinatory calculi; categorical logic and topological semantics; linear logic; epistemic and temporal logics; intelligent and multiple agent system logics; logics of proof and justification; nonmonotonic reasoning; logic in game theory and social software; logic of hybrid systems; distributed system logics; mathematical fuzzy logic; system design logics; and other logics in computer science.
The analysis, processing, evolution, optimization and/or regulation, and control of shapes and images appear naturally in engineering (shape optimization, image processing, visual control), numerical analysis (interval analysis), physics (front propagation), biological morphogenesis, population dynamics (migrations), and dynamic economic theory. These problems are currently studied with tools forged out of differential geometry and functional analysis, thus requiring shapes and images to be smooth. However, shapes and images are basically sets, most often not smooth. J.-P. Aubin thus constructs another vision, where shapes and images are just any compact set. Hence their evolution -- which requires a kind of differential calculus -- must be studied in the metric space of compact subsets. Despite the loss of linearity, one can transfer most of the basic results of differential calculus and differential equations in vector spaces to mutational calculus and mutational equations in any mutational space, including naturally the space of nonempty compact subsets. "Mutational and Morphological Analysis" offers a structure that embraces and integrates the various approaches, including shape optimization and mathematical morphology. Scientists and graduate students will find here other powerful mathematical tools for studying problems dealing with shapes and images arising in so many fields.
Stochastic analysis is not only a thriving area of pure mathematics with intriguing connections to partial differential equations and differential geometry. It also has numerous applications in the natural and social sciences (for instance in financial mathematics or theoretical quantum mechanics) and therefore appears in physics and economics curricula as well. However, existing approaches to stochastic analysis either presuppose various concepts from measure theory and functional analysis or lack full mathematical rigour. This short book proposes to solve the dilemma: By adopting E. Nelson's "radically elementary" theory of continuous-time stochastic processes, it is based on a demonstrably consistent use of infinitesimals and thus permits a radically simplified, yet perfectly rigorous approach to stochastic calculus and its fascinating applications, some of which (notably the Black-Scholes theory of option pricing and the Feynman path integral) are also discussed in the book. |
You may like...
The High School Arithmetic - for Use in…
W. H. Ballard, A. C. McKay, …
Hardcover
R981
Discovery Miles 9 810
Key to Advanced Arithmetic for Canadian…
Barnard 1817-1876 Smith, Archibald McMurchy
Hardcover
R863
Discovery Miles 8 630
The New Method Arithmetic [microform]
P (Phineas) McIntosh, C a (Carl Adolph) B 1879 Norman
Hardcover
R921
Discovery Miles 9 210
|