![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Geometry > General
Gromov's theory of hyperbolic groups have had a big impact in combinatorial group theory and has deep connections with many branches of mathematics suchdifferential geometry, representation theory, ergodic theory and dynamical systems. This book is an elaboration on some ideas of Gromov on hyperbolic spaces and hyperbolic groups in relation with symbolic dynamics. Particular attention is paid to the dynamical system defined by the action of a hyperbolic group on its boundary. The boundary is most oftenchaotic both as a topological space and as a dynamical system, and a description of this boundary and the action is given in terms of subshifts of finite type. The book is self-contained and includes two introductory chapters, one on Gromov's hyperbolic geometry and the other one on symbolic dynamics. It is intended for students and researchers in geometry and in dynamical systems, and can be used asthe basis for a graduate course on these subjects.
The volume contains the texts of four courses, given by the authors at a summer school that sought to present the state of the art in the growing field of topological methods in the theory of o.d.e. (in finite and infinitedimension), and to provide a forum for discussion of the wide variety of mathematical tools which are involved. The topics covered range from the extensions of the Lefschetz fixed point and the fixed point index on ANR's, to the theory of parity of one-parameter families of Fredholm operators, and from the theory of coincidence degree for mappings on Banach spaces to homotopy methods for continuation principles. CONTENTS: P. Fitzpatrick: The parity as an invariant for detecting bifurcation of the zeroes of one parameter families of nonlinear Fredholm maps.- M. Martelli: Continuation principles and boundary value problems.- J. Mawhin: Topological degree and boundary value problems for nonlinear differential equations.- R.D. Nussbaum: The fixed point index and fixed point theorems.
In this volume experts from university and industry are presenting new technologies for solving industrial problems as well as important and practicable impulses for new research. The following topics are treated: - solid modelling - geometry processing - feature modelling - product modelling - surfaces over arbitrary topologies - blending methods - scattered data algorithms - smooting and fairing algorithms - NURBS 21 articles are giving a state-of-the-art survey of the relevant problems and issues in the rapidly growing area of geometric modelling.
This 1994 text covers finite linear spaces. It contains all the important results that had been published up to the time of publication, and is designed to be used not only as a resource for researchers in this and related areas, but also as a graduate-level text. In eight chapters the authors introduce and review fundamental results, and go on to cover the major areas of interest in linear spaces. A combinatorial approach is used for the greater part of the book, but in the final chapter recent advances in group theory relating to finite linear spaces are presented. At the end of each chapter there is a set of exercises which are designed to test comprehension of the material, and there is also a section of problems for researchers. It will be an invaluable book for researchers in geometry and combinatorics as well as forming an excellent text for graduate students.
This volume (a sequel to LNM 1108, 1214, 1334 and 1453) continues the presentation to English speaking readers of the Voronezh University press series on Global Analysis and Its Applications. The papers are selected fromtwo Russian issues entitled "Algebraic questions of Analysis and Topology" and "Nonlinear Operators in Global Analysis." CONTENTS: YuE. Gliklikh: Stochastic analysis, groups of diffeomorphisms and Lagrangian description of viscous incompressible fluid.- A.Ya. Helemskii: From topological homology: algebras with different properties of homological triviality.- V.V. Lychagin, L.V. Zil'bergleit: Duality in stable Spencer cohomologies.- O.R. Musin: On some problems of computational geometry and topology.- V.E. Nazaikinskii, B.Yu. Sternin, V.E.Shatalov: Introduction to Maslov's operational method (non-commutative analysis and differential equations).- Yu.B. Rudyak: The problem of realization of homology classes from Poincare up to the present.- V.G. Zvyagin, N.M. Ratiner: Oriented degree of Fredholm maps of non-negativeindex and its applications to global bifurcation of solutions.- A.A. Bolibruch: Fuchsian systems with reducible monodromy and the Riemann-Hilbert problem.- I.V. Bronstein, A.Ya. Kopanskii: Finitely smooth normal forms of vector fields in the vicinity of a rest point.- B.D. Gel'man: Generalized degree of multi-valued mappings.- G.N. Khimshiashvili: On Fredholmian aspects of linear transmission problems.- A.S. Mishchenko: Stationary solutions of nonlinear stochastic equations.- B.Yu. Sternin, V.E. Shatalov: Continuation of solutions to elliptic equations and localisation of singularities.- V.G. Zvyagin, V.T. Dmitrienko: Properness of nonlinear elliptic differential operators in H-lder spaces.
The same factors that motivated the writing of our first volume of strategic activities on fractals continued to encourage the assembly of additional activities for this second volume. Fractals provide a setting wherein students can enjoy hands-on experiences that involve important mathematical content connected to a wide range of physical and social phenomena. The striking graphic images, unexpected geometric properties, and fascinating numerical processes offer unparalleled opportunity for enthusiastic student inquiry. Students sense the vigor present in the growing and highly integrative discipline of fractal geom etry as they are introduced to mathematical developments that have occurred during the last half of the twentieth century. Few branches of mathematics and computer science offer such a contem porary portrayal of the wonderment available in careful analysis, in the amazing dialogue between numeric and geometric processes, and in the energetic interaction between mathematics and other disciplines. Fractals continue to supply an uncommon setting for animated teaching and learn ing activities that focus upon fundamental mathematical concepts, connections, problem-solving techniques, and many other major topics of elementary and advanced mathematics. It remains our hope that, through this second volume of strategic activities, readers will find their enjoyment of mathematics heightened and their appreciation for the dynamics of the world in creased. We want experiences with fractals to enliven curiosity and to stretch the imagination."
Geometric Topology can be defined to be the investigation of global properties of a further structure (e.g. differentiable, Riemannian, complex, algebraic etc.) one can impose on a topological manifold. At the C.I.M.E. session in Montecatini, in 1990, three courses of lectures were given onrecent developments in this subject which is nowadays emerging as one of themost fascinating and promising fields of contemporary mathematics. The notesof these courses are collected in this volume and can be described as: 1) the geometry and the rigidity of discrete subgroups in Lie groups especially in the case of lattices in semi-simple groups; 2) the study of the critical points of the distance function and its appication to the understanding of the topology of Riemannian manifolds; 3) the theory of moduli space of instantons as a tool for studying the geometry of low-dimensional manifolds. CONTENTS: J. Cheeger: Critical Points of Distance Functions and Applications to Geometry.- M. Gromov, P. Pansu, Rigidity of Lattices: An Introduction.- Chr. Okonek: Instanton Invariants and Algebraic Surfaces.
Addressed to all readers with an interest in fractals, hyperspaces, fixed-point theory, tilings and nonstandard analysis, this book presents its subject in an original and accessible way complete with many figures. The first part of the book develops certain hyperspace theory concerning the Hausdorff metric and the Vietoris topology, as a foundation for what follows on self-similarity and fractality. A major feature is that nonstandard analysis is used to obtain new proofs of some known results much more slickly than before. The theory of J.E. Hutchinson's invariant sets (sets composed of smaller images of themselves) is developed, with a study of when such a set is tiled by its images and a classification of many invariant sets as either regular or residual. The last and most original part of the book introduces the notion of a "view" as part of a framework for studying the structure of sets within a given space. This leads to new, elegant concepts (defined purely topologically) of self-similarity and fractality: in particular, the author shows that many invariant sets are "visually fractal," i.e. have infinite detail in a certain sense. These ideas have considerable scope for further development, and a list of problems and lines of research is included.
Fractal geometry has become popular in the last 15 years, its applications can be found in technology, science, or even arts. Fractal methods and formalism are seen today as a general, abstract, but nevertheless practical instrument for the description of nature in a wide sense. But it was Computer Graphics which made possible the increasing popularity of fractals several years ago, and long after their mathematical formulation. The two disciplines are tightly linked. The book contains the scientificcontributions presented in an international workshop in the "Computer Graphics Center" in Darmstadt, Germany. The target of the workshop was to present the wide spectrum of interrelationships and interactions between Fractal Geometry and Computer Graphics. The topics vary from fundamentals and new theoretical results to various applications and systems development. All contributions are original, unpublished papers.The presentations have been discussed in two working groups; the discussion results, together with actual trends and topics of future research, are reported in the last section. The topics of the book are divides into four sections: Fundamentals, Computer Graphics and Optical Simulation, Simulation of Natural Phenomena, Image Processing and Image Analysis.
One way to advance the science of computational geometry is to make a comprehensive study of fundamental operations that are used in many different algorithms. This monograph attempts such an investigation in the case of two basic predicates: the counterclockwise relation pqr, which states that the circle through points (p, q, r) is traversed counterclockwise when we encounter the points in cyclic order p, q, r, p, ...; and the incircle relation pqrs, which states that s lies inside that circle if pqr is true, or outside that circle if pqr is false. The author, Donald Knuth, is one of the greatest computer scientists of our time. A few years ago, he and some of his students were looking at amap that pinpointed the locations of about 100 cities. They asked, "Which ofthese cities are neighbors of each other?" They knew intuitively that some pairs of cities were neighbors and some were not; they wanted to find a formal mathematical characterization that would match their intuition.This monograph is the result.
Traditionally the Adams-Novikov spectral sequence has been a tool which has enabled the computation of generators and relations to describe homotopy groups. Here a natural geometric description of the sequence is given in terms of cobordism theory and manifolds with singularities. The author brings together many interesting results not widely known outside the USSR, including some recent work by Vershinin. This book will be of great interest to researchers into algebraic topology.
Fractals play an important role in modeling natural phenomena and engineering processes. And fractals have a close connection to the concepts of chaotic dynamics. This monograph presents definitions, concepts, notions and methodologies of both spatial and temporal fractals. It addresses students and researchers in chemistry and in chemical engineering. The authors present the concepts and methodologies in sufficient detail for uninitiated readers. They include many simple examples and graphical illustrations. They outline some examples in more detail: Perimeter fractal dimension of char particles, surface fractal dimension of charcoal; fractal analysis of pressure fluctuation in multiphase flow systems. Readers who master the concepts in this book, can confidently apply them to their fields of interest.
The author presents a topological approach to the problem of robustness of dynamic feedback control. First the gap-topology is introduced as a distance measure between systems. In this topology, stability of the closed loop system is a robust property. Furthermore, it is possible to solve the problem of optimally robust control in this setting. The book can be divided into two parts. The first chapters form an introduction to the topological approach towards robust stabilization. Although of theoretical nature, only general mathematical knowledge is required from the reader. The second part is devoted to compensator design. Several algorithms for computing an optimally robust controller in the gap-topology are presented and worked out. Therefore we hope that the book will not only be of interest to theoreticians, but that also practitioners will benefit from it.
This is the first exposition of the theory of quasi-symmetric designs, that is, combinatorial designs with at most two block intersection numbers. The authors aim to bring out the interaction among designs, finite geometries, and strongly regular graphs. The book starts with basic, classical material on designs and strongly regular graphs and continues with a discussion of some important results on quasi-symmetric designs. The later chapters include a combinatorial construction of the Witt designs from the projective plane of order four, recent results dealing with a structural study of designs resulting from Cameron's classification theory on extensions of symmetric designs, and results on the classification problem of quasi-symmetric designs. The final chapter presents connections to coding theory.
The theory of surgery on manifolds has been generalized to categories of manifolds with group actions in several different ways. This book discusses some basic properties that such theories have in common. Special emphasis is placed on analogs of the fourfold periodicity theorems in ordinary surgery and the roles of standard general position hypotheses on the strata of manifolds with group actions. The contents of the book presuppose some familiarity with the basic ideas of surgery theory and transformation groups, but no previous knowledge of equivariant surgery is assumed. The book is designed to serve either as an introduction to equivariant surgery theory for advanced graduate students and researchers in related areas, or as an account of the authors' previously unpublished work on periodicity for specialists in surgery theory or transformation groups.
This book demonstrates the lively interaction between algebraic topology, very low dimensional topology and combinatorial group theory. Many of the ideas presented are still in their infancy, and it is hoped that the work here will spur others to new and exciting developments. Among the many techniques disussed are the use of obstruction groups to distinguish certain exact sequences and several graph theoretic techniques with applications to the theory of groups.
During the Fall Semester of 1987, Stevo Todorcevic gave a series of lectures at the University of Colorado. These notes of the course, taken by the author, give a novel and fast exposition of four chapters of Set Theory. The first two chapters are about the connection between large cardinals and Lebesque measure. The third is on forcing axioms such as Martin's axiom or the Proper Forcing Axiom. The fourth chapter looks at the method of minimal walks and p-functions and their applications. The book is addressed to researchers and graduate students interested in Set Theory, Set-Theoretic Topology and Measure Theory.
This workbook is intended for college courses for prospective or in-service secondary school teachers of geometry. It contains solutions and commentary to the numerous exercises in the accompanying workbook.
A central problem in algebraic topology is the calculation of the values of the stable homotopy groups of spheres +*S. In this book, a new method for this is developed based upon the analysis of the Atiyah-Hirzebruch spectral sequence. After the tools for this analysis are developed, these methods are applied to compute inductively the first 64 stable stems, a substantial improvement over the previously known 45. Much of this computation is algorithmic and is done by computer. As an application, an element of degree 62 of Kervaire invariant one is shown to have order two. This book will be useful to algebraic topologists and graduate students with a knowledge of basic homotopy theory and Brown-Peterson homology; for its methods, as a reference on the structure of the first 64 stable stems and for the tables depicting the behavior of the Atiyah-Hirzebruch and classical Adams spectral sequences through degree 64.
The general problem studied by information theory is the reliable transmission of information through unreliable channels. Channels can be unreliable either because they are disturbed by noise or because unauthorized receivers intercept the information transmitted. In the first case, the theory of error-control codes provides techniques for correcting at least part of the errors caused by noise. In the second case cryptography offers the most suitable methods for coping with the many problems linked with secrecy and authentication. Now, both error-control and cryptography schemes can be studied, to a large extent, by suitable geometric models, belonging to the important field of finite geometries. This book provides an update survey of the state of the art of finite geometries and their applications to channel coding against noise and deliberate tampering. The book is divided into two sections, "Geometries and Codes" and "Geometries and Cryptography." The first part covers such topics as Galois geometries, Steiner systems, Circle geometry and applications to algebraic coding theory. The second part deals with unconditional secrecy and authentication, geometric threshold schemes and applications of finite geometry to cryptography. This volume recommends itself to engineers dealing with communication problems, to mathematicians and to research workers in the fields of algebraic coding theory, cryptography and information theory.
The book is devoted to two natural problems, the existence and unicity of minimal projections in Banach space. Connections are established between the latter and unicity in mathematical programming problems and also with the problem of the characterization of Hilbert spaces. The book also contains a Kolmogorov type criterion for minimal projections and detailed descriptions of the Fourier operators. Presenting both new results and problems for further investigations, this book is addressed to researchers and graduate students interested in geometric functional analysis and to applications.
Geometry has been an essential element in the study of mathematics since antiquity. Traditionally, we have also learned formal reasoning by studying Euclidean geometry. In this book, David Clark develops a modern axiomatic approach to this ancient subject, both in content and presentation. Mathematically, Clark has chosen a new set of axioms that draw on a modern understanding of set theory and logic, the real number continuum and measure theory, none of which were available in Euclid's time. The result is a development of the standard content of Euclidean geometry with the mathematical precision of Hilbert's foundations of geometry. In particular, the book covers all the topics listed in the Common Core State Standards for high school synthetic geometry. The presentation uses a guided inquiry, active learning pedagogy. Students benefit from the axiomatic development because they themselves solve the problems and prove the theorems with the instructor serving as a guide and mentor. Students are thereby empowered with the knowledge that they can solve problems on their own without reference to authority. This book, written for an undergraduate axiomatic geometry course, is particularly well suited for future secondary school teachers. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, MSRI and the AMS are publishing books in the Math Circles Library series as a service to young people, their parents and teachers, and the mathematics profession.
These notes give the basic ingredients of the theory of weighted Hardy spaces of tempered distribution on Rn and illustrate the techniques used. The authors consider properties of weights in a general setting; they derive mean value inequalities for wavelet transforms and introduce halfspace techniques with, for example, nontangential maximal functions and g-functions. This leads to several equivalent definitions of the weighted Hardy space HPW. Fourier multipliers and singular integral operators are applied to the weighted Hardy spaces and complex interpolation is considered. One tool often used here is the atomic decomposition. The methods developed by the authors using the atomic decomposition in the strictly convex case p>1 are of special interest.
The problem of uniform distribution of sequences initiated by Hardy, Little wood and Weyl in the 1910's has now become an important part of number theory. This is also true, in relation to combinatorics, of what is called Ramsey theory, a theory of about the same age going back to Schur. Both concern the distribution of sequences of elements in certain collection of subsets. But it was not known until quite recently that the two are closely interweaving bear ing fruits for both. At the same time other fields of mathematics, such as ergodic theory, geometry, information theory, algorithm theory etc. have also joined in. (See the survey articles: V. T. S6s: Irregularities of partitions, Lec ture Notes Series 82, London Math. Soc. , Surveys in Combinatorics, 1983, or J. Beck: Irregularities of distributions and combinatorics, Lecture Notes Series 103, London Math. Soc. , Surveys in Combinatorics, 1985. ) The meeting held at Fertod, Hungary from the 7th to 11th of July, 1986 was to emphasize this development by bringing together a few people working on different aspects of this circle of problems. Although combinatorics formed the biggest contingent (see papers 2, 3, 6, 7, 13) some number theoretic and analytic aspects (see papers 4, 10, 11, 14) generalization of both (5, 8, 9, 12) as well as irregularities of distribution in the geometric theory of numbers (1), the most important instrument in bringing about the above combination of ideas are also represented. |
![]() ![]() You may like...
|