![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Geometry > General
This small book, translated into English for the first time, has long been a unique place to find classical results from geometry, such as Pythagoras' theorem, the nine-point circle, Morley's triangle, and many other subjects. In addition, this book contains recent, geometric theorems which have been obtained over the past years. There are 27 independent chapters on a wide range of topics in elementary plane Euclidean geometry, at a level just beyond what is usually taught in a good high school or college geometry course. The selection of topics is intelligent, varied, and stimulating, and the author provides many thought-provoking ideas.
This volume offers a new English translation, introduction, and detailed commentary on Sefer Meyasher 'Aqov, (The Rectifying of the Curved), a 14th-century Hebrew treatise on the foundation of geometry. The book is a mixture of two genres: philosophical discussion and formal, Euclidean-type geometrical writing. A central issue is the use of motion and superposition in geometry, which is analyzed in depth through dialog with earlier Arab mathematicians. The author, Alfonso, was identified by Gita Gluskina (the editor of the 1983 Russian edition) as Alfonso of Valladolid, the converted Jew Abner of Burgos. Alfonso lived in Castile, rather far from the leading cultural centers of his time, but nonetheless at the crossroad of three cultures. He was raised in the Jewish tradition and like many Sephardic Jewish intellectuals was versed in Greek-Arabic philosophy and science. He also had connections with some Christian nobles and towards the end of his life converted to Christianity. Driven by his ambition to solve the problem of the quadrature of the circle, as well as other open geometrical problems, Alfonso acquired surprisingly wide knowledge and became familiar with several episodes in Greek and Arabic geometry that historians usually consider not to have been known in the West in the fourteenth century. Sefer Meyasher 'Aqov reflects his wide and deep erudition in mathematics and philosophy, and provides new evidence on cultural transmission around the Mediterranean.
Volume of geometric objects plays an important role in applied and theoretical mathematics. This is particularly true in the relatively new branch of discrete geometry, where volume is often used to find new topics for research. Volumetric Discrete Geometry demonstrates the recent aspects of volume, introduces problems related to it, and presents methods to apply it to other geometric problems. Part I of the text consists of survey chapters of selected topics on volume and is suitable for advanced undergraduate students. Part II has chapters of selected proofs of theorems stated in Part I and is oriented for graduate level students wishing to learn about the latest research on the topic. Chapters can be studied independently from each other. Provides a list of 30 open problems to promote research Features more than 60 research exercises Ideally suited for researchers and students of combinatorics, geometry and discrete mathematics
This book constitutes the thoroughly refereed post-proceedings of the 6th International Workshop on Automated Deduction in Geometry, ADG 2006, held at Pontevedra, Spain, in August/September 2006 as a satellite event of the International Congress of Mathematicians, ICM 2006. The 13 revised full papers presented were carefully selected from the submissions made due to a call for papers - within the scope of ADG - shortly after the meeting. The papers show the lively variety of topics and methods and the current applicability of automated deduction in geometry to different branches of mathematics and to other sciences and technologies.
This book features plane curves-the simplest objects in differential geometry-to illustrate many deep and inspiring results in the field in an elementary and accessible way. After an introduction to the basic properties of plane curves, the authors introduce a number of complex and beautiful topics, including the rotation number (with a proof of the fundamental theorem of algebra), rotation index, Jordan curve theorem, isoperimetric inequality, convex curves, curves of constant width, and the four-vertex theorem. The last chapter connects the classical with the modern by giving an introduction to the curve-shortening flow that is based on original articles but requires a minimum of previous knowledge. Over 200 figures and more than 100 exercises illustrate the beauty of plane curves and test the reader's skills. Prerequisites are courses in standard one variable calculus and analytic geometry on the plane.
The origami introduced in this book is based on simple techniques. Some were previously known by origami artists and some were discovered by the author. Curved-Folding Origami Design shows a way to explore new area of origami composed of curved folds. Each technique is introduced in a step-by-step fashion, followed by some beautiful artwork examples. A commentary explaining the theory behind the technique is placed at the end of each chapter. Features Explains the techniques for designing curved-folding origami in seven chapters Contains many illustrations and photos (over 140 figures), with simple instructions Contains photos of 24 beautiful origami artworks, as well as their crease patterns Some basic theories behind the techniques are introduced
Als mehrbandiges Nachschlagewerk ist das Springer-Handbuch der Mathematik in erster Linie fur wissenschaftliche Bibliotheken, akademische Institutionen und Firmen sowie interessierte Individualkunden in Forschung und Lehregedacht. Es erganzt das einbandige themenumfassende Springer-Taschenbuch der Mathematik (ehemaliger Titel Teubner-Taschenbuch der Mathematik), das sich in seiner begrenzten Stoffauswahl besonders an Studierende richtet. Teil III des Springer-Handbuchs enthalt neben den Kapiteln 5-9 des Springer-Taschenbuchs zusatzliches Material zu stochastischen Prozessen.
This book develops the geometric intuition of the reader by examining the symmetries (or rigid motions) of the space in question. This approach introduces in turn all the classical geometries: Euclidean, affine, elliptic, projective and hyperbolic. The main focus is on the mathematically rich two-dimensional case, although some aspects of 3- or $n$-dimensional geometries are included. Basic notions of algebra and analysis are used to convey better understanding of various concepts and results. Concepts of geometry are presented in a very simple way, so that they become easily accessible: the only pre-requisites are calculus, linear algebra and basic analytic geometry.
The three main themes of this book, probability theory, differential geometry, and the theory of integrable systems, reflect the broad range of mathematical interests of Henry McKean, to whom it is dedicated. Written by experts in probability, geometry, integrable systems, turbulence, and percolation, the seventeen papers included here demonstrate a wide variety of techniques that have been developed to solve various mathematical problems in these areas. The topics are often combined in an unusual and interesting fashion to give solutions outside of the standard methods. The papers contain some exciting results and offer a guide to the contemporary literature on these subjects.
This book opens up an important field of mathematics at an elementary level, one in which the element of aesthetic pleasure, both in the shapes of the curves and in their mathematical relationships, is dominant. This book describes methods of drawing plane curves, beginning with conic sections (parabola, ellipse and hyperbola), and going on to cycloidal curves, spirals, glissettes, pedal curves, strophoids and so on. In general, 'envelope methods' are used. There are twenty-five full-page plates and over ninety smaller diagrams in the text. The book can be used in schools, but will also be a reference for draughtsmen and mechanical engineers. As a text on advanced plane geometry it should appeal to pure mathematicians with an interest in geometry, and to students for whom Euclidean geometry is not a principal study.
This book constitutes the refereed proceedings of the 4th International Conference on Geometric Modeling and Processing, GMP 2006, held in Pittsburgh, PA, USA, July 2006. The book presents 36 revised full papers and 21 revised short papers addressing current issues in geometric modeling and processing are addressed. The papers are organized in topical sections on shape reconstruction, curves and surfaces, geometric processing, shape deformation, shape description, shape recognition, and more.
In this monograph the author presents a coherent exposition of recent results on complete characterization of Kobayashi-hyperbolic manifolds with high-dimensional groups of holomorphic automorphisms. These classification results can be viewed as complex-geometric analogues of those known for Riemannian manifolds with high-dimensional isotropy groups that were extensively studied in the 1950s-70s.
Written for graduate students, this book presents topics in 2-dimensional hyperbolic geometry. The authors begin with rigid motions in the plane which are used as motivation for a full development of hyperbolic geometry in the unit disk. The approach is to define metrics from an infinitesimal point of view; first the density is defined and then the metric via integration. The study of hyperbolic geometry in arbitrary domains requires the concepts of surfaces and covering spaces as well as uniformization and Fuchsian groups. These ideas are developed in the context of what is used later. The authors then provide a detailed discussion of hyperbolic geometry for arbitrary plane domains. New material on hyperbolic and hyperbolic-like metrics is presented. These are generalizations of the Kobayashi and Caratheodory metrics for plane domains. The book concludes with applications to holomorphic dynamics including new results and accessible open problems.
Following the highly successful first edition, this text deals with numerical solutions of coupled thermo-hydro-mechanical problems in porous media. Governing equations are newly derived in a general form using both averaging methods (hybrid mixture theory) and an engineering approach. Unique new features of the book include numerical solutions for fully and partially saturated consolidation, subsidence analysis including far field boundary conditions (Infinite Elements), new case studies and also petroleum reservoir simulation. Extended heat and mass transfer in partially saturated porous media, and consideration of phase change, are covered in detail. In addition, large strain, fully and partially saturated, soil dynamics problems are explained. Back analysis for consolidation problems is also included. Significantly, the reader is provided with access to a Finite Element code for coupled thermo-hydro-mechanical problems in partially saturated porous media with full two phase flow and phase change, written according to the theory outlined in the book and obtainable via the Network of the Italian Research Council (COMES). With a range of engineering applications from geotechnical and petroleum engineering through to bioengineering and materials science, this book represents an important resource for students, researchers and practising engineers in all these and related fields.
A practical, accessible introduction to advanced geometry Exceptionally well-written and filled with historical and bibliographic notes, Methods of Geometry presents a practical and proof-oriented approach. The author develops a wide range of subject areas at an intermediate level and explains how theories that underlie many fields of advanced mathematics ultimately lead to applications in science and engineering. Foundations, basic Euclidean geometry, and transformations are discussed in detail and applied to study advanced plane geometry, polyhedra, isometries, similarities, and symmetry. An excellent introduction to advanced concepts as well as a reference to techniques for use in independent study and research, Methods of Geometry also features:
The origins of the word problem are in group theory, decidability and complexity. But through the vision of M. Gromov and the language of filling functions, the topic now impacts the world of large-scale geometry. This book contains accounts of many recent developments in Geometric Group Theory and shows the interaction between the word problem and geometry continues to be a central theme. It contains many figures, numerous exercises and open questions.
Central topics covered include curves, surfaces, geodesics, intrinsic geometry, and the Alexandrov global angle comparision theorem Many nontrivial and original problems (some with hints and solutions) Standard theoretical material is combined with more difficult theorems and complex problems, while maintaining a clear distinction between the two levels
This volume consists of the refereed proceedings of the Japan Conference on Discrete and Computational Geometry (JCDCG 2004) held at Tokai University in Tokyo, Japan, October, 8-11, 2004, to honor Jan ' os Pach on his 50th year. J' anos Pach has generously supported the e?orts to promote research in discrete and computational geometry among mathematicians in Asia for many years. The conference was attended by close to 100 participants from 20 countries. Since it was ?rst organized in 1997, the annual JCDCG has attracted a growing international participation. The earlier conferences were held in Tokyo, followed by conferences in Manila, Philippines, and Bandung, Indonesia. The proceedings of JCDCG 1998, 2000, 2002 and IJCCGGT 2003 were published by SpringeraspartoftheseriesLectureNotesinComputerScience(LNCS)volumes 1763, 2098, 2866 and 3330, respectively, while the proceedings of JCDCG 2001 were also published by Springer as a special issue of the journal Graphs and Combinatorics, Vol. 18, No. 4, 2002. The organizers of JCDCG 2004 gratefully acknowledge the sponsorship of Tokai University, the support of the conference secretariat and the partici- tion of the principal speakers: Ferran Hurtado, Hiro Ito, Alberto M' arquez, Ji? r' ? Matou? sek, Ja 'nos Pach, Jonathan Shewchuk, William Steiger, Endre Szemer' edi, G' eza T' oth, Godfried Toussaint and Jorge Urrutia.
This elegant book by distinguished mathematician John Milnor, provides a clear and succinct introduction to one of the most important subjects in modern mathematics. Beginning with basic concepts such as diffeomorphisms and smooth manifolds, he goes on to examine tangent spaces, oriented manifolds, and vector fields. Key concepts such as homotopy, the index number of a map, and the Pontryagin construction are discussed. The author presents proofs of Sard's theorem and the Hopf theorem.
Focusing on the manipulation and representation of geometrical objects, this book explores the application of geometry to computer graphics and computer-aided design (CAD). Over 300 exercises are included, some new to this edition, and many of which encourage the reader to implement the techniques and algorithms discussed through the use of a computer package with graphing and computer algebra capabilities. A dedicated website also offers further resources and useful links.
Manifolds are the central geometric objects in modern mathematics. An attempt to understand the nature of manifolds leads to many interesting questions. One of the most obvious questions is the following. Let M and N be manifolds: how can we decide whether M and N are ho- topy equivalent or homeomorphic or di?eomorphic (if the manifolds are smooth)? The prototype of a beautiful answer is given by the Poincar e Conjecture. If n N is S, the n-dimensional sphere, and M is an arbitrary closed manifold, then n it is easy to decide whether M is homotopy equivalent to S . Thisisthecaseif and only if M is simply connected (assumingn> 1, the case n = 1 is trivial since 1 every closed connected 1-dimensional manifold is di?eomorphic toS ) and has the n homology of S . The PoincareConjecture states that this is also su?cient for the n existenceof ahomeomorphism fromM toS . For n = 2this followsfromthewe- known classi?cation of surfaces. Forn> 4 this was proved by Smale and Newman in the 1960s, Freedman solved the case in n = 4 in 1982 and recently Perelman announced a proof for n = 3, but this proof has still to be checked thoroughly by the experts. In the smooth category it is not true that manifolds homotopy n equivalent to S are di?eomorphic. The ?rst examples were published by Milnor in 1956 and together with Kervaire he analyzed the situation systematically in the 1960s."
In 19 articles presented by leading experts in the field of geometric modelling the state-of-the-art on representing, modeling, and analyzing curves, surfaces as well as other 3-dimensional geometry is given. The range of applications include CAD/CAM-systems, computer graphics, scientific visualization, virtual reality, simulation and medical imaging. The content of this book is based on selected lectures given at a workshop held at IBFI Schloss Dagstuhl, Germany. Topics treated are: - curve and surface modelling - non-manifold modelling in CAD - multiresolution analysis of complex geometric models - surface reconstruction - variational design - computational geometry of curves and surfaces - 3D meshing - geometric modelling for scientific visualization - geometric models for biomedical applications
This book gives an analysis of Hertz's posthumously published Principles of Mechanics in its philosophical, physical and mathematical context. In a period of heated debates about the true foundation of physical sciences, Hertz's book was conceived and highly regarded as an original and rigorous foundation for a mechanistic research program. Insisting that a law-like account of nature would require hypothetical unobservables, Hertz viewed physical theories as (mental) images of the world rather than the true design behind the phenomena. This paved the way for the modern conception of a model. Rejecting the concept of force as a coherent basic notion of physics he built his mechanics on hidden masses (the ether) and rigid connections, and formulated it as a new differential geometric language. Recently many philosophers have studied Hertz's image theory and historians of physics have discussed his forceless mechanics. The present book shows how these aspects, as well as the hitherto overlooked mathematical aspects, form an integrated whole which is closely connected to the mechanistic world view of the time and which is a natural continuation of Hertz's earlier research on electromagnetism. Therefore it is also a case study of the strong interactions between philosophy, physics and mathematics. Moreover, the book presents an analysis of the genesis of many of the central elements of Hertz's mechanics based on his manuscripts and drafts. Hertz's research program was cut short by the advent of relativity theory but its image theory influenced many philosophers as well as some physicists and mathematicians and its geometric form had a lasting influence on advanced expositions of mechanics.
New variational methods by Aubry, Mather, and Mane, discovered in the last twenty years, gave deep insight into the dynamics of convex Lagrangian systems. This book shows how this Principle of Least Action appears in a variety of settings (billiards, length spectrum, Hofer geometry, modern symplectic geometry). Thus, topics from modern dynamical systems and modern symplectic geometry are linked in a new and sometimes surprising way. The central object is Mather 's minimal action functional. The level is for graduate students onwards, but also for researchers in any of the subjects touched in the book. |
![]() ![]() You may like...
I. C. S. Reference Library: Types of…
International Correspondence Schools
Paperback
R639
Discovery Miles 6 390
|