![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Geometry > General
This volume collects six related articles. The first is the notes (written by J.S. Milne) of a major part of the seminar "Periodes des Int grales Abeliennes" given by P. Deligne at I'.B.E.S., 1978-79. The second article was written for this volume (by P. Deligne and J.S. Milne) and is largely based on: N Saavedra Rivano, Categories tannakiennes, Lecture Notes in Math. 265, Springer, Heidelberg 1972. The third article is a slight expansion of part of: J.S. Milne and Kuang-yen Shih, Sh ura varieties: conjugates and the action of complex conjugation 154 pp. (Unpublished manuscript, October 1979). The fourth article is based on a letter from P. De1igne to R. Langlands, dated 10th April, 1979, and was revised and completed (by De1igne) in July, 1981. The fifth article is a slight revision of another section of the manuscript of Milne and Shih referred to above. The sixth article, by A. Ogus, dates from July, 1980.
The International Workshop CG '88 on "Computational Geometry" was held at the University of WA1/4rzburg, FRG, March 24-25, 1988. As the interest in the fascinating field of Computational Geometry and its Applications has grown very quickly in recent years the organizers felt the need to have a workshop, where a suitable number of invited participants could concentrate their efforts in this field to cover a broad spectrum of topics and to communicate in a stimulating atmosphere. This workshop was attended by some fifty invited scientists. The scientific program consisted of 22 contributions, of which 18 papers with one additional paper (M. Reichling) are contained in the present volume. The contributions covered important areas not only of fundamental aspects of Computational Geometry but a lot of interesting and most promising applications: Algorithmic Aspects of Geometry, Arrangements, Nearest-Neighbor-Problems and Abstract Voronoi-Diagrams, Data Structures for Geometric Objects, Geo-Relational Algebra, Geometric Modeling, Clustering and Visualizing Geometric Objects, Finite Element Methods, Triangulating in Parallel, Animation and Ray Tracing, Robotics: Motion Planning, Collision Avoidance, Visibility, Smooth Surfaces, Basic Models of Geometric Computations, Automatizing Geometric Proofs and Constructions.
Computational synthetic geometry deals with methods for realizing abstract geometric objects in concrete vector spaces. This research monograph considers a large class of problems from convexity and discrete geometry including constructing convex polytopes from simplicial complexes, vector geometries from incidence structures and hyperplane arrangements from oriented matroids. It turns out that algorithms for these constructions exist if and only if arbitrary polynomial equations are decidable with respect to the underlying field. Besides such complexity theorems a variety of symbolic algorithms are discussed, and the methods are applied to obtain new mathematical results on convex polytopes, projective configurations and the combinatorics of Grassmann varieties. Finally algebraic varieties characterizing matroids and oriented matroids are introduced providing a new basis for applying computer algebra methods in this field. The necessary background knowledge is reviewed briefly. The text is accessible to students with graduate level background in mathematics, and will serve professional geometers and computer scientists as an introduction and motivation for further research.
The purpose of this book is to revive some of the beautiful results obtained by various geometers of the 19th century, and to give its readers a taste of concrete algebraic geometry. A good deal of space is devoted to cross-ratios, conics, quadrics, and various interesting curves and surfaces. The fundamentals of projective geometry are efficiently dealt with by using a modest amount of linear algebra. An axiomatic characterization of projective planes is also given. While the topology of projective spaces over real and complex fields is described, and while the geometry of the complex projective libe is applied to the study of circles and Moebius transformations, the book is not restricted to these fields. Interesting properties of projective spaces, conics, and quadrics over finite fields are also given. This book is the first volume in the Readings in Mathematics sub-series of the UTM. From the reviews: "...The book of P. Samuel thus fills a gap in the literature. It is a little jewel. Starting from a minimal background in algebra, he succeeds in 160 pages in giving a coherent exposition of all of projective geometry. ... one reads this book like a novel. " D.Lazard in Gazette des Mathematiciens#1
This volume is a collection of papers dedicated to the memory of V. A. Rohlin (1919-1984) - an outstanding mathematician and the founder of the Leningrad topological school. It includes survey and research papers on topology of manifolds, topological aspects of the theory of complex and real algebraic varieties, topology of projective configuration spaces and spaces of convex polytopes.
The problem of uniform distribution of sequences initiated by Hardy, Little wood and Weyl in the 1910's has now become an important part of number theory. This is also true, in relation to combinatorics, of what is called Ramsey theory, a theory of about the same age going back to Schur. Both concern the distribution of sequences of elements in certain collection of subsets. But it was not known until quite recently that the two are closely interweaving bear ing fruits for both. At the same time other fields of mathematics, such as ergodic theory, geometry, information theory, algorithm theory etc. have also joined in. (See the survey articles: V. T. S6s: Irregularities of partitions, Lec ture Notes Series 82, London Math. Soc. , Surveys in Combinatorics, 1983, or J. Beck: Irregularities of distributions and combinatorics, Lecture Notes Series 103, London Math. Soc. , Surveys in Combinatorics, 1985. ) The meeting held at Fertod, Hungary from the 7th to 11th of July, 1986 was to emphasize this development by bringing together a few people working on different aspects of this circle of problems. Although combinatorics formed the biggest contingent (see papers 2, 3, 6, 7, 13) some number theoretic and analytic aspects (see papers 4, 10, 11, 14) generalization of both (5, 8, 9, 12) as well as irregularities of distribution in the geometric theory of numbers (1), the most important instrument in bringing about the above combination of ideas are also represented.
This is an introduction to some geometrie aspects of G-function theory. Most of the results presented here appear in print for the flrst time; hence this text is something intermediate between a standard monograph and a research artic1e; it is not a complete survey of the topic. Except for geometrie chapters (I.3.3, II, IX, X), I have tried to keep it reasonably self contained; for instance, the second part may be used as an introduction to p-adic analysis, starting from a few basic facts wh ich are recalled in IV.l.l. I have inc1uded about forty exercises, most of them giving some complements to the main text. Acknowledgements This book was written during a stay at the Max-Planck-Institut in Bonn. I should like here to express my special gratitude to this institute and its director, F. Hirzebruch, for their generous hospitality. G. Wustholz has suggested the whole project and made its realization possible, and this book would not exist without his help; I thank him heartily. I also thank D. Bertrand, E. Bombieri, K. Diederich, and S. Lang for their encouragements, and D. Bertrand, G. Christo I and H Esnault for stimulating conversations and their help in removing some inaccuracies after a careful reading of parts of the text (any remaining error is however my sole responsibility)."
These notes were prepared for the DMV-Seminar held in Dusseldorf, Schloss Mickeln from June 28 to July 5, 1987. They consist of two parts which can be read independently. The reader is presumed to have a basic education in differential and algebraic topology. Surgery theory is the basic tool for the investigation of differential and topological manifolds. A systematic development of the theory is a long and difficult task. The purpose of these notes is to describe simple examples and at the same time to give an introduction to some of the systematic parts of the theory. The first part is concerned with examples. They are related to representations of finite groups and group actions on spheres, and are considered as a generalisation of the spherical space form problem. The second part reviews the general setting of surgery theory and reports on the computation of the surgery abstraction groups. Both parts present material not covered in any textbook and also give an introduction to the literature and areas of research. 1. REPRESENTATION FORMS AND HOMOTOPY REPRESENTATIONS. Tammo tom Dieck Mathematical Institute Gottingen University Fed. Rep. of Germany Let G be a (finite) group. We consider group actions of G on spheres and spherelike spaces.
This is the third published volume of the proceedings of the Israel Seminar on Geometric Aspects of Functional Analysis. The large majority of the papers in this volume are original research papers. There was last year a strong emphasis on classical finite-dimensional convexity theory and its connection with Banach space theory. In recent years, it has become evident that the notions and results of the local theory of Banach spaces are useful in solving classical questions in convexity theory. The present volume contributes to clarifying this point. In addition this volume contains basic contributions to ergodic theory, invariant subspace theory and qualitative differential geometry.
An undergraduate introduction to the fundamentals of topology - engagingly written, filled with helpful insights, complete with many stimulating and imaginative exercises to help students develop a solid grasp of the subject.
This book brings together into a general setting various techniques in the study of the topological properties of spaces of continuous functions. The two major classes of function space topologies studied are the set-open topologies and the uniform topologies. Where appropriate, the analogous theorems for the two major classes of topologies are studied together, so that a comparison can be made. A chapter on cardinal functions puts characterizations of a number of topological properties of function spaces into a more general setting: some of these results are new, others are generalizations of known theorems. Excercises are included at the end of each chapter, covering other kinds of function space topologies. Thus the book should be appropriate for use in a classroom setting as well as for functional analysis and general topology. The only background needed is some basic knowledge of general topology.
The homotopy index theory was developed by Charles Conley for two sided flows on compact spaces. The homotopy or Conley index, which provides an algebraic-topologi cal measure of an isolated invariant set, is defined to be the ho motopy type of the quotient space N /N, where is a certain 1 2 1 2 compact pair, called an index pair. Roughly speaking, N1 isolates the invariant set and N2 is the "exit ramp" of N . 1 It is shown that the index is independent of the choice of the in dex pair and is invariant under homotopic perturbations of the flow. Moreover, the homotopy index generalizes the Morse index of a nQnde generate critical point p with respect to a gradient flow on a com pact manifold. In fact if the Morse index of p is k, then the homo topy index of the invariant set {p} is Ik - the homotopy type of the pointed k-dimensional unit sphere."
"The book ...is a storehouse of useful information for the mathematicians interested in foliation theory." (John Cantwell, Mathematical Reviews 1992)
The main topics of the conference on "Curves in Projective Space" were good and bad families of projective curves, postulation of projective space curves and classical problems in enumerative geometry.
A Nash manifold denotes a real manifold furnished with algebraic structure, following a theorem of Nash that a compact differentiable manifold can be imbedded in a Euclidean space so that the image is precisely such a manifold. This book, in which almost all results are very recent or unpublished, is an account of the theory of Nash manifolds, whose properties are clearer and more regular than those of differentiable or PL manifolds. Basic to the theory is an algebraic analogue of Whitney's Approximation Theorem. This theorem induces a "finiteness" of Nash manifold structures and differences between Nash and differentiable manifolds. The point of view of the author is topological. However the proofs also require results and techniques from other domains so elementary knowledge of commutative algebra, several complex variables, differential topology, PL topology and real singularities is required of the reader. The book is addressed to graduate students and researchers in differential topology and real algebraic geometry.
The manifolds investigated in this monograph are generalizations of (XX)-rank one locally symmetric spaces. In the first part of the book the author develops spectral theory for the differential Laplacian operator associated to the so-called generalized Dirac operators on manifolds with cusps of rank one. This includes the case of spinor Laplacians on (XX)-rank one locally symmetric spaces. The time-dependent approach to scattering theory is taken to derive the main results about the spectral resolution of these operators. The second part of the book deals with the derivation of an index formula for generalized Dirac operators on manifolds with cusps of rank one. This index formula is used to prove a conjecture of Hirzebruch concerning the relation of signature defects of cusps of Hilbert modular varieties and special values of L-series. This book is intended for readers working in the field of automorphic forms and analysis on non-compact Riemannian manifolds, and assumes a knowledge of PDE, scattering theory and harmonic analysis on semisimple Lie groups.
This book examines the geometrical notion of orthogonality, and shows how to use it as the primitive concept on which to base a metric structure in affine geometry. The subject has a long history, and an extensive literature, but whatever novelty there may be in the study presented here comes from its focus on geometries hav ing lines that are self-orthogonal, or even singular (orthogonal to all lines). The most significant examples concern four-dimensional special-relativistic spacetime (Minkowskian geometry), and its var ious sub-geometries, and these will be prominent throughout. But the project is intended as an exercise in the foundations of geome try that does not presume a knowledge of physics, and so, in order to provide the appropriate intuitive background, an initial chapter has been included that gives a description of the different types of line (timelike, spacelike, lightlike) that occur in spacetime, and the physical meaning of the orthogonality relations that hold between them. The coordinatisation of affine spaces makes use of constructions from projective geometry, including standard results about the ma trix represent ability of certain projective transformations (involu tions, polarities). I have tried to make the work sufficiently self contained that it may be used as the basis for a course at the ad vanced undergraduate level, assuming only an elementary knowledge of linear and abstract algebra."
An Outline of a General Theory of Models. Translation of Stabilit tructurelle et Morphog'se.
Approach your problems from the right end It isn't that they can't see the solution. and begin with the answers. Then one day, It is that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' Brown 'The point of a Pin'. in R. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thouglit to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sci ences has changed drastically in recent years: measure theory is used (non-trivially) in re gional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homo topy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces."
1.1 General Introduction The work which comprises this essay formed part of a multidiscip linary project investigating the folding of the developing cerebral cortex in the ferret. The project as a whole combined a study, at the histological level, of the cytoarchitectural development concom itant with folding and a mathematical study of folding viewed from the perspective of differential geometry. We here concentrate on the differential geometry of brain folding. Histological results which have some significance to the geometry of the cortex are re ferred to, but are not discussed in any depth. As with any truly multidisciplinary work, this essay has objectives which lie in each of its constituent disciplines. From a neuroana tomical point of view, the work explores the use of the surface geo metry of the developing cortex as a parameter for the underlying growth process. Geometrical parameters of particular interest and theoretical importance are surface curvatures. Our experimental portion reports the measurement of the surface curvature of the ferret brain during the early stages of folding. The use of sur face curvatures and other parameters of differential geometry in the formulation of theoretical models of cortical folding is dis cussed."
In a broad sense Design Science is the grammar of a language of images rather than of words. Modern communication techniques enable us to transmit and reconstitute images without the need of knowing a specific verbal sequential language such as the Morse code or Hungarian. International traffic signs use international image symbols which are not specific to any particular verbal language. An image language differs from a verbal one in that the latter uses a linear string of symbols, whereas the former is multidimensional. Architectural renderings commonly show projections onto three mutually perpendicular planes, or consist of cross sections at differ ent altitudes representing a stack of floor plans. Such renderings make it difficult to imagine buildings containing ramps and other features which disguise the separation between floors; consequently, they limit the creativity of the architect. Analogously, we tend to analyze natural structures as if nature had used similar stacked renderings, rather than, for instance, a system of packed spheres, with the result that we fail to perceive the system of organization determining the form of such structures. |
![]() ![]() You may like...
Operational Research - IO2017, Valenca…
A. Ismael F. Vaz, Joao Paulo Almeida, …
Hardcover
R2,948
Discovery Miles 29 480
Process Modelling and Model Analysis…
Ian T. Cameron, Katalin M. Hangos
Hardcover
R3,747
Discovery Miles 37 470
Stability Analysis of Markovian Jump…
Yu Kang, Yun-Bo Zhao, …
Hardcover
Mathematical Modeling and Computational…
Antonio Jose da Silva Neto, Orestes Llanes Santiago, …
Hardcover
R1,541
Discovery Miles 15 410
Mathematical Models for Handling Partial…
Giulianella Coletti, Didier Dubois, …
Hardcover
R4,623
Discovery Miles 46 230
Flexible Bayesian Regression Modelling
Yanan Fan, David Nott, …
Paperback
R2,576
Discovery Miles 25 760
|