![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Geometry > General
This second volume in a two-volume set provides a complete self-contained proof of the classification of geometries associated with sporadic simple groups: Petersen and tilde geometries. It contains a study of the representations of the geometries under consideration in GF(2)-vector spaces as well as in some non-Abelian groups. The central part is the classification of the amalgam of maximal parabolics, associated with a flag transitive action on a Petersen or tilde geometry. By way of their systematic treatment of group amalgams, the authors establish a deep and important mathematical result.
The amount of mathematics invented for number-theoretic reasons is impressive. It includes much of complex analysis, the re-foundation of algebraic geometry on commutative algebra, group cohomology, homological algebra, and the theory of motives. Zeta and L-functions sit at the meeting point of all these theories and have played a profound role in shaping the evolution of number theory. This book presents a big picture of zeta and L-functions and the complex theories surrounding them, combining standard material with results and perspectives that are not made explicit elsewhere in the literature. Particular attention is paid to the development of the ideas surrounding zeta and L-functions, using quotes from original sources and comments throughout the book, pointing the reader towards the relevant history. Based on an advanced course given at Jussieu in 2013, it is an ideal introduction for graduate students and researchers to this fascinating story.
This volume offers a new English translation, introduction, and detailed commentary on Sefer Meyasher 'Aqov, (The Rectifying of the Curved), a 14th-century Hebrew treatise on the foundation of geometry. The book is a mixture of two genres: philosophical discussion and formal, Euclidean-type geometrical writing. A central issue is the use of motion and superposition in geometry, which is analyzed in depth through dialog with earlier Arab mathematicians. The author, Alfonso, was identified by Gita Gluskina (the editor of the 1983 Russian edition) as Alfonso of Valladolid, the converted Jew Abner of Burgos. Alfonso lived in Castile, rather far from the leading cultural centers of his time, but nonetheless at the crossroad of three cultures. He was raised in the Jewish tradition and like many Sephardic Jewish intellectuals was versed in Greek-Arabic philosophy and science. He also had connections with some Christian nobles and towards the end of his life converted to Christianity. Driven by his ambition to solve the problem of the quadrature of the circle, as well as other open geometrical problems, Alfonso acquired surprisingly wide knowledge and became familiar with several episodes in Greek and Arabic geometry that historians usually consider not to have been known in the West in the fourteenth century. Sefer Meyasher 'Aqov reflects his wide and deep erudition in mathematics and philosophy, and provides new evidence on cultural transmission around the Mediterranean.
This research-level monograph on harmonic maps between singular spaces sets out much new material on the theory, bringing all the research together for the first time in one place. Riemannian polyhedra are a class of such spaces that are especially suitable to serve as the domain of definition for harmonic maps. Their properties are considered in detail, with many examples being given, and potential theory on Riemmanian polyhedra is also considered. The work will serve as a concise source and reference for all researchers working in this field or a similar one.
This book covers analysis on fractals, a developing area of mathematics that focuses on the dynamical aspects of fractals, such as heat diffusion on fractals and the vibration of a material with fractal structure. The book provides a self-contained introduction to the subject, starting from the basic geometry of self-similar sets and going on to discuss recent results, including the properties of eigenvalues and eigenfunctions of the Laplacians, and the asymptotical behaviors of heat kernels on self-similar sets. Requiring only a basic knowledge of advanced analysis, general topology and measure theory, this book will be of value to graduate students and researchers in analysis and probability theory. It will also be useful as a supplementary text for graduate courses covering fractals.
Here is a genuine introduction to the differential geometry of plane curves for undergraduates in mathematics, or postgraduates and researchers in the engineering and physical sciences. This well-illustrated text contains several hundred worked examples and exercises, making it suitable for adoption as a course text. Key concepts are illustrated by named curves, of historical and scientific significance, leading to the central idea of curvature. The author introduces the core material of classical kinematics, developing the geometry of trajectories via the ideas of roulettes and centrodes, and culminating in the inflexion circle and cubic of stationary curvature.
This book, devoted to an invariant multidimensional process of recovering a function from its derivative, considers additive functions defined on the family of all bounded BV sets that are continuous with respect to a suitable topology. The main applications are related to the Gauss-Green and Stokes theorems. The book contains complete and detailed proofs of all new results, and of many known results for which the references are not easily available. It will provide valuable information to research mathematicians and advanced graduate students interested in geometric integration and related areas.
Volume of geometric objects plays an important role in applied and theoretical mathematics. This is particularly true in the relatively new branch of discrete geometry, where volume is often used to find new topics for research. Volumetric Discrete Geometry demonstrates the recent aspects of volume, introduces problems related to it, and presents methods to apply it to other geometric problems. Part I of the text consists of survey chapters of selected topics on volume and is suitable for advanced undergraduate students. Part II has chapters of selected proofs of theorems stated in Part I and is oriented for graduate level students wishing to learn about the latest research on the topic. Chapters can be studied independently from each other. Provides a list of 30 open problems to promote research Features more than 60 research exercises Ideally suited for researchers and students of combinatorics, geometry and discrete mathematics
Spectral sequences are among the most elegant, most powerful, and most complicated methods of computation in mathematics. This book describes some of the most important examples of spectral sequences and some of their most spectacular applications. The first third of the book treats the algebraic foundations for this sort of homological algebra, starting from informal calculations, to give the novice a familiarity with the range of applications possible. The heart of the book is an exposition of the classical examples from homotopy theory, with chapters on the Leray-Serre spectral sequence, the Eilenberg-Moore spectral sequence, the Adams spectral sequence, and, in this new edition, the Bockstein spectral sequence. The last part of the book treats applications throughout mathematics, including the theory of knots and links, algebraic geometry, differential geometry and algebra. This is an excellent reference for students and researchers in geometry, topology, and algebra.
The origins of the word problem are in group theory, decidability and complexity. But through the vision of M. Gromov and the language of filling functions, the topic now impacts the world of large-scale geometry. This book contains accounts of many recent developments in Geometric Group Theory and shows the interaction between the word problem and geometry continues to be a central theme. It contains many figures, numerous exercises and open questions.
In this monograph the author presents a coherent exposition of recent results on complete characterization of Kobayashi-hyperbolic manifolds with high-dimensional groups of holomorphic automorphisms. These classification results can be viewed as complex-geometric analogues of those known for Riemannian manifolds with high-dimensional isotropy groups that were extensively studied in the 1950s-70s.
This book constitutes the refereed proceedings of the 4th International Conference on Geometric Modeling and Processing, GMP 2006, held in Pittsburgh, PA, USA, July 2006. The book presents 36 revised full papers and 21 revised short papers addressing current issues in geometric modeling and processing are addressed. The papers are organized in topical sections on shape reconstruction, curves and surfaces, geometric processing, shape deformation, shape description, shape recognition, and more.
The author uses modern methods from computational group theory and representation theory to treat this classical topic of function theory. He provides classifications of all automorphism groups up to genus 48. The book also classifies the ordinary characters for several groups, arising from the action of automorphisms on the space of holomorphic abelian differentials of a compact Reimann surface. This book is suitable for graduate students and researchers in group theory, representation theory, complex analysis and computer algebra.
The origami introduced in this book is based on simple techniques. Some were previously known by origami artists and some were discovered by the author. Curved-Folding Origami Design shows a way to explore new area of origami composed of curved folds. Each technique is introduced in a step-by-step fashion, followed by some beautiful artwork examples. A commentary explaining the theory behind the technique is placed at the end of each chapter. Features Explains the techniques for designing curved-folding origami in seven chapters Contains many illustrations and photos (over 140 figures), with simple instructions Contains photos of 24 beautiful origami artworks, as well as their crease patterns Some basic theories behind the techniques are introduced
The study of geodesic flows on homogenous spaces is an area of research that has yielded some fascinating developments. This book, first published in 2000, focuses on many of these, and one of its highlights is an elementary and complete proof (due to Margulis and Dani) of Oppenheim's conjecture. Also included here: an exposition of Ratner's work on Raghunathan's conjectures; a complete proof of the Howe-Moore vanishing theorem for general semisimple Lie groups; a new treatment of Mautner's result on the geodesic flow of a Riemannian symmetric space; Mozes' result about mixing of all orders and the asymptotic distribution of lattice points in the hyperbolic plane; Ledrappier's example of a mixing action which is not a mixing of all orders. The treatment is as self-contained and elementary as possible. It should appeal to graduate students and researchers interested in dynamical systems, harmonic analysis, differential geometry, Lie theory and number theory.
Fractalize That! A Visual Essay on Statistical Geometry brings a new class of geometric fractals to a wider audience of mathematicians and scientists. It describes a recently discovered random fractal space-filling algorithm. Connections with tessellations and known fractals such as Sierpinski are developed. And, the mathematical development is illustrated by a large number of colorful images that will charm the readers.The algorithm claims to be universal in scope, in that it can fill any spatial region with smaller and smaller fill regions of any shape. The filling is complete in the limit of an infinite number of fill regions. This book presents a descriptive development of the subject using the traditional shapes of geometry such as discs, squares, and triangles. It contains a detailed mathematical treatment of all that is currently known about the algorithm, as well as a chapter on software implementation of the algorithm.The mathematician will find a wealth of interesting conjectures supported by numerical computation. Physicists are offered a model looking for an application. The patterns generated are often quite interesting as abstract art. Readers can also create these computer-generated art with the advice and examples provided.
The world is full of objects, many of which are visible to us as surfaces. Examples are people, cars, machines, computers and bananas. Exceptions are such things as clouds and trees, which have a more detailed, fuzzy structure. Computer vision aims to detect and reconstruct features of surfaces from the images produced by cameras, in some ways mimicking the way in which humans reconstruct features of the world around them by using their eyes. This book describes how the 3D shape of surfaces can be recovered from image sequences of outlines. Cipolla and Giblin provide all the necessary background in differential geometry (assuming knowledge of elementary algebra and calculus) and in the analysis of visual motion, and emphasizes intuitive visual understanding of the geometric techniques with computer-generated illustrations. They also give a thorough introduction to the mathematical techniques and the details of the implementations, and apply the methods to data from real images.
This book investigates the high degree of symmetry that lies hidden in integrable systems. To that end, differential equations arising from classical mechanics, such as the KdV equation and the KP equations, are used here by the authors to introduce the notion of an infinite dimensional transformation group acting on spaces of integrable systems. Chapters discuss the work of M. Sato on the algebraic structure of completely integrable systems, together with developments of these ideas in the work of M. Kashiwara. The text should be accessible to anyone with a knowledge of differential and integral calculus and elementary complex analysis, and it will be a valuable resource to both novice and expert alike.
Polyhedra have cropped up in many different guises throughout recorded history. Recently, polyhedra and their symmetries have been cast in a new light by combinatorics and group theory. This unique text comprehensively documents the many and varied ways that polyhedra have come to the fore throughout the development of mathematics. The author strikes a balance between covering the historical development of the theory surrounding polyhedra and rigorous treatment of the mathematics involved. Attractively illustrated--including 16 color plates--Polyhedra elucidates ideas that have proven difficult to grasp. Mathematicians, as well as historians of mathematics, will find this book fascinating.
This book is the first volume in a two-volume set, which will provide the complete proof of classification of two important classes of geometries, closely related to each other: Petersen and tilde geometries. There is an infinite family of tilde geometries associated with nonsplit extensions of symplectic groups over a field of two elements. Besides that there are twelve exceptional Petersen and tilde geometries. These exceptional geometries are related to sporadic simple groups, including the famous Monster group and this volume gives a construction for each of the Petersen and tilde geometries that provides an independent existence proof for the corresponding automorphism group. Important applications of Petersen and tilde geometries are considered, including the so-called Y-presentations for the Monster and related groups, and a complete identification of Y-groups is given. This is an essential purchase for researchers in finite group theory, finite geometries and algebraic combinatorics.
Broad appeal to undergraduate teachers, students, and engineers; Concise descriptions of properties of basic planar curves from different perspectives; useful handbook for software engineers; A special chapter---"Geometry on the Web"---will further enhance the usefulness of this book as an informal tutorial resource.; Good mathematical notation, descriptions of properties of lines and curves, and the illustration of geometric concepts facilitate the design of computer graphics tools and computer animation.; Video game designers, for example, will find a clear discussion and illustration of hard-to-understand trajectory design concepts.; Good supplementary text for geometry courses at the undergraduate and advanced high school levels
This volume consists of the refereed proceedings of the Japan Conference on Discrete and Computational Geometry (JCDCG 2004) held at Tokai University in Tokyo, Japan, October, 8-11, 2004, to honor Jan ' os Pach on his 50th year. J' anos Pach has generously supported the e?orts to promote research in discrete and computational geometry among mathematicians in Asia for many years. The conference was attended by close to 100 participants from 20 countries. Since it was ?rst organized in 1997, the annual JCDCG has attracted a growing international participation. The earlier conferences were held in Tokyo, followed by conferences in Manila, Philippines, and Bandung, Indonesia. The proceedings of JCDCG 1998, 2000, 2002 and IJCCGGT 2003 were published by SpringeraspartoftheseriesLectureNotesinComputerScience(LNCS)volumes 1763, 2098, 2866 and 3330, respectively, while the proceedings of JCDCG 2001 were also published by Springer as a special issue of the journal Graphs and Combinatorics, Vol. 18, No. 4, 2002. The organizers of JCDCG 2004 gratefully acknowledge the sponsorship of Tokai University, the support of the conference secretariat and the partici- tion of the principal speakers: Ferran Hurtado, Hiro Ito, Alberto M' arquez, Ji? r' ? Matou? sek, Ja 'nos Pach, Jonathan Shewchuk, William Steiger, Endre Szemer' edi, G' eza T' oth, Godfried Toussaint and Jorge Urrutia.
Convex geometry is at once simple and amazingly rich. While the classical results go back many decades, during that previous to this book's publication in 1999, the integral geometry of convex bodies had undergone a dramatic revitalization, brought about by the introduction of methods, results and, most importantly, new viewpoints, from probability theory, harmonic analysis and the geometry of finite-dimensional normed spaces. This book is a collection of research and expository articles on convex geometry and probability, suitable for researchers and graduate students in several branches of mathematics coming under the broad heading of 'Geometric Functional Analysis'. It continues the Israel GAFA Seminar series, which is widely recognized as the most useful research source in the area. The collection reflects the work done at the program in Convex Geometry and Geometric Analysis that took place at MSRI in 1996.
There has been a resurgence of interest in classical invariant theory driven by several factors: new theoretical developments; a revival of computational methods coupled with powerful new computer algebra packages; and a wealth of new applications, ranging from number theory to geometry, physics to computer vision. This book provides readers with a self-contained introduction to the classical theory as well as modern developments and applications. The text concentrates on the study of binary forms (polynomials) in characteristic zero, and uses analytical as well as algebraic tools to study and classify invariants, symmetry, equivalence and canonical forms. A variety of innovations make this text of interest even to veterans of the subject; these include the use of differential operators and the transform approach to the symbolic method, extension of results to arbitrary functions, graphical methods for computing identities and Hilbert bases, complete systems of rationally and functionally independent covariants, introduction of Lie group and Lie algebra methods, as well as a new geometrical theory of moving frames and applications. Aimed at advanced undergraduate and graduate students the book includes many exercises and historical details, complete proofs of the fundamental theorems, and a lively and provocative exposition.
New variational methods by Aubry, Mather, and Mane, discovered in the last twenty years, gave deep insight into the dynamics of convex Lagrangian systems. This book shows how this Principle of Least Action appears in a variety of settings (billiards, length spectrum, Hofer geometry, modern symplectic geometry). Thus, topics from modern dynamical systems and modern symplectic geometry are linked in a new and sometimes surprising way. The central object is Mather 's minimal action functional. The level is for graduate students onwards, but also for researchers in any of the subjects touched in the book. |
You may like...
I. C. S. Reference Library: Types of…
International Correspondence Schools
Paperback
R744
Discovery Miles 7 440
A Collection of Cambridge Mathematical…
John Martin Frederick Wright
Paperback
R534
Discovery Miles 5 340
|