![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Geometry > General
This book focuses on the elementary but essential problems in Riemann-Finsler Geometry, which include a repertoire of rigidity and comparison theorems, and an array of explicit examples, illustrating many phenomena which admit only Finslerian interpretations. "This book offers the most modern treatment of the topic ..." EMS Newsletter.
A relaxed and informal presentation conveying the joy of mathematical discovery and insight. Frequent questions lead readers to see mathematics as an accessible world of thought, where understanding can turn opaque formulae into beautiful and meaningful ideas. The text presents eight topics that illustrate the unity of mathematical thought as well as the diversity of mathematical ideas. Drawn from both "pure" and "applied" mathematics, they include: spirals in nature and in mathematics; the modern topic of fractals and the ancient topic of Fibonacci numbers; Pascals Triangle and paper folding; modular arithmetic and the arithmetic of the infinite. The final chapter presents some ideas about how mathematics should be done, and hence, how it should be taught. Presenting many recent discoveries that lead to interesting open questions, the book can serve as the main text in courses dealing with contemporary mathematical topics or as enrichment for other courses. It can also be read with pleasure by anyone interested in the intellectually intriguing aspects of mathematics.
Using this book, you can explore ways to create hinged collections of pieces that swing together to form a figure. Swing them another way and they form another figure! The profuse illustrations and lively text will show you how to find a wealth of hinged dissections for all kinds of polygons, stars and crosses, curved and even three-dimensional figures. For an added challenge, you can try using different kinds of hinges for twisting and flipping pieces. The author includes careful explanation of ingenious techniques, as well as puzzles and solutions for readers of all mathematical levels. If you remember any secondary school geometry, you are already on your way. These novel and original dissections will be a gold mine for math puzzle enthusiasts, for math educators in search of enrichment topics, and for anyone who loves to see beautiful objects in motion.
Accurate Visual Metrology from Single and Multiple Uncalibrated Images presents novel techniques for constructing three-dimensional models from bi-dimensional images using virtual reality tools. Antonio Criminisi develops the mathematical theory of computing world measurements from single images, and builds up a hierarchy of novel, flexible techniques to make measurements and reconstruct three-dimensional scenes from uncalibrated images, paying particular attention to the accuracy of the reconstruction. This book includes examples of interesting viable applications (eg. Forensic Science, History of Art, Virtual Reality, Architectural and indoor measurements), presented in a simple way, accompanied by pictures, diagrams and plenty of worked examples to help the reader understand and implement the algorithms.
This book is an introduction to the fundamental concepts and tools needed for solving problems of a geometric nature using a computer. It attempts to fill the gap between standard geometry books, which are primarily theoretical, and applied books on computer graphics, computer vision, robotics, or machine learning. This book covers the following topics: affine geometry, projective geometry, Euclidean geometry, convex sets, SVD and principal component analysis, manifolds and Lie groups, quadratic optimization, basics of differential geometry, and a glimpse of computational geometry (Voronoi diagrams and Delaunay triangulations). Some practical applications of the concepts presented in this book include computer vision, more specifically contour grouping, motion interpolation, and robot kinematics. In this extensively updated second edition, more material on convex sets, Farkas's lemma, quadratic optimization and the Schur complement have been added. The chapter on SVD has been greatly expanded and now includes a presentation of PCA. The book is well illustrated and has chapter summaries and a large number of exercises throughout. It will be of interest to a wide audience including computer scientists, mathematicians, and engineers. Reviews of first edition: "Gallier's book will be a useful source for anyone interested in applications of geometrical methods to solve problems that arise in various branches of engineering. It may help to develop the sophisticated concepts from the more advanced parts of geometry into useful tools for applications." (Mathematical Reviews, 2001) "...it will be useful as a reference book for postgraduates wishing to find the connection between their current problem and the underlying geometry." (The Australian Mathematical Society, 2001)
Different Faces of Geometry - edited by the world renowned geometers S. Donaldson, Ya. Eliashberg, and M. Gromov - presents the current state, new results, original ideas and open questions from the following important topics in modern geometry: Amoebas and Tropical Geometry Convex Geometry and Asymptotic Geometric Analysis Differential Topology of 4-Manifolds 3-Dimensional Contact Geometry Floer Homology and Low-Dimensional Topology Kahler Geometry Lagrangian and Special Lagrangian Submanifolds Refined Seiberg-Witten Invariants. These apparently diverse topics have a common feature in that they are all areas of exciting current activity. The Editors have attracted an impressive array of leading specialists to author chapters for this volume: G. Mikhalkin (USA-Canada-Russia), V.D. Milman (Israel) and A.A. Giannopoulos (Greece), C. LeBrun (USA), Ko Honda (USA), P. Ozsvath (USA) and Z. Szabo (USA), C. Simpson (France), D. Joyce (UK) and P. Seidel (USA), and S. Bauer (Germany). "One can distinguish various themes running through the different contributions. There is some emphasis on invariants defined by elliptic equations and their applications in low-dimensional topology, symplectic and contact geometry (Bauer, Seidel, Ozsvath and Szabo). These ideas enter, more tangentially, in the articles of Joyce, Honda and LeBrun. Here and elsewhere, as well as explaining the rapid advances that have been made, the articles convey a wonderful sense of the vast areas lying beyond our current understanding. Simpson's article emphasizes the need for interesting new constructions (in that case of Kahler and algebraic manifolds), a point which is also made by Bauer in the context of 4-manifolds and the "11/8 conjecture". LeBrun's article gives another perspective on 4-manifold theory, via Riemannian geometry, and the challenging open questions involving the geometry of even "well-known" 4-manifolds. There are also striking contrasts between the articles. The authors have taken different approaches: for example, the thoughtful essay of Simpson, the new research results of LeBrun and the thorough expositions with homework problems of Honda. One can also ponder the differences in the style of mathematics. In the articles of Honda, Giannopoulos and Milman, and Mikhalkin, the "geometry" is present in a very vivid and tangible way; combining respectively with topology, analysis and algebra. The papers of Bauer and Seidel, on the other hand, makes the point that algebraic and algebro-topological abstraction (triangulated categories, spectra) can play an important role in very unexpected ways in concrete geometric problems." - From the Preface by the Editors
Apollonius's Conics was one of the greatest works of advanced mathematics in antiquity. The work comprised eight books, of which four have come down to us in their original Greek and three in Arabic. By the time the Arabic translations were produced, the eighth book had already been lost. In 1710, Edmond Halley, then Savilian Professor of Geometry at Oxford, produced an edition of the Greek text of the Conics of Books I-IV, a translation into Latin from the Arabic versions of Books V-VII, and a reconstruction of Book VIII. The present work provides the first complete English translation of Halley's reconstruction of Book VIII with supplementary notes on the text. It also contains 1) an introduction discussing aspects of Apollonius's Conics 2) an investigation of Edmond Halley's understanding of the nature of his venture into ancient mathematics, and 3) an appendices giving a brief account of Apollonius's approach to conic sections and his mathematical techniques. This book will be of interest to students and researchers interested in the history of ancient Greek mathematics and mathematics in the early modern period.
This volume consists of eighteen peer-reviewed papers related to lectures on pseudo-differential operators presented at the meeting of the ISAAC Group in Pseudo-Differential Operators (IGPDO) held at Imperial College London on July 13-18, 2009. Featured in this volume are the analysis, applications and computations of pseudo-differential operators in mathematics, physics and signal analysis. This volume is a useful complement to the volumes "Advances in Pseudo-Differential Operators", "Pseudo-Differential Operators and Related Topics", "Modern Trends in Pseudo-Differential Operators", "New Developments in Pseudo-Differential Operators" and "Pseudo-Differential Operators: Complex Analysis and Partial Differential Equations" published in the same series in, respectively, 2004, 2006, 2007, 2009 and 2010.
A study of topology and geometry, beginning with a comprehensible account of the extraordinary and rather mysterious impact of mathematical physics, and especially gauge theory, on the study of the geometry and topology of manifolds. The focus of the book is the Yang-Mills-Higgs field and some considerable effort is expended to make clear its origin and significance in physics. Much of the mathematics developed here to study these fields is standard, but the treatment always keeps one eye on the physics and sacrifices generality in favor of clarity. The author brings readers up the level of physics and mathematics needed to conclude with a brief discussion of the Seiberg-Witten invariants. A large number of exercises are included to encourage active participation on the part of the reader.
This book was written to make learning introductory algebraic geometry as easy as possible. It is designed for the general first- and second-year graduate student, as well as for the nonspecialist; the only prerequisites are a one-year course in algebra and a little complex analysis. There are many examples and pictures in the book. One's sense of intuition is largely built up from exposure to concrete examples, and intuition in algebraic geometry is no exception. I have also tried to avoid too much generalization. If one under stands the core of an idea in a concrete setting, later generalizations become much more meaningful. There are exercises at the end of most sections so that the reader can test his understanding of the material. Some are routine, others are more challenging. Occasionally, easily established results used in the text have been made into exercises. And from time to time, proofs of topics not covered in the text are sketched and the reader is asked to fill in the details. Chapter I is of an introductory nature. Some of the geometry of a few specific algebraic curves is worked out, using a tactical approach that might naturally be tried by one not familiar with the general methods intro duced later in the book. Further examples in this chapter suggest other basic properties of curves. In Chapter II, we look at curves more rigorously and carefully."
Elliptic cohomology is an extremely beautiful theory with both geometric and arithmetic aspects. The former is explained by the fact that the theory is a quotient of oriented cobordism localised away from 2, the latter by the fact that the coefficients coincide with a ring of modular forms. The aim of the book is to construct this cohomology theory, and evaluate it on classifying spaces BG of finite groups G. This class of spaces is important, since (using ideas borrowed from 'Monstrous Moonshine') it is possible to give a bundle-theoretic definition of EU-(BG). Concluding chapters also discuss variants, generalisations and potential applications.
This book presents methods and results from the theory of Zariski structures and discusses their applications in geometry as well as various other mathematical fields. Its logical approach helps us understand why algebraic geometry is so fundamental throughout mathematics and why the extension to noncommutative geometry, which has been forced by recent developments in quantum physics, is both natural and necessary. Beginning with a crash course in model theory, this book will suit not only model theorists but also readers with a more classical geometric background.
This book is both an introduction to K-theory and a text in algebra. These two roles are entirely compatible. On the one hand, nothing more than the basic algebra of groups, rings, and modules is needed to explain the clasical algebraic K-theory. On the other hand, K-theory is a natural organizing principle for the standard topics of a second course in algebra, and these topics are presented carefully here. The reader will not only learn algebraic K-theory, but also Dedekind domains, class groups, semisimple rings, character theory, quadratic forms, tensor products, localization, completion, tensor algebras, symmetric algebras, exterior algebras, central simple algebras, and Brauer groups. The presentation is self-contained, with all the necessary background and proofs, and is divided into short sections with exercises to reinforce the ideas and suggest further lines of inquiry. The prerequisites are minimal: just a first semester of algebra (including Galois theory and modules over a principal ideal domain). No experience with homological algebra, analysis, geometry, number theory, or topology is assumed. The author has successfuly used this text to teach algebra to first year graduate students. Selected topics can be used to construct a variety of one-semester courses; coverage of the entire text requires a full year.
This book presents a geometric theory of complex analytic integrals representing hypergeometric functions of several variables. Starting from an integrand which is a product of powers of polynomials, integrals are explained, in an open affine space, as a pair of twisted de Rham cohomology and its dual over the coefficients of local system. It is shown that hypergeometric integrals generally satisfy a holonomic system of linear differential equations with respect to the coefficients of polynomials and also satisfy a holonomic system of linear difference equations with respect to the exponents. These are deduced from Grothendieck-Deligne's rational de Rham cohomology on the one hand, and by multidimensional extension of Birkhoff's classical theory on analytic difference equations on the other.
The new edition of this celebrated and long-unavailable book preserves much of the content and structure of the original, which is still unrivaled in its presentation of a universal method for the resolution of a class of singularities in algebraic geometry. At the same time, the book has been completely retypeset, errors have been eliminated, proofs have been streamlined, the notation has been made consistent and uniform, an index has been added, and a guide to recent literature has been added. The authors begin by reviewing key results in the theory of toroidal embeddings and by explaining examples that illustrate the theory. Chapter II develops the theory of open self-adjoint homogeneous cones and their polyhedral reduction theory. Chapter III is devoted to basic facts on hermitian symmetric domains and culminates in the construction of toroidal compactifications of their quotients by an arithmetic group. The final chapter considers several applications of the general results. The book brings together ideas from algebraic geometry, differential geometry, representation theory and number theory, and will continue to prove of value for researchers and graduate students in these areas.
Early one morning in April of 1987, the Chinese mathematician J. -Q. Zhong died unexpectedly of a heart attack in New York. He was then near the end of a one-year visit in the United States. When news of his death reached his Chinese-American friends, it was immediately decided by one and all that something should be done to preserve his memory. The present volume is an outgrowth of this sentiment. His friends in China have also established a Zhong Jia-Qing Memorial Fund, which has since twice awarded the Zhong Jia-Qing prizes for Chinese mathematics graduate students. It is hoped that at least part of the reasons for the esteem and affection in which he was held by all who knew him would come through in the succeeding pages of this volume. The three survey chapters by Li and Treibergs, Lu, and Siu (Chapters 1-3) all center around the areas of mathematics in which Zhong made noteworthy contributions. In addition to putting Zhong's mathematical contributions in perspective, these articles should be useful also to a large segment of the mathematical community; together they give a coherent picture of a sizable portion of contemporary geometry. The survey of Lu differs from the other two in that it gives a firsthand account of the work done in the People's Republic of China in several complex variables in the last four decades.
Real Analysis: Measures, Integrals and Applications is devoted to the basics of integration theory and its related topics. The main emphasis is made on the properties of the Lebesgue integral and various applications both classical and those rarely covered in literature. This book provides a detailed introduction to Lebesgue measure and integration as well as the classical results concerning integrals of multivariable functions. It examines the concept of the Hausdorff measure, the properties of the area on smooth and Lipschitz surfaces, the divergence formula, and Laplace's method for finding the asymptotic behavior of integrals. The general theory is then applied to harmonic analysis, geometry, and topology. Preliminaries are provided on probability theory, including the study of the Rademacher functions as a sequence of independent random variables. The book contains more than 600 examples and exercises. The reader who has mastered the first third of the book will be able to study other areas of mathematics that use integration, such as probability theory, statistics, functional analysis, partial probability theory, statistics, functional analysis, partial differential equations and others. Real Analysis: Measures, Integrals and Applications is intended for advanced undergraduate and graduate students in mathematics and physics. It assumes that the reader is familiar with basic linear algebra and differential calculus of functions of several variables.
This book is devoted to the study of rational and integral points on higher- dimensional algebraic varieties. It contains research papers addressing the arithmetic geometry of varieties which are not of general type, with an em- phasis on how rational points are distributed with respect to the classical, Zariski and adelic topologies. The book gives a glimpse of the state of the art of this rapidly expanding domain in arithmetic geometry. The techniques involve explicit geometric con- structions, ideas from the minimal model program in algebraic geometry as well as analytic number theory and harmonic analysis on adelic groups. In recent years there has been substantial progress in our understanding of the arithmetic of algebraic surfaces. Five papers are devoted to cubic surfaces: Basile and Fisher study the existence of rational points on certain diagonal cubics, Swinnerton-Dyer considers weak approximation and Broberg proves upper bounds on the number of rational points on the complement to lines on cubic surfaces. Peyre and Tschinkel compare numerical data with conjectures concerning asymptotics of rational points of bounded height on diagonal cubics of rank ~ 2. Kanevsky and Manin investigate the composition of points on cubic surfaces. Satge constructs rational curves on certain Kummer surfaces. Colliot-Thelene studies the Hasse principle for pencils of curves of genus 1. In an appendix to this paper Skorobogatov produces explicit examples of Enriques surfaces with a Zariski dense set of rational points.
Along with many small improvements, this revised edition contains van Yzeren's new proof of Pascal's theorem (1.7) and, in Chapter 2, an improved treatment of order and sense. The Sylvester-Gallai theorem, instead of being introduced as a curiosity, is now used as an essential step in the theory of harmonic separation (3.34). This makes the logi cal development self-contained: the footnotes involving the References (pp. 214-216) are for comparison with earlier treatments, and to give credit where it is due, not to fill gaps in the argument. H.S.M.C. November 1992 v Preface to the Second Edition Why should one study the real plane? To this question, put by those who advocate the complex plane, or geometry over a general field, I would reply that the real plane is an easy first step. Most of the prop erties are closely analogous, and the real field has the advantage of intuitive accessibility. Moreover, real geometry is exactly what is needed for the projective approach to non-Euclidean geometry. Instead of introducing the affine and Euclidean metrics as in Chapters 8 and 9, we could just as well take the locus of 'points at infinity' to be a conic, or replace the absolute involution by an absolute polarity.
Fractal geometry is used to model complicated natural and technical phenomena in various disciplines like physics, biology, finance, and medicine. Since most convincing models contain an element of randomness, stochastics enters the area in a natural way. This book documents the establishment of fractal geometry as a substantial mathematical theory. As in the previous volumes, which appeared in 1998 and 2000, leading experts known for clear exposition were selected as authors. They survey their field of expertise, emphasizing recent developments and open problems. Main topics include multifractal measures, dynamical systems, stochastic processes and random fractals, harmonic analysis on fractals.
This volume deals with one of the most active fields of research in mathematical physics: the use of geometric and topological methods in field theory. The emphasis in these proceedings is on complex differential geometry, in particular on Kahler manifolds, supermanifolds, and graded manifolds. From the point of view of physics the main topics were field theory, string theory and problems from elementary particle theory involving supersymmetry. The lectures show a remarkable unity of approach and are considerably related to each other. They should be of great value to researchers and graduate students.
Geometric group theory is a vibrant subject at the heart of modern mathematics. It is currently enjoying a period of rapid growth and great influence marked by a deepening of its fertile interactions with logic, analysis and large-scale geometry, and striking progress has been made on classical problems at the heart of cohomological group theory. This volume provides the reader with a tour through a selection of the most important trends in the field, including limit groups, quasi-isometric rigidity, non-positive curvature in group theory, and L2-methods in geometry, topology and group theory. Major survey articles exploring recent developments in the field are supported by shorter research papers, which are written in a style that readers approaching the field for the first time will find inviting.
A beautiful and relatively elementary account of a part of mathematics where three main fields - algebra, analysis and geometry - meet. The book provides a broad view of these subjects at the level of calculus, without being a calculus book. Its roots are in arithmetic and geometry, the two opposite poles of mathematics, and the source of historic conceptual conflict. The resolution of this conflict, and its role in the development of mathematics, is one of the main stories in the book. Stillwell has chosen an array of exciting and worthwhile topics and elegantly combines mathematical history with mathematics. He covers the main ideas of Euclid, but with 2000 years of extra insights attached. Presupposing only high school algebra, it can be read by any well prepared student entering university. Moreover, this book will be popular with graduate students and researchers in mathematics due to its attractive and unusual treatment of fundamental topics. A set of well-written exercises at the end of each section allows new ideas to be instantly tested and reinforced.
This monograph is concerned with the fitting of linear relationships in the context of the linear statistical model. As alternatives to the familiar least squared residuals procedure, it investigates the relationships between the least absolute residuals, the minimax absolute residual and the least median of squared residuals procedures. It is intended for graduate students and research workers in statistics with some command of matrix analysis and linear programming techniques.
The Seminar has taken place at Rutgers University in New Brunswick, New Jersey, since 1990 and it has become a tradition, starting in 1992, that the Seminar be held during July at IHES in Bures-sur-Yvette, France. This is the second Gelfand Seminar volume published by Birkhauser, the first having covered the years 1990-1992. Most of the papers in this volume result from Seminar talks at Rutgers, and some from talks at IHES. In the case of a few of the papers the authors did not attend, but the papers are in the spirit of the Seminar. This is true in particular of V. Arnold's paper. He has been connected with the Seminar for so many years that his paper is very natural in this volume, and we are happy to have it included here. We hope that many people will find something of interest to them in the special diversity of topics and the uniqueness of spirit represented here. The publication of this volume would be impossible without the devoted attention of Ann Kostant. We are extremely grateful to her. I. Gelfand J. Lepowsky M. Smirnov Questions and Answers About Geometric Evolution Processes and Crystal Growth Fred Almgren We discuss evolutions of solids driven by boundary curvatures and crystal growth with Gibbs-Thomson curvature effects. Geometric measure theo retic techniques apply both to smooth elliptic surface energies and to non differentiable crystalline surface energies." |
You may like...
Roberts Bird Guide - Greater Kruger…
Duncan McKenzie, Hugh Chittenden, …
Paperback
Music and the Muses - The Culture of…
Penelope Murray, Peter Wilson
Hardcover
R6,668
Discovery Miles 66 680
Sasol Voëls Van Suider-Afrika (Met…
Ian Sinclair, Phil Hockey
Paperback
Ancient Egypt - A Captivating Guide to…
Captivating History
Hardcover
|