![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Geometry > General
Although not so well known today, Book 4 of Pappus' Collection is one of the most important and influential mathematical texts from antiquity. The mathematical vignettes form a portrait of mathematics during the Hellenistic "Golden Age," illustrating central problems - for example, squaring the circle; doubling the cube; and trisecting an angle - varying solution strategies, and the different mathematical styles within ancient geometry. This volume provides an English translation of Collection 4, in full, for the first time, including: a new edition of the Greek text, based on a fresh transcription from the main manuscript and offering an alternative to Hultsch's standard edition, notes to facilitate understanding of the steps in the mathematical argument, a commentary highlighting aspects of the work that have so far been neglected, and supporting the reconstruction of a coherent plan and vision within the work, bibliographical references for further study.
This book is an introduction to the fundamental concepts and tools needed for solving problems of a geometric nature using a computer. It attempts to fill the gap between standard geometry books, which are primarily theoretical, and applied books on computer graphics, computer vision, robotics, or machine learning. This book covers the following topics: affine geometry, projective geometry, Euclidean geometry, convex sets, SVD and principal component analysis, manifolds and Lie groups, quadratic optimization, basics of differential geometry, and a glimpse of computational geometry (Voronoi diagrams and Delaunay triangulations). Some practical applications of the concepts presented in this book include computer vision, more specifically contour grouping, motion interpolation, and robot kinematics. In this extensively updated second edition, more material on convex sets, Farkas's lemma, quadratic optimization and the Schur complement have been added. The chapter on SVD has been greatly expanded and now includes a presentation of PCA. The book is well illustrated and has chapter summaries and a large number of exercises throughout. It will be of interest to a wide audience including computer scientists, mathematicians, and engineers. Reviews of first edition: "Gallier's book will be a useful source for anyone interested in applications of geometrical methods to solve problems that arise in various branches of engineering. It may help to develop the sophisticated concepts from the more advanced parts of geometry into useful tools for applications." (Mathematical Reviews, 2001) "...it will be useful as a reference book for postgraduates wishing to find the connection between their current problem and the underlying geometry." (The Australian Mathematical Society, 2001)
Different Faces of Geometry - edited by the world renowned geometers S. Donaldson, Ya. Eliashberg, and M. Gromov - presents the current state, new results, original ideas and open questions from the following important topics in modern geometry: Amoebas and Tropical Geometry Convex Geometry and Asymptotic Geometric Analysis Differential Topology of 4-Manifolds 3-Dimensional Contact Geometry Floer Homology and Low-Dimensional Topology Kahler Geometry Lagrangian and Special Lagrangian Submanifolds Refined Seiberg-Witten Invariants. These apparently diverse topics have a common feature in that they are all areas of exciting current activity. The Editors have attracted an impressive array of leading specialists to author chapters for this volume: G. Mikhalkin (USA-Canada-Russia), V.D. Milman (Israel) and A.A. Giannopoulos (Greece), C. LeBrun (USA), Ko Honda (USA), P. Ozsvath (USA) and Z. Szabo (USA), C. Simpson (France), D. Joyce (UK) and P. Seidel (USA), and S. Bauer (Germany). "One can distinguish various themes running through the different contributions. There is some emphasis on invariants defined by elliptic equations and their applications in low-dimensional topology, symplectic and contact geometry (Bauer, Seidel, Ozsvath and Szabo). These ideas enter, more tangentially, in the articles of Joyce, Honda and LeBrun. Here and elsewhere, as well as explaining the rapid advances that have been made, the articles convey a wonderful sense of the vast areas lying beyond our current understanding. Simpson's article emphasizes the need for interesting new constructions (in that case of Kahler and algebraic manifolds), a point which is also made by Bauer in the context of 4-manifolds and the "11/8 conjecture". LeBrun's article gives another perspective on 4-manifold theory, via Riemannian geometry, and the challenging open questions involving the geometry of even "well-known" 4-manifolds. There are also striking contrasts between the articles. The authors have taken different approaches: for example, the thoughtful essay of Simpson, the new research results of LeBrun and the thorough expositions with homework problems of Honda. One can also ponder the differences in the style of mathematics. In the articles of Honda, Giannopoulos and Milman, and Mikhalkin, the "geometry" is present in a very vivid and tangible way; combining respectively with topology, analysis and algebra. The papers of Bauer and Seidel, on the other hand, makes the point that algebraic and algebro-topological abstraction (triangulated categories, spectra) can play an important role in very unexpected ways in concrete geometric problems." - From the Preface by the Editors
This book was written to make learning introductory algebraic geometry as easy as possible. It is designed for the general first- and second-year graduate student, as well as for the nonspecialist; the only prerequisites are a one-year course in algebra and a little complex analysis. There are many examples and pictures in the book. One's sense of intuition is largely built up from exposure to concrete examples, and intuition in algebraic geometry is no exception. I have also tried to avoid too much generalization. If one under stands the core of an idea in a concrete setting, later generalizations become much more meaningful. There are exercises at the end of most sections so that the reader can test his understanding of the material. Some are routine, others are more challenging. Occasionally, easily established results used in the text have been made into exercises. And from time to time, proofs of topics not covered in the text are sketched and the reader is asked to fill in the details. Chapter I is of an introductory nature. Some of the geometry of a few specific algebraic curves is worked out, using a tactical approach that might naturally be tried by one not familiar with the general methods intro duced later in the book. Further examples in this chapter suggest other basic properties of curves. In Chapter II, we look at curves more rigorously and carefully."
A study of topology and geometry, beginning with a comprehensible account of the extraordinary and rather mysterious impact of mathematical physics, and especially gauge theory, on the study of the geometry and topology of manifolds. The focus of the book is the Yang-Mills-Higgs field and some considerable effort is expended to make clear its origin and significance in physics. Much of the mathematics developed here to study these fields is standard, but the treatment always keeps one eye on the physics and sacrifices generality in favor of clarity. The author brings readers up the level of physics and mathematics needed to conclude with a brief discussion of the Seiberg-Witten invariants. A large number of exercises are included to encourage active participation on the part of the reader.
This volume consists of eighteen peer-reviewed papers related to lectures on pseudo-differential operators presented at the meeting of the ISAAC Group in Pseudo-Differential Operators (IGPDO) held at Imperial College London on July 13-18, 2009. Featured in this volume are the analysis, applications and computations of pseudo-differential operators in mathematics, physics and signal analysis. This volume is a useful complement to the volumes "Advances in Pseudo-Differential Operators", "Pseudo-Differential Operators and Related Topics", "Modern Trends in Pseudo-Differential Operators", "New Developments in Pseudo-Differential Operators" and "Pseudo-Differential Operators: Complex Analysis and Partial Differential Equations" published in the same series in, respectively, 2004, 2006, 2007, 2009 and 2010.
Elliptic cohomology is an extremely beautiful theory with both geometric and arithmetic aspects. The former is explained by the fact that the theory is a quotient of oriented cobordism localised away from 2, the latter by the fact that the coefficients coincide with a ring of modular forms. The aim of the book is to construct this cohomology theory, and evaluate it on classifying spaces BG of finite groups G. This class of spaces is important, since (using ideas borrowed from 'Monstrous Moonshine') it is possible to give a bundle-theoretic definition of EU-(BG). Concluding chapters also discuss variants, generalisations and potential applications.
Early one morning in April of 1987, the Chinese mathematician J. -Q. Zhong died unexpectedly of a heart attack in New York. He was then near the end of a one-year visit in the United States. When news of his death reached his Chinese-American friends, it was immediately decided by one and all that something should be done to preserve his memory. The present volume is an outgrowth of this sentiment. His friends in China have also established a Zhong Jia-Qing Memorial Fund, which has since twice awarded the Zhong Jia-Qing prizes for Chinese mathematics graduate students. It is hoped that at least part of the reasons for the esteem and affection in which he was held by all who knew him would come through in the succeeding pages of this volume. The three survey chapters by Li and Treibergs, Lu, and Siu (Chapters 1-3) all center around the areas of mathematics in which Zhong made noteworthy contributions. In addition to putting Zhong's mathematical contributions in perspective, these articles should be useful also to a large segment of the mathematical community; together they give a coherent picture of a sizable portion of contemporary geometry. The survey of Lu differs from the other two in that it gives a firsthand account of the work done in the People's Republic of China in several complex variables in the last four decades.
This book is devoted to the study of rational and integral points on higher- dimensional algebraic varieties. It contains research papers addressing the arithmetic geometry of varieties which are not of general type, with an em- phasis on how rational points are distributed with respect to the classical, Zariski and adelic topologies. The book gives a glimpse of the state of the art of this rapidly expanding domain in arithmetic geometry. The techniques involve explicit geometric con- structions, ideas from the minimal model program in algebraic geometry as well as analytic number theory and harmonic analysis on adelic groups. In recent years there has been substantial progress in our understanding of the arithmetic of algebraic surfaces. Five papers are devoted to cubic surfaces: Basile and Fisher study the existence of rational points on certain diagonal cubics, Swinnerton-Dyer considers weak approximation and Broberg proves upper bounds on the number of rational points on the complement to lines on cubic surfaces. Peyre and Tschinkel compare numerical data with conjectures concerning asymptotics of rational points of bounded height on diagonal cubics of rank ~ 2. Kanevsky and Manin investigate the composition of points on cubic surfaces. Satge constructs rational curves on certain Kummer surfaces. Colliot-Thelene studies the Hasse principle for pencils of curves of genus 1. In an appendix to this paper Skorobogatov produces explicit examples of Enriques surfaces with a Zariski dense set of rational points.
This book leads readers from a basic foundation to an advanced level understanding of dynamical and complex systems. It is the perfect text for graduate or PhD mathematical-science students looking for support in topics such as applied dynamical systems, Lotka-Volterra dynamical systems, applied dynamical systems theory, dynamical systems in cosmology, aperiodic order, and complex systems dynamics.Dynamical and Complex Systems is the fifth volume of the LTCC Advanced Mathematics Series. This series is the first to provide advanced introductions to mathematical science topics to advanced students of mathematics. Edited by the three joint heads of the London Taught Course Centre for PhD Students in the Mathematical Sciences (LTCC), each book supports readers in broadening their mathematical knowledge outside of their immediate research disciplines while also covering specialized key areas.
Fractal geometry is used to model complicated natural and technical phenomena in various disciplines like physics, biology, finance, and medicine. Since most convincing models contain an element of randomness, stochastics enters the area in a natural way. This book documents the establishment of fractal geometry as a substantial mathematical theory. As in the previous volumes, which appeared in 1998 and 2000, leading experts known for clear exposition were selected as authors. They survey their field of expertise, emphasizing recent developments and open problems. Main topics include multifractal measures, dynamical systems, stochastic processes and random fractals, harmonic analysis on fractals.
A beautiful and relatively elementary account of a part of mathematics where three main fields - algebra, analysis and geometry - meet. The book provides a broad view of these subjects at the level of calculus, without being a calculus book. Its roots are in arithmetic and geometry, the two opposite poles of mathematics, and the source of historic conceptual conflict. The resolution of this conflict, and its role in the development of mathematics, is one of the main stories in the book. Stillwell has chosen an array of exciting and worthwhile topics and elegantly combines mathematical history with mathematics. He covers the main ideas of Euclid, but with 2000 years of extra insights attached. Presupposing only high school algebra, it can be read by any well prepared student entering university. Moreover, this book will be popular with graduate students and researchers in mathematics due to its attractive and unusual treatment of fundamental topics. A set of well-written exercises at the end of each section allows new ideas to be instantly tested and reinforced.
The Seminar has taken place at Rutgers University in New Brunswick, New Jersey, since 1990 and it has become a tradition, starting in 1992, that the Seminar be held during July at IHES in Bures-sur-Yvette, France. This is the second Gelfand Seminar volume published by Birkhauser, the first having covered the years 1990-1992. Most of the papers in this volume result from Seminar talks at Rutgers, and some from talks at IHES. In the case of a few of the papers the authors did not attend, but the papers are in the spirit of the Seminar. This is true in particular of V. Arnold's paper. He has been connected with the Seminar for so many years that his paper is very natural in this volume, and we are happy to have it included here. We hope that many people will find something of interest to them in the special diversity of topics and the uniqueness of spirit represented here. The publication of this volume would be impossible without the devoted attention of Ann Kostant. We are extremely grateful to her. I. Gelfand J. Lepowsky M. Smirnov Questions and Answers About Geometric Evolution Processes and Crystal Growth Fred Almgren We discuss evolutions of solids driven by boundary curvatures and crystal growth with Gibbs-Thomson curvature effects. Geometric measure theo retic techniques apply both to smooth elliptic surface energies and to non differentiable crystalline surface energies."
The Abel Symposium 2008 focused on the modern theory of differential equations and their applications in geometry, mechanics, and mathematical physics. Following the tradition of Monge, Abel and Lie, the scientific program emphasized the role of algebro-geometric methods, which nowadays permeate all mathematical models in natural and engineering sciences. The ideas of invariance and symmetry are of fundamental importance in the geometric approach to differential equations, with a serious impact coming from the area of integrable systems and field theories. This volume consists of original contributions and broad overview lectures of the participants of the Symposium. The papers in this volume present the modern approach to this classical subject.
A complete overview of the fundamentals of three-dimensional descriptive geometry From an overview of the history of descriptive geometry to the application of the principles of descriptive geometry to real-world scenarios, Fundamentals of Three-Dimensional Descriptive Geometry provides a comprehensive look at the topic. Used throughout the disciplines of science, engineering, and architecture, descriptive geometry is crucial for everything from understanding the various segments and inter-workings of structural systems to grasping the relationship of molecules in a chemical compound. For those requiring a full accounting of the fundamentals of three-dimensional descriptive geometry, this text is a definitive and comprehensive resource.
This publication would not have been what it is without the help of many institutions and people, which I acknowledge most gratefully. I thank the Central Library and Documentation Center, Iran, and its director, Mr. Iraji Afshar, for permission to publish photo graphs of that part of ms. 392 of the Shrine Library, Meshhed, containing Diocles' treatise. I also thank the authorities of the Shrine Library, and especially Mr. Ahmad GolchTn-Ma'anT, for their cooperation in providing photographs of the manuscript. Mr. GolchTn Ma'anT also sent me, most generously, a copy of his catalogue of the astronomical and mathematical manuscripts of the Shrine Library. I am grateful to the Chester Beatty Library, Dublin, and the Universiteits-Bibliotheek, Leid'en, for providing me with microfilms of manuscripts I wished to consult, and to the Biblioteca Ambrosiana, Milan, for granting me access to its manuscripts. The text pages in Arabic script and the Index of Technical Terms were set by a computer-assisted phototypesetting system, using computer programs developed at the University of Washington and a high-speed image-generation phototypesetting device. A continuous stream of text on punched cards was fed through the Katib formatting program, which broke up the text into lines and pages and arranged the section numbers and apparatus on each page. Output from Katib was fed through the compositor program Hattat to create a magnetic tape for use on the VideoComp phototypesetter."
Quantum cohomology, the theory of Frobenius manifolds and the
relations to integrable systems are flourishing areas since the
early 90's.
This is the first volume of a series of books that will describe current advances and past accompli shments of mathemat i ca 1 aspects of nonlinear sCience taken in the broadest contexts. This subject has been studied for hundreds of years, yet it is the topic in whi ch a number of outstandi ng di scoveri es have been made in the past two decades. Clearly, this trend will continue. In fact, we believe some of the great scientific problems in this area will be clarified and perhaps resolved. One of the reasons for this development is the emerging new mathematical ideas of nonlinear science. It is clear that by looking at the mathematical structures themselves that underlie experiment and observation that new vistas of conceptual thinking lie at the foundation of the unexplored area in this field. To speak of specific examples, one notes that the whole area of bifurcation was rarely talked about in the early parts of this century, even though it was discussed mathematically by Poi ncare at the end of the ni neteenth century. I n another di rect ion, turbulence has been a key observation in fluid dynamics, yet it was only recently, in the past decade, that simple computer studies brought to light simple dynamical models in which chaotic dynamics, hopefully closely related to turbulence, can be observed.
Like any books on a subject as vast as this, this book has to have a point-of-view to guide the selection of topics. Naber takes the view that the rekindled interest that mathematics and physics have shown in each other of late should be fostered, and that this is best accomplished by allowing them to cohabit. The book weaves together rudimentary notions from the classical gauge theory of physics with the topological and geometrical concepts that became the mathematical models of these notions. The reader is asked to join the author on some vague notion of what an electromagnetic field might be, to be willing to accept a few of the more elementary pronouncements of quantum mechanics, and to have a solid background in real analysis and linear algebra and some of the vocabulary of modern algebra. In return, the book offers an excursion that begins with the definition of a topological space and finds its way eventually to the moduli space of anti-self-dual SU(2) connections on S4 with instanton number -1.
It is impossible to trisect angles with straightedge and compass alone, but many people try and think they have succeeded. This book is about angle trisections and the people who attempt them. Its purposes are to collect many trisections in one place, inform about trisectors, to amuse the reader, and, perhaps most importantly, to reduce the number of trisectors. This book includes detailed information about the personalities of trisectors and their constructions. It can be read by anyone who has taken a high school geometry course.
Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can us;; Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics," "CFD," "completely integrable systems," "chaos, synergetics and large-scale order," which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics."
The interaction between geometry and theoretical physics has often been very fruitful. A highlight in this century was Einstein's creation of the theory of general relativity. Equally impressive was the recognition, starting from the work of Yang and Mills and culminating in the Weinberg-Salam theory of the electroweak interaction and quantum chromodynamics, that the fundamental interactions of elementary particles are governed by gauge fields, which in ma thematical terms are connections in principal fibre bundles. Theoretical physi cists became increasingly aware of the fact that the use of modern mathematical methods may be necessary in the treatment of problems of physical interest. Since some of these topics are covered at most summarily in the usual curricu lum, there is a need for extra-curricular efforts to provide an opportunity for learning these techniques and their physical applications. In this context we arranged a meeting at the Physikzentrum Bad Ronnef 12-16 February 1990 on the subject "Geometry and Theoretical Physics," in the series of physics schools organized by the German Physical Society. The participants were graduate students from German universities and research institutes. Since the meeting occurred only a short time after freedom of travel between East and West Germany became a reality, this was for many from the East the first opportunity to attend a scientific meeting in the West, and for many from the West the first chance to become personally acquainted with colleagues from the East."
* First of three independent, self-contained volumes under the general title, "Lie Theory," featuring original results and survey work from renowned mathematicians. * Contains J. C. Jantzen's "Nilpotent Orbits in Representation Theory," and K.-H. Neeb's "Infinite Dimensional Groups and their Representations." * Comprehensive treatments of the relevant geometry of orbits in Lie algebras, or their duals, and the correspondence to representations. * Should benefit graduate students and researchers in mathematics and mathematical physics.
Like other introductions to number theory, this one includes the usual curtsy to divisibility theory, the bow to congruence, and the little chat with quadratic reciprocity. It also includes proofs of results such as Lagrange's Four Square Theorem, the theorem behind Lucas's test for perfect numbers, the theorem that a regular n-gon is constructible just in case phi(n) is a power of 2, the fact that the circle cannot be squared, Dirichlet's theorem on primes in arithmetic progressions, the Prime Number Theorem, and Rademacher's partition theorem. We have made the proofs of these theorems as elementary as possible. Unique to The Queen of Mathematics are its presentations of the topic of palindromic simple continued fractions, an elementary solution of Lucas's square pyramid problem, Baker's solution for simultaneous Fermat equations, an elementary proof of Fermat's polygonal number conjecture, and the Lambek-Moser-Wild theorem.
viii 2. As a natural continuation of the section on the Platonic solids, a detailed and complete classi?cation of ?nite Mobius ] groupsal a Klein has been given with the necessary background material, such as Cayley s theorem and the Riemann Hurwitz relation. 3. Oneofthemostspectaculardevelopmentsinalgebraandge- etry during the late nineteenth century was Felix Klein s theory of the icosahedron and his solution of the irreducible quintic in termsofhypergeometricfunctions.Aquick, direct, andmodern approach of Klein s main result, the so-called Normalformsatz, has been given in a single large section. This treatment is in- pendent of the material in the rest of the book, and is suitable for enrichment and undergraduate/graduate research projects. All known approaches to the solution of the irreducible qu- tic are technical; I have chosen a geometric approach based on the construction of canonical quintic resolvents of the equation of the icosahedron, since it meshes well with the treatment of the Platonic solids given in the earlier part of the text. An - gebraic approach based on the reduction of the equation of the icosahedron to the Brioschi quintic by Tschirnhaus transfor- tions is well documented in other textbooks. Another section on polynomial invariants of ?nite Mobius ] groups, and two new appendices, containing preparatory material on the hyper- ometric differential equation and Galois theory, facilitate the understanding of this advanced material." |
![]() ![]() You may like...
Numbers, Hypotheses & Conclusions - A…
Colin Tredoux, Kevin Durrheim
Paperback
Nanofluids and Mass Transfer
Mohammad Reza Rahimpour, Mohammad Amin Makarem, …
Paperback
R4,975
Discovery Miles 49 750
Reduced-Order Modelling for Flow Control
Bernd R. Noack, Marek Morzynski, …
Hardcover
R4,392
Discovery Miles 43 920
|