![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Geometry > General
The interaction between geometry and theoretical physics has often been very fruitful. A highlight in this century was Einstein's creation of the theory of general relativity. Equally impressive was the recognition, starting from the work of Yang and Mills and culminating in the Weinberg-Salam theory of the electroweak interaction and quantum chromodynamics, that the fundamental interactions of elementary particles are governed by gauge fields, which in ma thematical terms are connections in principal fibre bundles. Theoretical physi cists became increasingly aware of the fact that the use of modern mathematical methods may be necessary in the treatment of problems of physical interest. Since some of these topics are covered at most summarily in the usual curricu lum, there is a need for extra-curricular efforts to provide an opportunity for learning these techniques and their physical applications. In this context we arranged a meeting at the Physikzentrum Bad Ronnef 12-16 February 1990 on the subject "Geometry and Theoretical Physics," in the series of physics schools organized by the German Physical Society. The participants were graduate students from German universities and research institutes. Since the meeting occurred only a short time after freedom of travel between East and West Germany became a reality, this was for many from the East the first opportunity to attend a scientific meeting in the West, and for many from the West the first chance to become personally acquainted with colleagues from the East."
Like other introductions to number theory, this one includes the usual curtsy to divisibility theory, the bow to congruence, and the little chat with quadratic reciprocity. It also includes proofs of results such as Lagrange's Four Square Theorem, the theorem behind Lucas's test for perfect numbers, the theorem that a regular n-gon is constructible just in case phi(n) is a power of 2, the fact that the circle cannot be squared, Dirichlet's theorem on primes in arithmetic progressions, the Prime Number Theorem, and Rademacher's partition theorem. We have made the proofs of these theorems as elementary as possible. Unique to The Queen of Mathematics are its presentations of the topic of palindromic simple continued fractions, an elementary solution of Lucas's square pyramid problem, Baker's solution for simultaneous Fermat equations, an elementary proof of Fermat's polygonal number conjecture, and the Lambek-Moser-Wild theorem.
Euclid presents the essential of mathematics in a manner which has set a high standard for more than 2000 years. This book, an explanation of the nature of mathematics from its most important early source, is for all lovers of mathematics with a solid background in high school geometry, whether they be students or university professors.
viii 2. As a natural continuation of the section on the Platonic solids, a detailed and complete classi?cation of ?nite Mobius ] groupsal a Klein has been given with the necessary background material, such as Cayley s theorem and the Riemann Hurwitz relation. 3. Oneofthemostspectaculardevelopmentsinalgebraandge- etry during the late nineteenth century was Felix Klein s theory of the icosahedron and his solution of the irreducible quintic in termsofhypergeometricfunctions.Aquick, direct, andmodern approach of Klein s main result, the so-called Normalformsatz, has been given in a single large section. This treatment is in- pendent of the material in the rest of the book, and is suitable for enrichment and undergraduate/graduate research projects. All known approaches to the solution of the irreducible qu- tic are technical; I have chosen a geometric approach based on the construction of canonical quintic resolvents of the equation of the icosahedron, since it meshes well with the treatment of the Platonic solids given in the earlier part of the text. An - gebraic approach based on the reduction of the equation of the icosahedron to the Brioschi quintic by Tschirnhaus transfor- tions is well documented in other textbooks. Another section on polynomial invariants of ?nite Mobius ] groups, and two new appendices, containing preparatory material on the hyper- ometric differential equation and Galois theory, facilitate the understanding of this advanced material."
This engaging review guide and workbook is the ideal tool for sharpening your Geometry skills! This review guide and workbook will help you strengthen your Geometry knowledge, and it will enable you to develop new math skills to excel in your high school classwork and on standardized tests. Clear and concise explanations will walk you step by step through each essential math concept. 500 practical review questions, in turn, provide extensive opportunities for you to practice your new skills. If you are looking for material based on national or state standards, this book is your ideal study tool! Features: *Aligned to national standards, including the Common Core State Standards, as well as the standards of non-Common Core states and Canada*Designed to help you excel in the classroom and on standardized tests*Concise, clear explanations offer step-by-step instruction so you can easily grasp key concepts*You will learn how to apply Geometry to practical situations*500 review questions provide extensive opportunities for you to practice what you've learned
na broad sense Design Science is the grammar of a language of images Irather than of words. Modern communication techniques enable us to transmit and reconstitute images without needing to know a specific verbal sequence language such as the Morse code or Hungarian. International traffic signs use international image symbols which are not specific to any particular verbal language. An image language differs from a verbal one in that the latter uses a linear string of symbols, whereas the former is multi dimensional. Architectural renderings commonly show projections onto three mutual ly perpendicular planes, or consist of cross sections at different altitudes capa ble of being stacked and representing different floor plans. Such renderings make it difficult to imagine buildings comprising ramps and other features which disguise the separation between floors, and consequently limit the cre ative process of the architect. Analogously, we tend to analyze natural struc tures as if nature had used similar stacked renderings, rather than, for instance, a system of packed spheres, with the result that we fail to perceive the system of organization determining the form of such structures. Perception is a complex process. Our senses record; they are analogous to audio or video devices. We cannot, however, claim that such devices perceive.
Ever since the discovery of the five platonic solids in ancient times, the study of symmetry and regularity has been one of the most fascinating aspects of mathematics. Quite often the arithmetical regularity properties of an object imply its uniqueness and the existence of many symmetries. This interplay between regularity and symmetry properties of graphs is the theme of this book. Starting from very elementary regularity properties, the concept of a distance-regular graph arises naturally as a common setting for regular graphs which are extremal in one sense or another. Several other important regular combinatorial structures are then shown to be equivalent to special families of distance-regular graphs. Other subjects of more general interest, such as regularity and extremal properties in graphs, association schemes, representations of graphs in euclidean space, groups and geometries of Lie type, groups acting on graphs, and codes are covered independently. Many new results and proofs and more than 750 references increase the encyclopaedic value of this book.
As senior wrangler in 1854, Edward John Routh (1831-1907) was the man who beat James Clerk Maxwell in the Cambridge mathematics tripos. He went on to become a highly successful coach in mathematics at Cambridge, producing a total of twenty-seven senior wranglers during his career - an unrivalled achievement. In addition to his considerable teaching commitments, Routh was also a very able and productive researcher who contributed to the foundations of control theory and to the modern treatment of mechanics. First published in one volume in 1860, this textbook helped disseminate Routh's investigations into stability. This revised fifth edition was published in two volumes between 1891 and 1892. The second part develops the extensive coverage of dynamics, providing formulae and examples throughout. While the growth of modern physics and mathematics may have forced out the problem-based mechanics of Routh's textbooks from the undergraduate syllabus, the utility and importance of his work is undiminished.
With applications in mind, this self-contained monograph provides a coherent and thorough treatment of the configuration spaces of Euclidean spaces and spheres, making the subject accessible to researchers and graduates with a minimal background in classical homotopy theory and algebraic topology.
This fourth volume of Advances in Computer Graphics gathers together a selection of the tutorials presented at the EUROGRAPHICS annual conference in Nice, France, Septem ber 1988. The six contributions cover various disciplines in Computer Graphics, giving either an in-depth view of a specific topic or an updated overview of a large area. Chapter 1, Object-oriented Computer Graphics, introduces the concepts of object ori ented programming and shows how they can be applied in different fields of Computer Graphics, such as modelling, animation and user interface design. Finally, it provides an extensive bibliography for those who want to know more about this fast growing subject. Chapter 2, Projective Geometry and Computer Graphics, is a detailed presentation of the mathematics of projective geometry, which serves as the mathematical background for all graphic packages, including GKS, GKS-3D and PRIGS. This useful paper gives in a single document information formerly scattered throughout the literature and can be used as a reference for those who have to implement graphics and CAD systems. Chapter 3, GKS-3D and PHIGS: Theory and Practice, describes both standards for 3D graphics, and shows how each of them is better adapted in different typical applications. It provides answers to those who have to choose a basic 3D graphics library for their developments, or to people who have to define their future policy for graphics.
How do you convey to your students, colleagues and friends some of the beauty of the kind of mathematics you are obsessed with? If you are a mathematician interested in finite or topological geometry and combinatorial designs, you could start by showing them some of the (400+) pictures in the "picture book". Pictures are what this book is all about; original pictures of everybody's favorite geometries such as configurations, projective planes and spaces, circle planes, generalized polygons, mathematical biplanes and other designs which capture much of the beauty, construction principles, particularities, substructures and interconnections of these geometries. The level of the text is suitable for advanced undergraduates and graduate students. Even if you are a mathematician who just wants some interesting reading you will enjoy the author's very original and comprehensive guided tour of small finite geometries and geometries on surfaces This guided tour includes lots of sterograms of the spatial models, games and puzzles and instructions on how to construct your own pictures and build some of the spatial models yourself.
This book appeared about ten years ago in Gennan. It started as notes for a course which I gave intermittently at the ETH over a number of years. Following repeated suggestions, this English translation was commissioned by Springer; they were most fortunate in finding translators whose mathemati cal stature, grasp of the language and unselfish dedication to the essentially thankless task of rendering the text comprehensible in a second language, both impresses and shames me. Therefore, my thanks go to Dr. Roberto Minio, now Darmstadt and Professor Charles Thomas, Cambridge. The task of preparing a La'JEX-version of the text was extremely daunting, owing to the complexity and diversity of the symbolisms inherent in the various parts of the book. Here, my warm thanks go to Barbara Aquilino of the Mathematics Department of the ETH, who spent tedious but exacting hours in front of her Olivetti. The present book is not primarily intended to teach logic and axiomat ics as such, nor is it a complete survey of what was once called "elementary mathematics from a higher standpoint." Rather, its goal is to awaken a certain critical attitude in the student and to help give this attitude some solid foun dation. Our mathematics students, having been drilled for years in high-school and college, and having studied the immense edifice of analysis, regrettably come away convinced that they understand the concepts of real numbers, Euclidean space, and algorithm."
This concise text on geometry with computer modeling presents some elementary methods for analytical modeling and visualization of curves and surfaces. The author systematically examines such powerful tools as 2-D and 3-D animation of geometric images, transformations, shadows, and colors, and then further studies more complex problems in differential geometry. Well-illustrated with more than 350 figures---reproducible using Maple programs in the book---the work is devoted to three main areas: curves, surfaces, and polyhedra. Pedagogical benefits can be found in the large number of Maple programs, some of which are analogous to C++ programs, including those for splines and fractals. To avoid tedious typing, readers will be able to download many of the programs from the Birkhauser web site. Aimed at a broad audience of students, instructors of mathematics, computer scientists, and engineers who have knowledge of analytical geometry, i.e., method of coordinates, this text will be an excellent classroom resource or self-study reference. With over 100 stimulating exercises, problems and solutions, {\it Geometry of Curves and Surfaces with Maple} will integrate traditional differential and non- Euclidean geometries with more current computer algebra systems in a practical and user-friendly format.
The general principles by which the editors and authors of the present edition have been guided were explained in the preface to the first volume of Mathemat ics of the 19th Century, which contains chapters on the history of mathematical logic, algebra, number theory, and probability theory (Nauka, Moscow 1978; En glish translation by Birkhiiuser Verlag, Basel-Boston-Berlin 1992). Circumstances beyond the control of the editors necessitated certain changes in the sequence of historical exposition of individual disciplines. The second volume contains two chapters: history of geometry and history of analytic function theory (including elliptic and Abelian functions); the size of the two chapters naturally entailed di viding them into sections. The history of differential and integral calculus, as well as computational mathematics, which we had planned to include in the second volume, will form part of the third volume. We remind our readers that the appendix of each volume contains a list of the most important literature and an index of names. The names of journals are given in abbreviated form and the volume and year of publication are indicated; if the actual year of publication differs from the nominal year, the latter is given in parentheses. The book History of Mathematics from Ancient Times to the Early Nineteenth Century in Russian], which was published in the years 1970-1972, is cited in abbreviated form as HM (with volume and page number indicated). The first volume of the present series is cited as Bk. 1 (with page numbers)."
This volume is the result of a (mainly) instructional conference on arithmetic geometry, held from July 30 through August 10, 1984 at the University of Connecticut in Storrs. This volume contains expanded versions of almost all the instructional lectures given during the conference. In addition to these expository lectures, this volume contains a translation into English of Falt ings' seminal paper which provided the inspiration for the conference. We thank Professor Faltings for his permission to publish the translation and Edward Shipz who did the translation. We thank all the people who spoke at the Storrs conference, both for helping to make it a successful meeting and enabling us to publish this volume. We would especially like to thank David Rohrlich, who delivered the lectures on height functions (Chapter VI) when the second editor was unavoidably detained. In addition to the editors, Michael Artin and John Tate served on the organizing committee for the conference and much of the success of the conference was due to them-our thanks go to them for their assistance. Finally, the conference was only made possible through generous grants from the Vaughn Foundation and the National Science Foundation."
The workshop was set up in order to stimulate the interaction between (finite and algebraic) geometries and groups. Five areas of concentrated research were chosen on which attention would be focused, namely: diagram geometries and chamber systems with transitive automorphism groups, geometries viewed as incidence systems, properties of finite groups of Lie type, geometries related to finite simple groups, and algebraic groups. The list of talks (cf. page iii) illustrates how these subjects were represented during the workshop. The contributions to these proceedings mainly belong to the first three areas; therefore, (i) diagram geometries and chamber systems with transitive automorphism groups, (ii) geometries viewed as incidence systems, and (iii) properties of finite groups of Lie type occur as section titles. The fourth and final section of these proceedings has been named graphs and groups; besides some graph theory, this encapsules most of the work related to finite simple groups that does not (explicitly) deal with diagram geometry. A few more words about the content: (i). Diagram geometries and chamber systems with transitive automorphism groups. As a consequence of Tits' seminal work on the subject, all finite buildings are known. But usually, in a situation where groups are to be characterized by certain data concerning subgroups, a lot less is known than the full parabolic picture corresponding to the building.
Geometry has been defined as that part of mathematics which makes appeal to the sense of sight; but this definition is thrown in doubt by the existence of great geometers who were blind or nearly so, such as Leonhard Euler. Sometimes it seems that geometric methods in analysis, so-called, consist in having recourse to notions outside those apparently relevant, so that geometry must be the joining of unlike strands; but then what shall we say of the importance of axiomatic programmes in geometry, where reference to notions outside a restricted reper tory is banned? Whatever its definition, geometry clearly has been more than the sum of its results, more than the consequences of some few axiom sets. It has been a major current in mathematics, with a distinctive approach and a distinc ti v e spirit. A current, furthermore, which has not been constant. In the 1930s, after a period of pervasive prominence, it appeared to be in decline, even passe. These same years were those in which H. S. M. Coxeter was beginning his scientific work. Undeterred by the unfashionability of geometry, Coxeter pursued it with devotion and inspiration. By the 1950s he appeared to the broader mathematical world as a consummate practitioner of a peculiar, out-of-the-way art. Today there is no longer anything that out-of-the-way about it. Coxeter has contributed to, exemplified, we could almost say presided over an unanticipated and dra matic revival of geometry."
This book is a text for junior, senior, or first-year graduate courses traditionally titled Foundations of Geometry and/or Non Euclidean Geometry. The first 29 chapters are for a semester or year course on the foundations of geometry. The remaining chap ters may then be used for either a regular course or independent study courses. Another possibility, which is also especially suited for in-service teachers of high school geometry, is to survey the the fundamentals of absolute geometry (Chapters 1 -20) very quickly and begin earnest study with the theory of parallels and isometries (Chapters 21 -30). The text is self-contained, except that the elementary calculus is assumed for some parts of the material on advanced hyperbolic geometry (Chapters 31 -34). There are over 650 exercises, 30 of which are 10-part true-or-false questions. A rigorous ruler-and-protractor axiomatic development of the Euclidean and hyperbolic planes, including the classification of the isometries of these planes, is balanced by the discussion about this development. Models, such as Taxicab Geometry, are used exten sively to illustrate theory. Historical aspects and alternatives to the selected axioms are prominent. The classical axiom systems of Euclid and Hilbert are discussed, as are axiom systems for three and four-dimensional absolute geometry and Pieri's system based on rigid motions. The text is divided into three parts. The Introduction (Chapters 1 -4) is to be read as quickly as possible and then used for ref erence if necessary.
In connection with the "Philosophy of Science" research program conducted by the Deutsche Forschungsgemeinschaft a colloquium was held in Munich from 18th to 20th May 1919. This covered basic structures of physical theories, the main emphasis being on the interrelation of space, time and mechanics. The present volume contains contributions and the results of the discussions. The papers are given here in the same order of presentation as at the meeting. The development of these "basic structures of physical theories" involved diverging trends arising from different starting points in philosophy and physics. In order to obtain a clear comparison between these schools of thought, it was appropriate to concentrate discussion on geometry and chronology as the common foundation of classical and quantum mechanics. As a rather simple and "Tell prepared field of study, geochronometry seemed suited to analysing these mutually exclusive positions. vii D. Mayr and G. Sussmann (eds.), Space, Time, and Mechanics, vii. Copyright (c) 1983 by D. Reidel Publishing Company. ACKNOWLEDGEMENT The editors gratefully appreciate the sponsorship of the Deutsche Forschungsgemeinschaft and the cooperation of the authors and publisher. It is also a pleasure to thank Frau M.-L. Grohmann and Frau I. Thies for their organisational and especially Frau B. Grund for typing and clerical work. D. MAYR G. SUSSMANN 1982 University of Munich viii INTRODUCTION The distinct positions present at the symposium may be roughly divided into three schools that differ in their philosophical interpretation of physics and their meta- .. . ~ .
This book constitutes the thoroughly refereed proceedings of the 17th International Conference on Discrete Geometry for Computer Imagery, DGCI 2013, held in Seville, Spain, in March 2013. The 34 revised full papers presented were carefully selected from 56 submissions and focus on geometric transforms, discrete and combinatorial tools for image segmentation and analysis, discrete and combinatorial topology, discrete shape representation, recognition and analysis, models for discrete geometry, morphological analysis and discrete tomography.
This collection of articles serves to commemorate the legacy of Joseph D'Atri, who passed away on April 29, 1993, a few days after his 55th birthday. Joe D' Atri is credited with several fundamental discoveries in ge ometry. In the beginning of his mathematical career, Joe was interested in the generalization of symmetrical spaces in the E. Cart an sense. Symmetric spaces, differentiated from other homogeneous manifolds by their geomet rical richness, allows the development of a deep analysis. Geometers have been constantly interested and challenged by the problem of extending the class of symmetric spaces so as to preserve their geometrical and analytical abundance. The name of D'Atri is tied to one of the most successful gen eralizations: Riemann manifolds in which (local) geodesic symmetries are volume-preserving (up to sign). In time, it turned out that the majority of interesting generalizations of symmetrical spaces are D'Atri spaces: natu ral reductive homogeneous spaces, Riemann manifolds whose geodesics are orbits of one-parameter subgroups, etc. The central place in D'Atri's research is occupied by homogeneous bounded domains in en, which are not symmetric. Such domains were discovered by Piatetskii-Shapiro in 1959, and given Joe's strong interest in the generalization of symmetric spaces, it was very natural for him to direct his research along this path."
Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. 1hen one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Oad in Crane Feathers' in R. Brown 'The point of a Pin' . * 1111 Oulik'. n. . Chi" *. * ~ Mm~ Mu,d. ", Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics", "CFD", "completely integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.
For textual studies relating to the ancient mathematical corpus the efforts by the Danish philologist, 1. L. Heiberg (1854-1928), are especially significant. Beginning with his doctoral dissertation, Quaestiones Archimedeae (Copen hagen, 1879), Heiberg produced an astonishing series of editions and critical studies that remain the foundation of scholarship on Greek mathematical 4 science. For comprehensiveness and accuracy, his editions are exemplary. In his textual studies, as also in the prolegomena to his editions, he carefully described the extant evidence, organized the manuscripts into stemmata, and drew out the implications for the state of the text. 5 With regard to his Archimedean work, Heiberg sometimes betrayed signs of the philologist's occupational disease - the tendency to rewrite a text deemed on subjective grounds to be unworthy. 6 But he did so less often than his prominent 7 contemporaries, and not as to detract appreciably from the value of his editions. In examining textual questions bearing on the Archimedean corpus, he attempted to exploit as much as possible evidence from the ancient commentators, and in some instances from the medieval translations. It is here that opportunities abound for new work, extending, and in some instances superseding, Heiberg's findings. For at his time the availability of the medieval materials was limited. In recent years Marshall Clagett has completed a mammoth critical edition of the medieval Latin tradition of Archimedes,8 while the bibliographical instruments for the Arabic tradition are in good order thanks to the work of Fuat Sezgin."
Approach your problems from the right It isn't that they can't see the solution. It end and begin with the answers. Then, is that they can't see the problem. one day, perhaps you will fmd the final question. G. K. Chesterton, The Scandal of Father Brown 'The Point of a Pin'. 'The Hermit Clad in Crane Feathers' in R. Van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the 'tree' of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geo metry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical progmmming profit from homotopy theory; Lie algebras are relevant to fIltering; and prediction and electrical engineering can use Stein spaces."
Series of scalars, vectors, or functions are among the fundamental objects of mathematical analysis. When the arrangement of the terms is fixed, investigating a series amounts to investigating the sequence of its partial sums. In this case the theory of series is a part of the theory of sequences, which deals with their convergence, asymptotic behavior, etc. The specific character of the theory of series manifests itself when one considers rearrangements (permutations) of the terms of a series, which brings combinatorial considerations into the problems studied. The phenomenon that a numerical series can change its sum when the order of its terms is changed is one of the most impressive facts encountered in a university analysis course. The present book is devoted precisely to this aspect of the theory of series whose terms are elements of Banach (as well as other topological linear) spaces. The exposition focuses on two complementary problems. The first is to char acterize those series in a given space that remain convergent (and have the same sum) for any rearrangement of their terms; such series are usually called uncon ditionally convergent. The second problem is, when a series converges only for certain rearrangements of its terms (in other words, converges conditionally), to describe its sum range, i.e., the set of sums of all its convergent rearrangements." |
You may like...
I. C. S. Reference Library: Types of…
International Correspondence Schools
Paperback
R744
Discovery Miles 7 440
|