![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Geometry > General
This book constitutes the thoroughly refereed proceedings of the 17th International Conference on Discrete Geometry for Computer Imagery, DGCI 2013, held in Seville, Spain, in March 2013. The 34 revised full papers presented were carefully selected from 56 submissions and focus on geometric transforms, discrete and combinatorial tools for image segmentation and analysis, discrete and combinatorial topology, discrete shape representation, recognition and analysis, models for discrete geometry, morphological analysis and discrete tomography.
This 1994 text covers finite linear spaces. It contains all the important results that had been published up to the time of publication, and is designed to be used not only as a resource for researchers in this and related areas, but also as a graduate-level text. In eight chapters the authors introduce and review fundamental results, and go on to cover the major areas of interest in linear spaces. A combinatorial approach is used for the greater part of the book, but in the final chapter recent advances in group theory relating to finite linear spaces are presented. At the end of each chapter there is a set of exercises which are designed to test comprehension of the material, and there is also a section of problems for researchers. It will be an invaluable book for researchers in geometry and combinatorics as well as forming an excellent text for graduate students.
This collection of articles serves to commemorate the legacy of Joseph D'Atri, who passed away on April 29, 1993, a few days after his 55th birthday. Joe D' Atri is credited with several fundamental discoveries in ge ometry. In the beginning of his mathematical career, Joe was interested in the generalization of symmetrical spaces in the E. Cart an sense. Symmetric spaces, differentiated from other homogeneous manifolds by their geomet rical richness, allows the development of a deep analysis. Geometers have been constantly interested and challenged by the problem of extending the class of symmetric spaces so as to preserve their geometrical and analytical abundance. The name of D'Atri is tied to one of the most successful gen eralizations: Riemann manifolds in which (local) geodesic symmetries are volume-preserving (up to sign). In time, it turned out that the majority of interesting generalizations of symmetrical spaces are D'Atri spaces: natu ral reductive homogeneous spaces, Riemann manifolds whose geodesics are orbits of one-parameter subgroups, etc. The central place in D'Atri's research is occupied by homogeneous bounded domains in en, which are not symmetric. Such domains were discovered by Piatetskii-Shapiro in 1959, and given Joe's strong interest in the generalization of symmetric spaces, it was very natural for him to direct his research along this path."
Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. 1hen one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Oad in Crane Feathers' in R. Brown 'The point of a Pin' . * 1111 Oulik'. n. . Chi" *. * ~ Mm~ Mu,d. ", Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics", "CFD", "completely integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.
For textual studies relating to the ancient mathematical corpus the efforts by the Danish philologist, 1. L. Heiberg (1854-1928), are especially significant. Beginning with his doctoral dissertation, Quaestiones Archimedeae (Copen hagen, 1879), Heiberg produced an astonishing series of editions and critical studies that remain the foundation of scholarship on Greek mathematical 4 science. For comprehensiveness and accuracy, his editions are exemplary. In his textual studies, as also in the prolegomena to his editions, he carefully described the extant evidence, organized the manuscripts into stemmata, and drew out the implications for the state of the text. 5 With regard to his Archimedean work, Heiberg sometimes betrayed signs of the philologist's occupational disease - the tendency to rewrite a text deemed on subjective grounds to be unworthy. 6 But he did so less often than his prominent 7 contemporaries, and not as to detract appreciably from the value of his editions. In examining textual questions bearing on the Archimedean corpus, he attempted to exploit as much as possible evidence from the ancient commentators, and in some instances from the medieval translations. It is here that opportunities abound for new work, extending, and in some instances superseding, Heiberg's findings. For at his time the availability of the medieval materials was limited. In recent years Marshall Clagett has completed a mammoth critical edition of the medieval Latin tradition of Archimedes,8 while the bibliographical instruments for the Arabic tradition are in good order thanks to the work of Fuat Sezgin."
Approach your problems from the right It isn't that they can't see the solution. It end and begin with the answers. Then, is that they can't see the problem. one day, perhaps you will fmd the final question. G. K. Chesterton, The Scandal of Father Brown 'The Point of a Pin'. 'The Hermit Clad in Crane Feathers' in R. Van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the 'tree' of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geo metry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical progmmming profit from homotopy theory; Lie algebras are relevant to fIltering; and prediction and electrical engineering can use Stein spaces."
Series of scalars, vectors, or functions are among the fundamental objects of mathematical analysis. When the arrangement of the terms is fixed, investigating a series amounts to investigating the sequence of its partial sums. In this case the theory of series is a part of the theory of sequences, which deals with their convergence, asymptotic behavior, etc. The specific character of the theory of series manifests itself when one considers rearrangements (permutations) of the terms of a series, which brings combinatorial considerations into the problems studied. The phenomenon that a numerical series can change its sum when the order of its terms is changed is one of the most impressive facts encountered in a university analysis course. The present book is devoted precisely to this aspect of the theory of series whose terms are elements of Banach (as well as other topological linear) spaces. The exposition focuses on two complementary problems. The first is to char acterize those series in a given space that remain convergent (and have the same sum) for any rearrangement of their terms; such series are usually called uncon ditionally convergent. The second problem is, when a series converges only for certain rearrangements of its terms (in other words, converges conditionally), to describe its sum range, i.e., the set of sums of all its convergent rearrangements."
The field of computational learning theory arose out of the desire to for mally understand the process of learning. As potential applications to artificial intelligence became apparent, the new field grew rapidly. The learning of geo metric objects became a natural area of study. The possibility of using learning techniques to compensate for unsolvability provided an attraction for individ uals with an immediate need to solve such difficult problems. Researchers at the Center for Night Vision were interested in solving the problem of interpreting data produced by a variety of sensors. Current vision techniques, which have a strong geometric component, can be used to extract features. However, these techniques fall short of useful recognition of the sensed objects. One potential solution is to incorporate learning techniques into the geometric manipulation of sensor data. As a first step toward realizing such a solution, the Systems Research Center at the University of Maryland, in conjunction with the Center for Night Vision, hosted a Workshop on Learning and Geometry in January of 1991. Scholars in both fields came together to learn about each others' field and to look for common ground, with the ultimate goal of providing a new model of learning from geometrical examples that would be useful in computer vision. The papers in the volume are a partial record of that meeting."
4. 1 Bergman-Toeplitz Operators Over Bounded Domains 242 4. 2 Hardy-Toeplitz Operators Over Strictly Domains Pseudoconvex 250 Groupoid C* -Algebras 4. 3 256 4. 4 Hardy-Toeplitz Operators Over Tubular Domains 267 4. 5 Bergman-Toeplitz Operators Over Tubular Domains 278 4. 6 Hardy-Toeplitz Operators Over Polycircular Domains 284 4. 7 Bergman-Toeplitz Operators Over Polycircular Domains 290 4. 8 Hopf C* -Algebras 299 4. 9 Actions and Coactions on C* -Algebras 310 4. 10 Hardy-Toeplitz Operators Over K-circular Domains 316 4. 11 Hardy-Toeplitz Operators Over Symmetric Domains 325 4. 12 Bergman-Toeplitz Operators Over Symmetric Domains 361 5. Index Theory for Multivariable Toeplitz Operators 5. 0 Introduction 371 5. 1 K-Theory for Topological Spaces 372 5. 2 Index Theory for Strictly Pseudoconvex Domains 384 5. 3 C*-Algebras K-Theory for 394 5. 4 Index Theory for Symmetric Domains 400 5. 5 Index Theory for Tubular Domains 432 5. 6 Index Theory for Polycircular Domains 455 References 462 Index of Symbols and Notations 471 In trod uction Toeplitz operators on the classical Hardy space (on the I-torus) and the closely related Wiener-Hopf operators (on the half-line) form a central part of operator theory, with many applications e. g. , to function theory on the unit disk and to the theory of integral equations.
Wir unterhielten uns einmal dariiber, daB man sich in einer fremden Sprache nur unfrei ausdriicken kann und im Zweifelsfall lieber das sagt, was man richtig und einwandfrei zu sagen hofft, als das, was man eigentlich sagen will. Molnar nickte bestatigend: "Es ist sehr traurig," resiimierte er. "Ich habe oft mitten im Satz meine Weltanschauung andem miissen . . . " Friedrich Torberg, Die Tante Jolesch The last two decades have witnessed great progress in the theory of translation planes. Being interested in, and having worked a little on this subject, I felt the need to clarify for myself what had been happening in this area of mathematics. Thus I lectured about it for several semesters and, at the same time, I wrote what is now this book. It is my very personal view of the story, which means that I selected mainly those topics I had touched upon in my own investigations. Thus finite translation planes are the main the of the book. Infinite translation planes, however, are not completely disregarded. As all theory aims at the mastering of the examples, these play a central role in this book. I believe that this fact will be welcomed by many people. However, it is not a beginner's book of geometry. It presupposes consider able knowledge of projective planes and algebra, especially group theory. The books by Gorenstein, Hughes and Piper, Huppert, Passman, and Pickert mentioned in the bibliography will help to fill any gaps the reader may have."
General topology is the domain ofmathematics devoted to the investigation of the concepts of continuity and passage to a limit at their natural level of generality. The most basic concepts of general topology, that of a topological space and a continuous map, were introduced by Hausdorffin 1914. Oneofthecentralproblemsoftopologyisthedeterminationandinvestigation of topological invariants; that is, properties ofspaces which are preserved under homeomorphisms. Topological invariants need not be numbers. Connectedness, compactness, andmetrizability, forexample, arenon-numericaltopologicalinvariants.Dimen sional invariants, on the otherhand, areexamplesofnumericalinvariants which take integervalues on specific topological spaces. Part II ofthis book is devoted to them. Topological invariants which take values in the cardinal numbers play an especially important role, providing the raw material for many useful coin" putations. Weight, density, character, and Suslin number are invariants ofthis type. Certain classes of topological spaces are defined in terms of topological in variants. Particularly important examples include the metrizable spaces, spaces with a countable base, compact spaces, Tikhonov spaces, Polish spaces, Cech complete spaces and the symmetrizable spaces."
This present volume is the Proceedings of the 14th International Conference on Near rings and Nearfields held in Hamburg at the Universitiit der Bundeswehr Hamburg, from July 30 to August 06, 1995. This Conference was attended by 70 mathematicians and many accompanying persons who represented 22 different countries from all five continents. Thus it was the largest conference devoted entirely to nearrings and nearfields. The first of these conferences took place in 1968 at the Mathematische For schungsinstitut Oberwolfach, Germany. This was also the site of the conferences in 1972, 1976, 1980 and 1989. The other eight conferences held before the Hamburg Conference took place in eight different countries. For details about this and, more over, for a general historical overview of the development of the subject, we refer to the article "On the beginnings and development of near-ring theory" by G. Betsch [3]. During the last forty years the theory of nearrings and related algebraic struc tures like nearfields, nearmodules, nearalgebras and seminearrings has developed into an extensive branch of algebra with its own features. In its position between group theory and ring theory, this relatively young branch of algebra has not only a close relationship to these two more well-known areas of algebra, but it also has, just as these two theories, very intensive connections to many further branches of mathematics.
Algebraic Geometry and its Applications will be of interest not only to mathematicians but also to computer scientists working on visualization and related topics. The book is based on 32 invited papers presented at a conference in honor of Shreeram Abhyankar's 60th birthday, which was held in June 1990 at Purdue University and attended by many renowned mathematicians (field medalists), computer scientists and engineers. The keynote paper is by G. Birkhoff; other contributors include such leading names in algebraic geometry as R. Hartshorne, J. Heintz, J.I. Igusa, D. Lazard, D. Mumford, and J.-P. Serre.
This book studies the geometric theory of polynomials and rational functions in the plane. Any theory in the plane should make full use of the complex numbers and thus the early chapters build the foundations of complex variable theory, melding together ideas from algebra, topology and analysis. In fact, throughout the book, the author introduces a variety of ideas and constructs theories around them, incorporating much of the classical theory of polynomials as he proceeds. These ideas are used to study a number of unsolved problems, bearing in mind that such problems indicate the current limitations of our knowledge and present challenges for the future. However, theories also lead to solutions of some problems and several such solutions are given including a comprehensive account of the geometric convolution theory. This is an ideal reference for graduate students and researchers working in this area.
Transformation Geometry: An Introduction to Symmetry offers a modern approach to Euclidean Geometry. This study of the automorphism groups of the plane and space gives the classical concrete examples that serve as a meaningful preparation for the standard undergraduate course in abstract algebra. The detailed development of the isometries of the plane is based on only the most elementary geometry and is appropriate for graduate courses for secondary teachers.
Intercropping is a method of sustaining or improving soil structure by growing two or more crops on the same field. It is a technique of wide application and of growing importance for both commercial and subsistence farmers. This textbook provides a comprehensive survey of the design and analysis of intercropping experiments. Its main themes are that techniques such as relative indices make it possible to cover a wide variety of conditions, and that statistical models for density-yield relations enable recommendations to be made to growers of crops. As a result, graduate students and researchers in statistics, biometry, and agriculture whose study involves intercropping will find this an invaluable text and reference.
Supersymmetry was created by the physicists in the 1970's to give a unified treatment of fermions and bosons, the basic constituents of matter. Since then its mathematical structure has been recognized as that of a new development in geometry, and mathematicians have busied themselves with exploring this aspect. This volume collects recent advances in this field, both from a physical and a mathematical point of view, with an accent on a rigorous treatment of the various questions raised.
The present essay stems from a history of polyhedra from 1750 to 1866 written several years ago (as part of a more general work, not published). So many contradictory statements regarding a Descartes manuscript and Euler, by various mathematicians and historians of mathematics, were encountered that it was decided to write a separate study of the relevant part of the Descartes manuscript on polyhedra. The contemplated short paper grew in size, as only a detailed treatment could be of any value. After it was completed it became evident that the entire manuscript should be treated and the work grew some more. The result presented here is, I hope, a complete, accurate, and fair treatment of the entire manuscript. While some views and conclusions are expressed, this is only done with the facts before the reader, who may draw his or her own conclusions. I would like to express my appreciation to Professors H. S. M. Coxeter, Branko Griinbaum, Morris Kline, and Dr. Heinz-Jiirgen Hess for reading the manuscript and for their encouragement and suggestions. I am especially indebted to Dr. Hess, of the Leibniz-Archiv, for his assistance in connection with the manuscript. I have been greatly helped in preparing the translation ofthe manuscript by the collaboration of a Latin scholar, Mr. Alfredo DeBarbieri. The aid of librarians is indispensable, and I am indebted to a number of them, in this country and abroad, for locating material and supplying copies.
In the last decade there has been an extraordinary confluence of ideas in mathematics and theoretical physics brought about by pioneering discoveries in geometry and analysis. The various chapters in this volume, treating the interface of geometric analysis and mathematical physics, represent current research interests. No suitable succinct account of the material is available elsewhere. Key topics include: * A self-contained derivation of the partition function of Chern- Simons gauge theory in the semiclassical approximation (D.H. Adams) * Algebraic and geometric aspects of the Knizhnik-Zamolodchikov equations in conformal field theory (P. Bouwknegt) * Application of the representation theory of loop groups to simple models in quantum field theory and to certain integrable systems (A.L. Carey and E. Langmann) * A study of variational methods in Hermitian geometry from the viewpoint of the critical points of action functionals together with physical backgrounds (A. Harris) * A review of monopoles in nonabelian gauge theories (M.K. Murray) * Exciting developments in quantum cohomology (Y. Ruan) * The physics origin of Seiberg-Witten equations in 4-manifold theory (S. Wu) Graduate students, mathematicians and mathematical physicists in the above-mentioned areas will benefit from the user-friendly introductory style of each chapter as well as the comprehensive bibliographies provided for each topic. Prerequisite knowledge is minimal since sufficient background material motivates each chapter.
Reflection groups and their invariant theory provide the main themes of this book and the first two parts focus on these topics. The first 13 chapters deal with reflection groups (Coxeter groups and Weyl groups) in Euclidean Space while the next thirteen chapters study the invariant theory of pseudo-reflection groups. The third part of the book studies conjugacy classes of the elements in reflection and pseudo-reflection groups. The book has evolved from various graduate courses given by the author over the past 10 years. It is intended to be a graduate text, accessible to students with a basic background in algebra.
Symmetry and Pattern in Projective Geometry is a self-contained study of projective geometry which compares and contrasts the analytic and axiomatic methods. The analytic approach is based on homogeneous coordinates, and brief introductions to Plucker coordinates and Grassmann coordinates are presented. This book looks carefully at linear, quadratic, cubic and quartic figures in two, three and higher dimensions. It deals at length with the extensions and consequences of basic theorems such as those of Pappus and Desargues. The emphasis throughout is on special configurations that have particularly interesting symmetry properties. The intricate and novel ideas of 'Donald' Coxeter, who is considered one of the great geometers of the twentieth century, are also discussed throughout the text. The book concludes with a useful analysis of finite geometries and a description of some of the remarkable configurations discovered by Coxeter. This book will be appreciated by mathematics students and those wishing to learn more about the subject of geometry. It makes accessible subjects and theorems which are often considered quite complicated and presents them in an easy-to-read and enjoyable manner.
Symmetry is of interest in two ways, artistic and mathematical. It underlies much scientific thought, playing an important role in chemistry and atomic physics, and a dominant one in crystallography. It is important in architectural and engineering design and particularly in the decorative arts. This book provides a comprehensive account of symmetry in a form acceptable to readers without much detailed mathematical knowledge or experience who nevertheless want to understand the basic principles of the subject. It will be useful in school and other libraries and as preliminary reading for students of crystallography. The treatment is geometrical, which should appeal to art students and to readers whose mathematical interests are that way inclined.
In July 1996, a conference was organized by the editors of this volume at the Mathematische Forschungsinstitut Oberwolfach to honour Egbert Brieskorn on the occasion of his 60th birthday. Most of the mathematicians invited to the conference have been influenced in one way or another by Brieskorn's work in singularity theory. It was the first time that so many people from the Russian school could be present at a conference in singularity theory outside Russia. This volume contains papers on singularity theory and its applications, written by participants of the conference. In many cases, they are extended versions of the talks presented there. The diversity of subjects of the contributions reflects singularity theory's relevance to topology, analysis and geometry, combining ideas and techniques from all of these fields, as well as demonstrating the breadth of Brieskorn's own interests. This volume contains papers on singularity theory and its applications, written by participants of the conference. In many cases, they are extended versions of the talks presented there. The diversity of subjects of the contributions reflects singularity theory's relevance to topology, analysis and geometry, combining ideas and techniques from all of these fields, as well as demonstrates the breadth of Brieskorn's own interests.
The two-volume set LNCS 6468-6469 contains the carefully selected and reviewed papers presented at the eight workshops that were held in conjunction with the 10th Asian Conference on Computer Vision, in Queenstown, New Zealand, in November 2010.From a total of 167 submissions to all workshops, 89 papers were selected for publication. The contributions are grouped together according to the main workshops topics, which were: computational photography and aesthetics; computer vision in vehicle technology: from Earth to Mars; electronic cultural heritage; subspace based methods; video event categorization, tagging and retrieval; visual surveillance; application of computer vision for mixed and augmented reality.
This text is the fifth and final in the series of educational books written by Israel Gelfand with his colleagues for high school students. These books cover the basics of mathematics in a clear and simple format - the style Gelfand was known for internationally. Gelfand prepared these materials so as to be suitable for independent studies, thus allowing students to learn and practice the material at their own pace without a class. Geometry takes a different approach to presenting basic geometry for high-school students and others new to the subject. Rather than following the traditional axiomatic method that emphasizes formulae and logical deduction, it focuses on geometric constructions. Illustrations and problems are abundant throughout, and readers are encouraged to draw figures and "move" them in the plane, allowing them to develop and enhance their geometrical vision, imagination, and creativity. Chapters are structured so that only certain operations and the instruments to perform these operations are available for drawing objects and figures on the plane. This structure corresponds to presenting, sequentially, projective, affine, symplectic, and Euclidean geometries, all the while ensuring students have the necessary tools to follow along. Geometry is suitable for a large audience, which includes not only high school geometry students, but also teachers and anyone else interested in improving their geometrical vision and intuition, skills useful in many professions. Similarly, experienced mathematicians can appreciate the book's unique way of presenting plane geometry in a simple form while adhering to its depth and rigor. "Gelfand was a great mathematician and also a great teacher. The book provides an atypical view of geometry. Gelfand gets to the intuitive core of geometry, to the phenomena of shapes and how they move in the plane, leading us to a better understanding of what coordinate geometry and axiomatic geometry seek to describe." - Mark Saul, PhD, Executive Director, Julia Robinson Mathematics Festival "The subject matter is presented as intuitive, interesting and fun. No previous knowledge of the subject is required. Starting from the simplest concepts and by inculcating in the reader the use of visualization skills, [and] after reading the explanations and working through the examples, you will be able to confidently tackle the interesting problems posed. I highly recommend the book to any person interested in this fascinating branch of mathematics." - Ricardo Gorrin, a student of the Extended Gelfand Correspondence Program in Mathematics (EGCPM) |
You may like...
Finite Geometries, Buildings, and…
William M. Kantor, Robert A. Leibler, …
Hardcover
R1,162
Discovery Miles 11 620
|