![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Geometry > General
You, too, can understand geometry---- just ask Dr. Math ?
Focusing methodologically on those historical aspects that are relevant to supporting intuition in axiomatic approaches to geometry, the book develops systematic and modern approaches to the three core aspects of axiomatic geometry: Euclidean, non-Euclidean and projective. Historically, axiomatic geometry marks the origin of formalized mathematical activity. It is in this discipline that most historically famous problems can be found, the solutions of which have led to various presently very active domains of research, especially in algebra. The recognition of the coherence of two-by-two contradictory axiomatic systems for geometry (like one single parallel, no parallel at all, several parallels) has led to the emergence of mathematical theories based on an arbitrary system of axioms, an essential feature of contemporary mathematics. This is a fascinating book for all those who teach or study axiomatic geometry, and who are interested in the history of geometry or who want to see a complete proof of one of the famous problems encountered, but not solved, during their studies: circle squaring, duplication of the cube, trisection of the angle, construction of regular polygons, construction of models of non-Euclidean geometries, etc. It also provides hundreds of figures that support intuition. Through 35 centuries of the history of geometry, discover the birth and follow the evolution of those innovative ideas that allowed humankind to develop so many aspects of contemporary mathematics. Understand the various levels of rigor which successively established themselves through the centuries. Be amazed, as mathematicians of the 19th century were, when observing that both an axiom and its contradiction can be chosen as a valid basis for developing a mathematical theory. Pass through the door of this incredible world of axiomatic mathematical theories
Reconciliation of Geometry and Perception in Radiation Physics approaches the topic of projective geometry as it applies to radiation physics and attempts to negate its negative reputation. With an original outlook and transversal approach, the book emphasizes common geometric properties and their potential transposition between domains. After defining both radiation and geometric properties, authors Benoit and Pierre Beckers explain the necessity of reconciling geometry and perception in fields like architectural and urban physics, which are notable for the regularity of their forms and the complexity of their interactions.
An analysis of large data sets from an empirical and geometric viewpoint Data reduction is a rapidly emerging field with broad applications in essentially all fields where large data sets are collected and analyzed. Geometric Data Analysis is the first textbook to focus on the geometric approach to this problem of developing and distinguishing subspace and submanifold techniques for low-dimensional data representation. Understanding the geometrical nature of the data under investigation is presented as the key to identifying a proper reduction technique. Focusing on the construction of dimensionality-reducing mappings to reveal important geometrical structure in the data, the sequence of chapters is carefully constructed to guide the reader from the beginnings of the subject to areas of current research activity. A detailed, and essentially self-contained, presentation of the mathematical prerequisites is included to aid readers from a broad variety of backgrounds. Other topics discussed in Geometric Data Analysis include:
The methods are developed within the context of many real-world applications involving massive data sets, including those generated by digital imaging systems and computer simulations of physical phenomena. Empirically based representations are shown to facilitate their investigation and yield insights that would otherwise elude conventional analytical tools.
The cognitive foundations of geometry have puzzled academics for a long time, and even today are mostly unknown to many scholars, including mathematical cognition researchers. Foundations of Geometric Cognition shows that basic geometric skills are deeply hardwired in the visuospatial cognitive capacities of our brains, namely spatial navigation and object recognition. These capacities, shared with non-human animals and appearing in early stages of the human ontogeny, cannot, however, fully explain a uniquely human form of geometric cognition. In the book, Hohol argues that Euclidean geometry would not be possible without the human capacity to create and use abstract concepts, demonstrating how language and diagrams provide cognitive scaffolding for abstract geometric thinking, within a context of a Euclidean system of thought. Taking an interdisciplinary approach and drawing on research from diverse fields including psychology, cognitive science, and mathematics, this book is a must-read for cognitive psychologists and cognitive scientists of mathematics, alongside anyone interested in mathematical education or the philosophical and historical aspects of geometry.
The cognitive foundations of geometry have puzzled academics for a long time, and even today are mostly unknown to many scholars, including mathematical cognition researchers. Foundations of Geometric Cognition shows that basic geometric skills are deeply hardwired in the visuospatial cognitive capacities of our brains, namely spatial navigation and object recognition. These capacities, shared with non-human animals and appearing in early stages of the human ontogeny, cannot, however, fully explain a uniquely human form of geometric cognition. In the book, Hohol argues that Euclidean geometry would not be possible without the human capacity to create and use abstract concepts, demonstrating how language and diagrams provide cognitive scaffolding for abstract geometric thinking, within a context of a Euclidean system of thought. Taking an interdisciplinary approach and drawing on research from diverse fields including psychology, cognitive science, and mathematics, this book is a must-read for cognitive psychologists and cognitive scientists of mathematics, alongside anyone interested in mathematical education or the philosophical and historical aspects of geometry.
Most books on fractals focus on deterministic fractals as the impact of incorporating randomness and time is almost absent. Further, most review fractals without explaining what scaling and self-similarity means. This book introduces the idea of scaling, self-similarity, scale-invariance and their role in the dimensional analysis. For the first time, fractals emphasizing mostly on stochastic fractal, and multifractals which evolves with time instead of scale-free self-similarity, are discussed. Moreover, it looks at power laws and dynamic scaling laws in some detail and provides an overview of modern statistical tools for calculating fractal dimension and multifractal spectrum.
This book is a pedagogical presentation aimed at advanced undergraduate students, beginning graduate students and professionals who are looking for an introductory text to the field of Distance Geometry, and some of its applications. This versions profits from feedback acquired at undergraduate/graduate courses in seminars and a number of workshops.
The book provides a self-contained and systematic treatment of algebraic and topological properties of convex sets in the n-dimensional Euclidean space. It benefits advanced undergraduate and graduate students with various majors in mathematics, optimization, and operations research. It may be adapted as a primary book or an additional text for any course in convex geometry or convex analysis, aimed at non-geometers. It can be a source for independent study and a reference book for researchers in academia.The second edition essentially extends and revises the original book. Every chapter is rewritten, with many new theorems, examples, problems, and bibliographical references included. It contains three new chapters and 100 additional problems with solutions.
The book provides a self-contained and systematic treatment of algebraic and topological properties of convex sets in the n-dimensional Euclidean space. It benefits advanced undergraduate and graduate students with various majors in mathematics, optimization, and operations research. It may be adapted as a primary book or an additional text for any course in convex geometry or convex analysis, aimed at non-geometers. It can be a source for independent study and a reference book for researchers in academia.The second edition essentially extends and revises the original book. Every chapter is rewritten, with many new theorems, examples, problems, and bibliographical references included. It contains three new chapters and 100 additional problems with solutions.
The Mordell conjecture (Faltings's theorem) is one of the most important achievements in Diophantine geometry, stating that an algebraic curve of genus at least two has only finitely many rational points. This book provides a self-contained and detailed proof of the Mordell conjecture following the papers of Bombieri and Vojta. Also acting as a concise introduction to Diophantine geometry, the text starts from basics of algebraic number theory, touches on several important theorems and techniques (including the theory of heights, the Mordell-Weil theorem, Siegel's lemma and Roth's lemma) from Diophantine geometry, and culminates in the proof of the Mordell conjecture. Based on the authors' own teaching experience, it will be of great value to advanced undergraduate and graduate students in algebraic geometry and number theory, as well as researchers interested in Diophantine geometry as a whole.
Understanding how a single shape can incur a complex range of transformations, while defining the same perceptually obvious figure, entails a rich and challenging collection of problems, at the interface between applied mathematics, statistics and computer science. The program on Mathematics of Shapes and Applications, was held at the Institute for Mathematical Sciences at the National University of Singapore in 2016. It provided discussions on theoretical developments and numerous applications in computer vision, object recognition and medical imaging.The analysis of shapes is an example of a mathematical problem directly connected with applications while offering deep open challenges to theoretical mathematicians. It has grown, over the past decades, into an interdisciplinary area in which researchers studying infinite-dimensional Riemannian manifolds (global analysis) interact with applied mathematicians, statisticians, computer scientists and biomedical engineers on a variety of problems involving shapes.The volume illustrates this wealth of subjects by providing new contributions on the metric structure of diffeomorphism groups and shape spaces, recent developments on deterministic and stochastic models of shape evolution, new computational methods manipulating shapes, and new statistical tools to analyze shape datasets. In addition to these contributions, applications of shape analysis to medical imaging and computational anatomy are discussed, leading, in particular, to improved understanding of the impact of cognitive diseases on the geometry of the brain.
This textbook for courses on function data analysis and shape data analysis describes how to define, compare, and mathematically represent shapes, with a focus on statistical modeling and inference. It is aimed at graduate students in analysis in statistics, engineering, applied mathematics, neuroscience, biology, bioinformatics, and other related areas. The interdisciplinary nature of the broad range of ideas covered-from introductory theory to algorithmic implementations and some statistical case studies-is meant to familiarize graduate students with an array of tools that are relevant in developing computational solutions for shape and related analyses. These tools, gleaned from geometry, algebra, statistics, and computational science, are traditionally scattered across different courses, departments, and disciplines; Functional and Shape Data Analysis offers a unified, comprehensive solution by integrating the registration problem into shape analysis, better preparing graduate students for handling future scientific challenges. Recently, a data-driven and application-oriented focus on shape analysis has been trending. This text offers a self-contained treatment of this new generation of methods in shape analysis of curves. Its main focus is shape analysis of functions and curves-in one, two, and higher dimensions-both closed and open. It develops elegant Riemannian frameworks that provide both quantification of shape differences and registration of curves at the same time. Additionally, these methods are used for statistically summarizing given curve data, performing dimension reduction, and modeling observed variability. It is recommended that the reader have a background in calculus, linear algebra, numerical analysis, and computation.
In this book the classical Greek construction problems are explored in a didactical, enquiry based fashion using Interactive Geometry Software (IGS). The book traces the history of these problems, stating them in modern terminology. By focusing on constructions and the use of IGS the reader is confronted with the same problems that ancient mathematicians once faced. The reader can step into the footsteps of Euclid, Viete and Cusanus amongst others and then by experimenting and discovering geometric relationships far exceed their accomplishments. Exploring these problems with the neusis-method lets him discover a class of interesting curves. By experimenting he will gain a deeper understanding of how mathematics is created. More than 100 exercises guide him through methods which were developed to try and solve the problems. The exercises are at the level of undergraduate students and only require knowledge of elementary Euclidean geometry and pre-calculus algebra. It is especially well-suited for those students who are thinking of becoming a mathematics teacher and for mathematics teachers.
This work reviews the most important results regarding the use of the -point in Scheduling Theory. It provides a number of different LP-relaxations for scheduling problems and seeks to explain their polyhedral consequences. It also explains the concept of the -point and how the conversion algorithm works, pointing out the relations to the sum of the weighted completion times. Lastly, the book explores the latest techniques used for many scheduling problems with different constraints, such as release dates, precedences, and parallel machines. This reference book is intended for advanced undergraduate and postgraduate students who are interested in scheduling theory. It is also inspiring for researchers wanting to learn about sophisticated techniques and open problems of the field.
This book gives an introduction to the field of Incidence Geometry by discussing the basic families of point-line geometries and introducing some of the mathematical techniques that are essential for their study. The families of geometries covered in this book include among others the generalized polygons, near polygons, polar spaces, dual polar spaces and designs. Also the various relationships between these geometries are investigated. Ovals and ovoids of projective spaces are studied and some applications to particular geometries will be given. A separate chapter introduces the necessary mathematical tools and techniques from graph theory. This chapter itself can be regarded as a self-contained introduction to strongly regular and distance-regular graphs. This book is essentially self-contained, only assuming the knowledge of basic notions from (linear) algebra and projective and affine geometry. Almost all theorems are accompanied with proofs and a list of exercises with full solutions is given at the end of the book. This book is aimed at graduate students and researchers in the fields of combinatorics and incidence geometry.
The book presents a comprehensive exposition of extension results for maps between different geometric objects and of extension-trace results for smooth functions on subsets with no a priori differential structure (Whitney problems). The account covers development of the area from the initial classical works of the first half of the 20th century to the flourishing period of the last decade. Seemingly very specific these problems have been from the very beginning a powerful source of ideas, concepts and methods that essentially influenced and in some cases even transformed considerable areas of analysis. Aside from the material linked by the aforementioned problems the book also is unified by geometric analysis approach used in the proofs of basic results. This requires a variety of geometric tools from convex and combinatorial geometry to geometry of metric space theory to Riemannian and coarse geometry and more. The necessary facts are presented mostly with detailed proofs to make the book accessible to a wide audience.
The book is inspired by the third seminar in a cycle connected to the celebrations of the 150th anniversary of the Politecnico di Milano (July 2013). "Educating by Image. Teaching Styles vs Learning Styles" was the motto of this meeting. The contributions (coming from lectures, the poster session, interviews and round table) aim to propose an updated look at visual education, highlighting how digital tools and networks have profoundly affected the "representational styles" of the teachers and the "cognitive styles" of the learners, while at the same time reaffirming the importance of the interaction between the two groups. As Herbert Alexander Simon once said, "Learning results... only from what the student does and thinks"; therefore "the teacher can advance learning only by influencing what the student does to learn". That is no mean feat if we consider that, according to Benjamin Samuel Bloom, visual education not only involves the pure cognition, but also the affective and the psychomotor domains, not to mention the social aspects. This is why, alongside some theoretical and historical retrospectives, the contributions recommend a continuous revision of "what" and "how" could be included in the academic curricula, also in connection with secondary schools, the professional world, targeted Lifelong Learning Programmes for students and teachers. The volume includes an interview with the science journalist and writer Piero Angela.
TheĀ book is inspired by the first seminar in a cycle connected to the celebrations of the 150th anniversary of the Politecnico di Milano. "Dealing with the Image Ivory Towers and Virtual Bridges" was the motto of this meeting, aiming to stimulate a discussion among engineers, designers and architects, all of whom are traditionally involved in the use of the Image as a specialized language supporting their work, their research activities and their educational tasks. The book will also include the essays of invited or interviewed authors from other disciplines, namely Philosophy, Mathematics and Semiotics. According to Regis Debray, in the present "Visual Age", which he has significantly defined as a "Video-Sphere", all the information tends to be processed and controlled by means of visual devices. This occurs especially in the various branches of many technical studies and activities, one of the most sensitive areas to the use of Visual Language in the past and even more in the present.
Dominik Volland studies the construction of a discrete counterpart to the Hilbert transform in the realm of a nonlinear discrete complex analysis given by circle packings. The Hilbert transform is closely related to Riemann-Hilbert problems which have been studied in the framework of circle packings by E. Wegert and co-workers since 2009. The author demonstrates that the discrete Hilbert transform is well-defined in this framework by proving a conjecture on discrete problems formulated by Wegert. Moreover, he illustrates its properties by carefully chosen numerical examples.
This book collects significant contributions from the fifth conference on Fractal Geometry and Stochastics held in Tabarz, Germany, in March 2014. The book is divided into five topical sections: geometric measure theory, self-similar fractals and recurrent structures, analysis and algebra on fractals, multifractal theory, and random constructions. Each part starts with a state-of-the-art survey followed by papers covering a specific aspect of the topic. The authors are leading world experts and present their topics comprehensibly and attractively. Both newcomers and specialists in the field will benefit from this book.
This book collects significant contributions from the fifth conference on Fractal Geometry and Stochastics held in Tabarz, Germany, in March 2014. The book is divided into five topical sections: geometric measure theory, self-similar fractals and recurrent structures, analysis and algebra on fractals, multifractal theory, and random constructions. Each part starts with a state-of-the-art survey followed by papers covering a specific aspect of the topic. The authors are leading world experts and present their topics comprehensibly and attractively. Both newcomers and specialists in the field will benefit from this book.
This work investigates how different fifth-grade students solve spatial-verbal tasks and the role of language in this process. Based on a synthesis of theoretical foundations and methodological issues for supporting the relationship between spatial ability and language, this present study examines and classifies strategies used by students as well as the obstacles they encounter when solving spatial tasks in the reconstruction method.
Traditionally, Lie theory is a tool to build mathematical models for physical systems. Recently, the trend is towards geometrization of the mathematical description of physical systems and objects. A geometric approach to a system yields in general some notion of symmetry which is very helpful in understanding its structure. Geometrization and symmetries are meant in their widest sense, i.e., representation theory, algebraic geometry, infinite-dimensional Lie algebras and groups, superalgebras and supergroups, groups and quantum groups, noncommutative geometry, symmetries of linear and nonlinear PDE, special functions, and others. Furthermore, the necessary tools from functional analysis and number theory are included. This is a big interdisciplinary and interrelated field. Samples of these fresh trends are presented in this volume, based on contributions from the Workshop "Lie Theory and Its Applications in Physics" held near Varna (Bulgaria) in June 2013. This book is suitable for a broad audience of mathematicians, mathematical physicists, and theoretical physicists and researchers in the field of Lie Theory. |
You may like...
I. C. S. Reference Library: Types of…
International Correspondence Schools
Paperback
R744
Discovery Miles 7 440
|